
A game‑theory modeling approach 
to utility and strength of interactions dynamics 
in biomedical research social networks
J. Mario Siqueiros‑García1,2*, Rodrigo García‑Herrera2, Enrique Hernández‑Lemus3 and Sergio Alcalá‑Corona3

Background
Collaboration has become a cornerstone in biomedical research today. In contrast to 
physics which has a long history and experience in collaborative projects, biology is only 
recently becoming an evermore collaborative discipline (Vermeulen et al. 2013). Biology 
has an interesting record in such matters because scientific collaboration means some-
thing different to different branches of biology: molecular biology has traditionally been 
a research activity of small laboratories (Cetina 1999; Strasser 2006), whereas in natural 
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biology is only recently becoming an evermore collaborative discipline. In this article 
we explore the effect of a collaboration network on the distribution of players hav‑
ing access to certain amount of resources from other players in the network and the 
distribution of the strength of interactions among them. We are interested in how they 
affect each other in the context of a network of scientific collaboration under the idea 
that while researchers are interested in maximizing their utilities, they also know that it 
is important to invest in building collaborative relationships.

Methods: We implemented two games played simultaneously: one for maximizing 
individual utility based on the iterated prisoner’s dilemma; the other, a coordination 
game for maximizing the connection strength between players. We tested our simula‑
tion on a biomedical research community network in México and compared the results 
with Erdös–Renyí, a Watts–Strogatz small‑world and Barabási–Albert topologies.

Results: Different topologies display different global utility and global strength of 
interaction distributions. Moreover, the distribution of utility and strength of interac‑
tion in the researchers network is similar to that of Barabási–Albert and Watts–Strogatz 
topologies, respectively.

Conclusions: Data related to Science, from co‑authorships to Scientists’ movility are 
increasingly becoming available. We think that the readiness of these sort of data is a 
great opportunity for scientists interested in the social dynamics of science, especially 
in the context of computational social science.
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history there has been an exchange of data and samples since the seventeenth century 
(Wille 2012; Strasser 2012). Despite the differences in culture and practices, the Human 
Genome Project made collaboration a central feature of biology.

Nowadays it is widely acknowledged that collaboration takes many forms, from shar-
ing of biological samples and biobanking to international groups in charge of helping 
research communities to harmonize and share their data (Vermeulen et al. 2013; Bar-
rett et al. 2013; Federer et al. 2015; Karimi-Busheri and Rasouli-Nia 2015; Vallance et al. 
2016; Warner et al. 2016). Sharing resources such as equipment, funds, and time is criti-
cal; building trust among scientists is fundamental (Bennett et al. 2010; Leite and Pinho 
2017). Also, resources are mobilized in order to create strategic alliances.

The analysis of cooperation in scientific research has been the subject of a number 
of studies (Vermeulen et  al. 2013; Newman 2001, 2004; Elango and Rajendran 2012; 
Hernández-Lemus and Siqueiros-García 2013; Strasser 2006, 2012). This is not surpris-
ing since cooperation and competition are quite important in today’s academic success. 
Moreover, the quantitative analysis of cooperation in science also has a long history of 
more than 50  years (Franc 2012; Axelrod 2006). Particularly appealing to researchers 
studying this topic is the use of network analysis, especially in the area of bibliometrics 
and scientometrics such as in citation networks that date as far back as 1972 (Garfield 
1972), co-authorship and collaboration networks also have a long tradition (Todorov and 
Winterhager 1991; Wagner et al. 2017).

The approach we follow here articulates game theory together with complex network 
analysis. Putting together game-theoretic modeling on complex networks is common in 
studies about the emergence of cooperation (Watts 1999; Szabó and Fáth 2007; Nowak 
and May 1992; Hisashi and Nowak 2006; Santos and Pacheco 2005; Santos et al. 2006; 
Suri and Watts 2011). However, in the context of science studies, it is far from being 
a unified, active field of research. There is no common set of questions and problems 
or a coherent body of models and theory aimed to understand the quirks and twists of 
cooperation in scientific communities. It is more earnest to say that work of this kind is 
rather scarce and focused around situations related to the social life of science, where 
sometimes models are run on collaboration networks because access to that kind of data 
is relatively easy.

Nevertheless, there is work done. For instance Wardil and Hauert have analyzed how 
collaboration happens within co-authorship networks (2015). Using the Physical Review 
journal historic database, these authors show the payoff differences between being the 
first author and the last author, where the first author is a cooperator that takes the high-
est load of work, while the last author is the laird that can benefit from the work of the 
former and get engaged in many other projects. They argue that cooperation in a multi-
authored paper is a game more similar to “snow-drift” than to “prisoner’s dilemma” 
since when co-authoring a paper everybody wins but each author pays a different price. 
Though this work takes into account the topology of the network as informative regard-
ing cooperation patterns, the role of topology framing or fostering cooperation is not 
part of the study.

Game theory over complex scientific information and collaboration networks has also 
attracted attention. To have a better understanding of the market of scientific informa-
tion Hanauske has applied Evolutionary Game Theory involving scientists as producers 
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but also journals as disseminators. One of his models connects scientists’ interest in 
maximazing their reputation and their decissions to publish in an Open Access Jour-
nal or in a journal that works under the traditional publication framework. He has also 
modeled game-theoretic interactions between scientists and journals concerning the 
decision of both players to go open access or not. Only this second model incorporates 
networks analysis (Hanauske 2012).

Another interesting behavior explored by game-theoretical modeling and complex 
networks has been done by Li and Cao (2003). These authors analyze the role of pun-
ishment in a science collaboration network. More precisely, they implemented an ulti-
matum bargaining model to understand the impact of the topology of a social network 
and the emergence of a population of punishers. In the ultimatum game, there are two 
players, one of them (the proponent) suggests to split a sum in two and its connected 
neighbor (the respondent) can decide to accept or reject the offer as it may be perceived 
more or less fair. If the respondent accepts, the sum is divided according to the offer. If 
the offer is rejected both players get nothing. According to the authors, the act of reject-
ing a selfish offer can be interpreted as a punishment since the player that rejects it is 
paying the cost of not receiving anything, but because of a selfish offer the proponent 
looses even more. Their results show that a phase transition will emerge in the popula-
tion of punishers as the degree of selfishness increses among players. Moreover, they 
found a dependence relation between the tolerance to selfish behaviors and the topolo-
gies of networks.

In our model we explore the network effect on two issues: (a) the distribution of the 
amount of resources players can access from other players and, (b) the distribution of 
the strength of interactions among players as they interact. Also, in a similar vein to the 
work of Li and Cao, we explore how resistant are the different topologies to defection 
as it becames harder for the population to cooperate. Particularly, we implemented two 
games played simultaneously: one for maximizing individual utility based on the iterated 
Prisoner’s Dilemma (PD); the other, a coordination game for maximizing the connection 
strength between players. We are interested in how they affect each other in the context 
of a network of scientific collaboration under the idea that while researchers are inter-
ested in maximizing their utilities, they also know that it is important to invest in build-
ing collaborative relationships.

In the context of our model, utility represents access to resources shared by others. 
The value of the utility function for a player is the sum of the payoffs of playing prisoner’s 
dilemma with its neighbors. In the other concurrent game players try to maximize the 
strength of their interactions by coordinating their strategy to that of their neighbors. 
Interaction strength is updated with no regard to cooperation or defection in the utility 
game. When both cooperate the interaction gets a positive payoff, when both defect, the 
interaction doesn’t get affected; but if they do not coordinate, then the interaction loses. 
The payoffs resulting from the coordination games are not part of the utility function, 
however both are considered by the agent to decide whether to cooperate or defect.

From our anthropological fieldwork among biomedical research communities, their 
networks appear to be quite paradoxical: while they seem very hierarchical and only few 
researchers get the most of the profit of collective work, a great deal of collaboration is 
maintained. In other words, we are intrigued by the fact that for all the power and profit 



Page 4 of 21Siqueiros‑García et al. Complex Adapt Syst Model  (2017) 5:5 

gain asymmetries, people are still willing to collaborate, build trust and remain loyal to 
their PI’s and mentors. These two behaviors are explored in a biomedical research com-
munity in México. We believe that by implementing PD game and coordination game in 
a real world network is a way of capturing the essence of this problem. From our point of 
view this is an important contribution as we not only use data extracted from bibliomet-
ric source as most collaboration networks are studied, but that the founding question on 
which the model has been developed is empirically based in the sociology of the case.

The manuscript is structured in four sections. First we describe FOSISS, the main pro-
gram for grants destined to applied biomedical research in México. This is the source 
of the database from which we created the researchers collaboration network. Next 
we describe our model and the different network topologies in which we explored it. 
We then present our results and discuss them. In the last section we draw some final 
remarks and conclusions.

Biomedical research: CONACyT and FOSISS
CONACyT or National Council of Science and Technology (Consejo Nacional de Cien-
cia y Tecnología) is the Mexican government entity in charge of promoting the develop-
ment of science and technology. Among CONACyT’s functions are to develop science 
and technology policies according to national needs and demands, to advise the different 
instances of government on scientific and technological topics, to promote the creation 
of research networks among the scientific community, to grant scholarships for masters 
and doctoral studies, and to manage different trusts intended to fund individuals and 
groups for scientific and technological research.

In the year 2002 CONACyT, along with other government agencies and entities, created 
sectoral funds to cover and equally promote research capacities of different areas such as 
energy, agriculture and health. Technological innovation is fostered by the generation of 
human resources and by helping research groups to consolidate. It is expected that the 
knowledge generated under the sponsorship of these funds will be the product of applied 
research that attends national public needs, and promotes economic growth. FOSISS or 
Sectoral Fund for Health and Social Security Research (Fondo Sectorial en Investigación 
en Salud y Seguridad Social) is one of such funds (González-Block et al. 2008).

FOSISS is constituted by CONACyT, SSA, IMSS and ISSSTE,1 all of them being the 
major public health providers and research institutions in the country. Every year CON-
ACyT opens a call for funds limited to a set of health research areas previously defined 
by a group of experts. Most applicants are public universities and research institutions, 
but eligibility is open to public and private health research sectors. From 2002 through 
2013, there were 91 institutions funded that comprised 4988 researchers.

From these data some important considerations should be made clear. Scientists in the 
database take on the roles of principal investigators (PIs), associate researchers, postdoc-
toral associates, postgraduate and undergraduate students. Unfortunately, information 
on these roles is not specified in the database. We acknowledge the importance of this 

1 SSA is the acronym for Department of Health (Secretaría de Salud); IMSS is the acronym for Social Security Mexican 
Institute (Instituto Mexicano del Seguro Social); ISSSTE stands for Institute for Social Security and Services for State 
Workers (Instituto de Seguridad y Servicios Sociales de los Trabajadores del Estado).
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deficiency because researchers in our network act under different circumstances and we 
know that this diversity has a real impact on the structure and eventually on the dynam-
ics of the network, as well as on the results of our model.

Our database includes the name of the project, the year it was approved for funding 
and the research area to which it was assigned. It specifies the names of PIs or the people 
responsible for the project and the names of collaborators. Researchers can be PIs in one 
project and collaborators on a different project. The institutional affiliation of all partici-
pants is included. Through this affiliation we determine the principal institution behind 
every project.

Even though curation and analysis work of this database is still going on, some relevant 
facts about the biomedical research can be said. Over the period of 12 years, 37 general 
research areas have been defined, the three most funded research areas are chronic and 
degenerative diseases, malignant neoplasms, and infectious and parasitic diseases. The 
least funded area is Ethics and medicine. The area with the most researchers is malig-
nant neoplasms. Other areas of relevance for México are diseases related to poverty and 
Health and vulnerable groups (see Additional file 1).

From the institutions that have participated in a protocol funded by FOSISS, less than 
one fifth have been responsible for a project and more than 95% of them are Mexican, 
public institutions. There is also an important presence of foreign institutions as collabo-
rators, most of them from the United States, though institutions from the UK, France, 
Spain, Netherlands, Colombia and Cuba are also in the database.

Besides the characteristics of the population there are some other boundary condi-
tions that play an important role on the network topology and dynamics that motivated 
the development of our model. Biomedical research in México constitutes a vibrant 
community and collaboration is part of everyday work. However, México does not have 
public biobanks for research purposes (which are especially relevant for research in 
genomics, for example), and the current regulation on the access to biological samples 
such as tissue, cells, DNA, RNA, etc., is very general in scope (Murguia and Saruwatari-
Zavala 2016).2 Something similar happens with data. There have been some attempts to 
create open data repositories for biomedical research, but they have not been established 
yet. Regulation on these subjects is still missing. Finally, technologically advanced equip-
ment such as high throughput sequencers are kept by institutions with the highest 
research profiles and sometimes PIs manage them in a self serving way.

From our ethnographic work to date, we have been able to see that biological samples, 
data and technology can become instruments for negotiating collaboration. For exam-
ple, among people involved in research projects, there are researchers that do not have 
direct access to samples, simply because their parent institution does not offer clinical 
services. Many of them are non medical doctors but chemists, biologists, physicists, and 
mathematicians. There is another group of researchers placed on hospitals that are able 
to do research and have access to biological samples from their own patients. It seems 
that this group is the most privileged one, and the one with the least pressure to estab-
lish collaboration at any cost. Finally, there is one more group formed by those who work 

2 Regulation exists regarding researcher-subject relations based on legal and ethical grounds. Also, all projects need to 
be approved by the Ethics Committee and IRB.
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as clinicians at small hospitals with no research infrastructure whatsoever. This group 
may have an interest in research and the way for them to become part of a project and 
be listed as authors in scientific papers is by giving researchers who do not have access to 
biological samples access to patients.

Due to these differences in the access to resources, researchers in general are com-
pelled to build strategic alliances through which samples, data, technology and author-
ship, among other assets, become part of a constant flow through the network. Social 
and political capital, as well as concentrations of resources become fundamental tools 
for establishing fruitful collaborations.

Methods
Our model is based on the iterated version of the Prisoner’s Dilemma (PD) and a coor-
dination game instantiated on networks (Watts 1999). In our model, an agent’s decision 
to cooperate or defect depends on a balance between utilities and the current strength 
of its collaboration relationships. Such balance reflects the overall success or failure of its 
strategies. We study the behavior of the system under different topologies, including a 
real-world network.

In our model, agents are embedded in a network with a varying number of neigh-
bors. Following the traditional PD game, the strategy chosen by an agent and the strat-
egy chosen by its neighbors will produce a payoff. Payoff follows the traditional PD rule: 
T > R > P > S. T is for temptation to defect. It is the highest payoff and it takes place 
when the player defects and the other cooperates. R is for reward for when both players 
cooperate. P is for punishment for when both players defect. And S is for suckers payoff, 
the worst outcome that takes place when the player cooperates but its neighbor defects. 
Utility is a property of agents in which payoff is accumulated.

PD utility payoff matrix

Cooperate Defect

Cooperate R, R S, T

Defect T, S P, P

The strength of the interaction, represented by w, is a property of the link between two 
agents and gets updated according to the payoff matrix of a coordination game. In the w 
matrix, the highest value goes to an edge when both agents cooperate, getting an R for 
reward; if one of them defects, the connection gets weaker getting P for the collabora-
tive connection being punished. If both agents defect, the value w doesn’t change, which 
means that agents didn’t interact or that the interaction gets nullified N. In this game, 
the best action for any agent is to coordinate with its neighbor, either because it wins or 
because it doesn’t lose.

w payoff matrix

Cooperate Defect

Cooperate R P

Defect P N
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After each game, the agent adds up utility (u), which is the sum of the payoffs following 
the PD matrix. A pair of neighbors will add or substract from the strength of their inter-
action (wji) as they coordinate or not, being w also cumulative. We measure global utility 
and strength of interaction for the whole network. Global utility U is the sum of all indi-
vidual utilities and global strength of interaction or W is the sum of every pair of agents’ 
links w. Strength of interaction may have different meanings. From an empirical point of 
view, it simply means the number of times two researchers have collaborated together 
in a common research project. From a sociological and qualitative point of view, if these 
two scientists have been willing to collaborate more than once, it may signify some form 
of “loyalty” among them. But this may not be the only possible interpreation since it 
can be different for each case. Since the strength of interactions can be sociologically 
interpreted in so many ways, we decided to just quantify the times two researchers col-
laborate, and by doing this avoiding any generalized interpretation of the quality of the 
interactions among researchers.

It should be noted that the same actions or behaviors work for both u and w. There 
are two reasons for this decision in the design of the model. The most general one is 
that we believe that in the real world, actions such as cooperating and defecting affect 
the strength of the interaction among people. The second one is that we think that self-
ishly maximizing access to resources and strengthening relationships are opposing forces 
acting on the same set of behaviors. The actions of an agent imply a trade-off in which 
defecting may increase its utility at the expense of its collaborative relationships. If col-
laborators have nourished their relationships, they might be strong enough to endure 
occasional defection. Cooperating may build up relationships but it can be expensive for 
the player.

Model update

All networks are initialized equally. The number of nodes for every network is 4122, the 
same as in the FOSISS network. The same utility is given to every agent and all edges are 
assigned the same weight. In the case of the FOSISS network, edge weight is given by the 
number of collaborations among researchers, utility remains the same for all nodes as in 
the other networks.

The probability for an agent to cooperate or defect depends on a number (η) that refers 
to a historical balance between average utility 〈ui〉 and the average strength of the con-
nections with its neighbors 〈wij〉j. It is modeled so because we assume that whatever the 
result in utility or strength of interaction, as long as one of them increases, the player 
will be confident in the strategy followed so far. In every simulation step, each agent 
will independently play both games with every neighbor. Nonetheless, the agent sets 
its decision to cooperate or defect beforehand by assessing the overall situation of its 
relationships. This may sound odd, since one may think that a person decides for each 
relationship separately. However in this way players are optimizing access to resources 
and the strength of interactions to their neighbors at the same time, since their state is 
set by considering both together. The strength of interaction is updated independently 
for each pair of agents. In a single play some interactions might be weakened, some may 
get strengthened and others may remain unaffected. Moreover, in this model, history is 
kept in the network as strength of interactions and it conditions the agentś disposition 



Page 8 of 21Siqueiros‑García et al. Complex Adapt Syst Model  (2017) 5:5 

to cooperate or to defect. As the sayings go: Burnt children dread fire; A bad dog is not 
born but made.
η is calculated as:

For the agent to decide whether to cooperate or not, η is compared to a global param-
eter ν. This is a parameter that represents the minimum value of η that a player must 
achieve in order to cooperate. If the agent’s η > ν, then he will cooperate, otherwise he 
will be suspicious and will defect. In this way, as we arbitrarily control the value of ν we 
can identify the values of η where the population stops cooperating and begins to defect; 
also it makes possible to see how this transition takes place for the different network 
topologies.

Our simulation was tested on an Erdös–Renyí, a Watts–Strogatz small-world and 
Barabási–Albert topologies, as well as on the real biomedical research collaboration net-
work. The simulation was run in a synchronous manner, in which all agents update their 
behavior simultaneously.

We ran two different experiments. In the First Experiment we simulated different val-
ues of the parameter of confidence ν. With this experiment we were able to see how the 
number of cooperators, utility, strength of interactions among agents and the ratio of 
shifting state population would change in the range of the parameter of confidence. The 
states of the agents were the same at initialization, for all values of ν. Since the model is 
deterministic, it will return the same result if run under the same conditions.

The Second Experiment consisted in running the simulation under the same value 
of the parameter of confidence ν but randomizing the initial states of the agents. This 
would show that the system converges to a global state. For every network, the simula-
tion was run 100 times and results were averaged.

Implementation of the model in different topologies
We built three classical topologies for networks besides the FOSISS network, their 
parameters are shown in the following table. 
Topology m 〈k〉 〈C〉 〈l〉

Erdös–Rényi 25,591 12.4 0.003 3.6

Watts–Strogatz 206,100 100 0.7 3.4

Barbási–Albert 183,465 89 0.06 2.13

FOSISS 23,391 11.39 0.87 5.49

Erdös–Renyí

Erdös–Renyí networks (1959) (random networks) are constructed by randomly selecting 
a pair of N possible nodes and attaching them with an edge, given a probability p, as long 
as there is no edge between them. The result is a Poisson distribution for connectivity of 
nodes P(k), where each node has a degree quite close to the average 〈k〉. Also for this type 
of network, average clustering coefficient 〈C〉 is small, actually it is equal to p (the prob-
ability of connecting two nodes) and the average shortest path length �l� = lnN

ln�k�.

ηi =
�ui� + �wij�j

2
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Small‑world

Watts–Strogatz networks (1998) (small-world networks) are in a regime between a fully 
regular grid (lattice) and a random network (Erdös–Rényi). In order to build them, a 
node is chosen from a lattice (a ring) and the edge that connects it to its nearest neigh-
bor in a clockwise sense. With probability p, this edge is reconnected to a node chosen 
uniformly at random over the entire ring, with duplicate edges forbidden; otherwise the 
edge is left in place. This process is repeated by moving clockwise around the ring, con-
sidering each node in turn until one lap is completed. Next, the edges connect nodes to 
their second nearest neighbors clockwise. As before, each of these edges is randomly 
rewired with probability p. This process continues, circulating around the ring and pro-
ceeding outward to more distant neighbors after each lap, until each edge in the original 
lattice has been considered once. The main characteristic of these networks is that the 
average shortest path length is small and grows as log(N) (�l� ∼ log(N )). Also, the aver-
age clustering coefficient 〈C〉 remains large in terms of p. For p < 0.1, �C� ∼ 1.

Barbási–Albert

Barbási–Albert networks (1999) (scale-free networks) are generated by adding new 
nodes to a network. Each new node is added connecting it to an existing node with a 
probability proportional to the degree k (connectivity) of each node (preferential attach-
ment). The result is a power law distribution for connectivity of nodes P(k) where few 
nodes have many connections and the most have very few connections. Furthermore 
these networks are also small world networks, showing a quite small 〈l〉.

FOSISS: biomedical research community network

The biomedical research network on which we are running our model was generated 
with data from collaborative projects. Our data was obtained from CONACyT and 
includes twelve years of information of FOSISS grants. Data included names of princi-
pal Investigators, collaborators, research topics, etc. The network we are using here has 
researchers as nodes and edges represent the connection of two scientists when they 
collaborate on the same project. Edges are also weighted according to the number of 
projects shared by any pair of scientists.

Results
In this section we present the main results of the study, namely the topological structure 
of the underlying network models, the dynamics of the games under different parame-
ters and network topologies and the distribution of utility and of the strength of interac-
tion resulting from playing the games in all the different scenarios considered, including 
the real FOSISS network.

FOSISS network summed up a total of 145 components or subnetworks, but we ran 
the model on the giant component made up of 4122 researchers, and 23,391 edges. The 
giant component was analyzed using Cytoscape and is shown in Fig.  1. Results show 
that it is a well integrated network, with a clustering coefficient �C� = 0.870, an average 
shortest path length of �l� = 5.493 and a density of p = 0.003. Such properties recall a 
small-world topology (Watts and Strogatz 1998), and a great deal of self-organization 
when compared to a random network with the same density and number of nodes. 
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Network centralization is 0.023, since there are no visible researchers that play as hubs in 
the network. Nevertheless the network heterogeneity is 0.873, which means that the net-
work is highly hierarchical. When the degree distribution is analyzed, degree decreases 
as a power-law with an exponent of 1.7, similar to other social networks described as 
scale-free topology networks (Barabási and Albert 1999). Finally, the average number of 
neighbors of each node is 11.39 (Shannon et al. 2003).

Other results to report are those of the dynamics of different variables as the param-
eter of confidence ν changes. The most salient result is that for ν between 0.19 and 0.24, 
there is an apparent phase transition in all different topologies and for all the different 
variables. It is worth noting that the shape of the phase transition-like behavior is differ-
ent according to the topology of the network under study. When ν is between 0.0 and 0.2, 
that is, when there is no space or a very short one for suspiciousness, all agents cooper-
ate, when ν is above 0.25, all agents defect. Utility, strength of interactions, and changing 
state population replicate that same behavior for the same limits.

In Fig.  2, we present how the number of cooperators in the population change as ν 
changes. In the Erdös–Renyí, network, between 0 and 0.18 approximately, all agents 
converge to a cooperative behavior, from 18 to 20, convergence to cooperative state takes 
longer but eventually all agents are cooperating. Close to ν ≈ 0.21 there is a sharp fall 
to a point in which around half the population is cooperating and the rest is defecting. 
Reaching ν ≈ 0.25 there is another sharp fall of cooperators and all agents turn into a 
defecting state.

In the case of the Watts–Strogatz small-world network, the whole population remains 
cooperating for ranges between 0 and 0.2 but as it gets closer to 0.2, more time is needed 
for the population to become full of cooperators. In ν ≈ 0.2 the cooperators will rep-
resent only half of the population and such number of them will be constant up to 
ν ≈ 0.25 , forming a short plateau. From ν ≈ 0.25 to ν ≈ 0.6 cooperators will be present 

Fig. 1 Biomedical research collaboration network (FOSISS) giant component
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at the beginning of the simulation but will diminish as time goes on. In the case of the 
Barabási–Albert network, there is a sharp decrease in the number of cooperators when 
the threshold of ν ≈ 0.2 is crossed, but stays constant over time. Such behavior is present 
for a very short range of ν, and before ν ≈ 0.24, cooperators disappear for the rest of 
the values of ν. Finally, FOSISS network behaves similarly to the other networks in that 
there is a fall in the number of cooperators close to ν ≈ 0.2. In contrast with the other 
networks, the FOSISS network lacks the sharp reduction of cooperators, instead this 
population declines smoothly and progressively; especially, when it reaches a ν ≈ 0.25, 
cooperators decrease in a less dramatic manner all the way to ν ≈ 0.5. It is also notewor-
thy that from ν = 0 to ν ≈ 0.5 the number of cooperators converge to a certain degree 
and stays constant for the rest of the simulation.

Utility and strength of interactions dynamics under different ν are similar to the phase 
transition found before. Figures 3 and 4 show that there is a drop in utility and strength of 
interactions according to the drop in the number of cooperators. Erdös–Renyí and Bara-
bási–Albert networks are quite similar in the way these variables fall in two steps, the 
first one at ν ≈ 0.2 and the next one at ν ≈ 0.23. The fall is even sharper in the Barabási–
Albert topology. Utility and strength of interactions phase transition in Watts–Strogatz 
network is significantly more staggered compared to the former networks. In the case 
of utility, there is a region in the limits of ν ≈ 0.25 and ν ≈ 0.3, before utility goes to 0, 
in which it remains low but stable over time. In general, strength of interactions follows 

Fig. 2 Ratio of cooperators as a function of the parameter of confidence and time during First Experiment. 
Topologies are: a Random, Erdös–Rényi. b Watts–Strogatz. c Barabási–Albert. d FOSISS
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the same pattern as utility but in the same ν ≈ 0.25 and ν ≈ 0.3 strength of interactions 
grows to a value that is higher than the one given by default but soon starts to decrease 
as the simulation runs. For the FOSISS network, utility and strength of interactions fall 
quite steeply but smoothly, without sharp cuts. Between ν ≈ 0.23 and ν ≈ 0.28, utility 
and strength of interactions start at their lowest, but there is a slight increase in both of 
them.

We also measured the number of agents shifting states—between cooperating and 
defecting—under different ν values. We found that for all networks there is a critical 
point around ν ≈ 0.2 in which all agents are shifting states. For Erdös-Renyí and Bara-
bási–Albert networks, for this region, agents never settle to a single state. Contrary to 
the former cases, the number of shifting agents decreases considerably for the Watts–
Strogatz and FOSISS networks, and find an equilibrium state. Once the the limits of this 
region are crossed as ν increases, the number of agents shifting states falls to 0 and all 
nodes become defectors (Fig. 5).

Central to our argument are the differences in utility and strength of interactions dis-
tribution at the end of the simulation, for every topology. We found that utility distribu-
tion for the FOSISS network resembles quite accurately the distribution of utility in the 
Barabási–Albert network.

The distribution of utility on each topology is induced by the degree distribution. This 
is so since a given agent (node) will interact with its neighbors to either cooperate or 

Fig. 3 First Experiment’s utility U dynamics as a function of the parameter of confidence ν and time. Topolo‑
gies are: a Random, Erdös–Rényi. b Watts–Strogatz. c Barabási–Albert. d FOSISS
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defect in such a way that connectivity influences the number of events played and thus 
the likelihood of increasing its corresponding utility. For instance, utility distribution in 
the random Erdös–Rényi network displays a normal-like curve. The algorithm that gen-
erates this kind of topology, assigns to every node the same probability of connecting 
with any other node, which produces a poissonian degree distribution (Erdös and Renyí 
1959). Since the Watts–Strogatz degree distribution is described by a function that is 
midway between a random distribution and a scale-free network (Barrat 2000) one may 
expect also an intermediate behavior of the utility distribution. This assumption seems 
to be fulfilled by the distribution in Fig. 6b.

The resemblance of the degree distribution and utility distribution also holds for the 
Barábasi–Albert network. As mentioned in the methods section, the degree distribution 
of a Barábasi–Albert topology follows a power-law that describes the fact that there is a 
small number of nodes with large k and most nodes have a small k (Barabási and Albert 
1999). As it is shown in the following figure, most utility is concentrated in a few num-
ber of agents, while most agents have a small amount of it. This is consistent with other 
research in which concentration of resources, fame or citations in science decreases as a 
power-law (Simon 1955; Price 1965; Merton 1968). FOSISS network utility distribution 
is also skewed to the left, similar to that of the Barabási–Albert network.

Regarding strength of interactions distribution, the Erdös–Rényi random network 
displays a normal distribution of strength of interactions, as expected. Again strength 

Fig. 4 Strength of interactions w dynamics as a function of the parameter of confidence ν and time during 
First Experiment. Topologies are: a Random, Erdös–Rényi. b Watts–Strogatz. c Barabási–Albert. d FOSISS
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of interactions values are highly influenced by the corresponding degree distribution 
(Fig.  7a). However, in the Watts-Strogatz network topology (Fig.  7b), the strength of 
interactions distribution is a highly asymmetric bimodal, with a really low frequency 
mode of low strength of interactions and a high probability mode for high strength of 
interactions. A possible explanation for this phenomenon is that under network topol-
ogies maximizing inter-node communication (by minimizing the average distance 
between nodes) such as the Watts–Strogatz, strength of interactions is favored both 
among the cooperators (constituting the majority of players) and the defectors.

The Barabási–Albert network (Fig. 7c) also presents a symmetric unimodal distribu-
tion with values higher (on average) than those of the Erdös–Rényi random network, 
this may be the effect of increased communication due to more efficient network navi-
gability. Interestingly, the network corresponding to the real FOSISS collaborations 
(Fig. 7d) is an asymmetric unimodal distribution in which moderate to high values of 
strength of interactions are more likely. We hypothesize that this effect is also due to the 
communication properties of the network.

An interesting feature of highly communicated networks (characterized by high 
values of clustering coefficient) is the fact that certainty among players seems to be 
enhanced, that is, in such networks the rate of strategy change is significantly lower (and 
smoother) than in poorly connected networks. This is another instance in which easier 

Fig. 5 Shifting population between cooperators and defectors as a function of the parameter of confidence 
ν and time during First Experiment. Topologies are: a Random, Erdös–Rényi. b Watts–Strogatz. c Barabási–
Albert. d FOSISS
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communication (i.e. lower average minimum path lengths) leads to better performance 
of the whole collaborative research system.

Discussion
In this work we have analyzed the influence of parameters given by the underlying social 
structure of a science collaborative network on collective strength of interactions and 
utility dynamical behavior, based on a class of iterated PD and coordination games. Such 
parameters include mainly local and global connectivity like the degree centrality and 
average clustering coefficient, as well as communication patterns.

Under the assumptions given by the model, we were able to notice that, in general, 
communication within the social collaborative networks has a positive correlation with 
average strength of interactions between the individuals partaking in the games and also 
with the global collective utility (given by the sum of the individual payoffs). The bet-
ter the communication among players, the higher the strength of interactions and the 
utility leading to an optimized functioning of the whole scientific collaboration system. 

Fig. 6 Second Experiment’s utility distribution on different topologies. a Random, Erdös–Rényi network 
displays a normal‑like distribution. b Watts–Strogatz network utility distribution is highly skewed to the right. 
c Barabási–Albert network utility is distributed highly skewed to the left. d FOSISS, biomedical researchers 
collaboration network distribution of utility resembles that of the Barabási–Albert network
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This is an important result that may be useful for scientific policy planning and may set 
a foundation for the optimal use of social networks in scientific collaboration as a means 
to improve the relationships among collaborating peers and ultimately the performance 
of research systems. We obviously need more qualitative work in order to validate these 
results from a sociological and anthropological perspective.

In the area of complex networks and game theory, it has being affirmed for a long time 
that scale-free networks promote the evolution of cooperation. Part of this property has 
been attributed to the presence of hubs (Santos and Pacheco 2005; Szolnoki et al. 2008; 
Du et al. 2008; Li and Cao 2003; Yang et al. 2009; Chuang et al. 2009; Liu et al. 2010; 
Hong-Yan and Jun-Zhong 2011; Li and Duan 2014; Li and Yong 2015; Ichinose and Say-
ama 2017). Perhaps less attention has been place on the persistence of cooperation and 
the the role played by the clustering coefficiente in scale-free and small-world networks 
(Kim et al. 2002; Masuda and Aihara 2003; Wu et al. 2005, 2006; Jian-Yue et al. 2006; Fu 
et al. 2007; Zhang et al. 2007; Thibert-Plante and Parrott 2007; Chen et al. 2008). This is 
where our result comes in.

Fig. 7 Strength of interactions distribution on different topologies during Second Experiment. a Random, 
Erdös–Rényi network displays a normal‑like distribution. b Watts–Strogatz network strength of interactions 
distribution is bimodal and highly skewed to the right. c Barabási–Albert network strength of interactions 
distribution is also a normal‑like curve. d FOSISS, biomedical researchers collaboration network distribution of 
strength of interactions is skewed to the right
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The two main outcomes of our model are the smoothness in the phase transition-like 
behavior for different parameters and the distribution of utility and strength of interac-
tions in the FOSISS network compared to other networks and their topologies. We are 
certain that the particular structure of FOSISS network is playing a central role in the 
results and because of that we would like to discuss it a little bit further. FOSISS network 
is highly hierarchical according to its heterogeneity of 0.873. Because of it, one would 
expect to find the presence of important hubs (Jun et al. 2008), that is, a few research-
ers control the whole network, as has been reported in some elsewhere (Yousefi-Noo-
raie and Akbari-Kamrani 2008). Surprisingly, FOSISS network centralization is very low 
0.023, i.e. there are no researchers that centralize the majority of connections. Our guess 
is that the network is composed of many small communities or groups with a central 
researcher or Principal Investigator (PI). If this is the case, it means that those groups 
have a very hierarchical structure as well. This is similar to what has been reported by 
others about the heterogeneity in small-world networks, in which the combination of 
certain amount of hierarchy and small-worldness makes cooperation to peak over 
compared to the evolution of cooperation in homogeneous and the most heterogene-
ous networks (Fu et  al. 2007). For the FOSISS netwok, this property would enhanced 
cooperation among players, eventhough the distribution of utilities are skewed towards 
a handful of researchers.

Under such structure, when the clustering coefficient is considered, it can be said that 
groups are also well connected but that inter-group connections are sparse. In other 
words, individual groups are strongly connected within but the network as a whole is 
supported by a small number of links. This is not an uncommon pattern in social net-
works. It has been claimed that this form of structure has been evolutionarily advan-
tageous (Turchin 2015). Moreover, research groups internal cohesion may be related 
to Wardil and Hauert idea that collaboration among scientists—at least in the case of 
multi-authored articles, is more similar to a “snow-drift game” than to a PD game, since 
in the former everybody wins or everybody pays a cost but the cost are not evenly dis-
tributed among the players.

We came by the idea that intra-networks are stronger than inter-networks, from 
another study about scientific collaborations based on co-authorships (Hernández-
Lemus and Siqueiros-García 2013). In the cited reference, an apparently well integrated 
community was found (high clustering coefficient and a very short characteristic path 
length). Such integration was mostly superficial, since it depended on the presence of 
external collaborators from other research institutions (most of them from overseas). 
Removing these external collaborators brakes down the network into small subgraphs 
that worked independently. Remarkably, those subgraphs corresponded to the real 
groups of that research center. What is more, several groups had a hierarchical structure 
as the one we suspect is common in FOSISS subgraphs. The results showed that collabo-
ration was poor between groups but strong among the members of each group, and that 
collaboration among groups doesn’t emerge bottom-up, instead it seems to be promoted 
from the top, from the administrative authorities.

We believe that the situation just referred is also true for the whole biomedical 
research community in México. The amount of PIs who have also been collaborators in 
other projects is about one fifth of the total number of participants. This is a number big 
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enough to connect the whole network in one giant component. Yet, due to the topologi-
cal characteristics of the FOSISS network, it appears to be the case that researchers can 
be the leaders in one project and collaborators in a different project of its own research 
group. CONACyT’s funding policies makes it impossible for a researcher to get a grant 
from a fund if that researcher has an ongoing project with a grant from that same fund. 
That is, a researcher can ask for a grant from FOSISS if and only if at the moment he 
doesn’t already have one. This policy has lead researchers from the same group to ask for 
grants from the same fund in order to rise their budgets. A consequence of this behavior 
is that group interactions get reinforced, but inter-group connections not necessarily so.

As is common among scientific communities in biomedical research, PIs play a central 
role in the network. Strong PIs and well connected groups seem to be somehow respon-
sible for the high levels of strength of interactions and the centralization of utility in our 
simulation. As for what seems to be phase transitions, in the case of FOSISS networks, 
these are smoother than those in the other networks with different topologies, even for 
those with a small-world topology. We think that this behavior is also the result of the 
hierarchical structure already mentioned. If this is true, strength of interactions is first 
lost in the edges that link different groups and then in the edges that connect members 
of the groups.

Connections between groups would not be as dense as those inside the groups, which 
means that there would not be enough information on the behavior of one group regard-
ing its neighbors to constrain them as it seems to happen with individual researchers 
inside their communities. Nevertheless, if values of the parameter of cooperation ν keep 
increasing and it becomes more difficult to strengthen interactions, then strength of 
interactions begins to diminish inside groups. And yet, the smoothness observed in the 
small-world network and FOSISS network may be attributed to the power of the cluster-
ing coefficient. As has been referred by Li and Cao (2003, 2011), and Thibert-Plante and 
Parrott (2007) for scientific collaboration networks, high clustering coefficient allows the 
system to resist the invasion of non-cooperators.

Another issue that we would like to mention about FOSISS network topology is that it 
is not a robust collaboration network. At the level of groups, nodes might be well con-
nected and consolidated but at the level of the network, they could be no more than an 
aggregate of individual groups. A robust network would be resistant to changes in the 
connections between groups but in the case of FOSISS, it seems that the network would 
brake down into small research groups by cutting some edges, as it happened in our co-
authorship collaboration network (Hernández-Lemus and Siqueiros-García 2013). The 
lack of robustness might be indicative of the fact that resources stay inside the groups, 
that is, they do not circulate through or articulate different communities. For exam-
ple, one may think of certain expensive technologies for genomic research that could 
be bought once and shared among research groups, however, this doesn’t seem to hap-
pen very often. There are some other consequences, such as low communication among 
groups, atomization of practices and know-hows, redundancy in equipment tenancy, 
difficulties in implementing community-wide infrastructures such as biobanks, etc.
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Conclusions
Our future work is based on the results presented here. We would like to identify 
researchers in our simulations and corroborate their situation in the model and in the 
real world. We are also interested in going back to the field and interviewing those 
groups with an interesting behavior found in our simulations, we would probably fol-
low a similar strategy as the one developed in (Hara et al. 2003). Another idea we would 
like to follow is related to the parameter ν. As it is now implemented in the model, ν is 
an external parameter to the system but in future work we would like to explore the 
possibility of ν being controlled by the dynamics of the system. The assumption behind 
this idea is that society self-imposes norms and it dynamically regulates how difficult is 
for its members to comply. In our model we used this parameter to control how hard 
or easy is for a player to cooperate. Finding communities beyond the level of the groups 
is an important task. We think that there are many possibilities that emerge from the 
integration of different methodologies. Moreover, studying social processes in science is 
particularly attractive due to the amounts of data already available that can be easily col-
lected. This is a privilege because simulations can be designed on real world data, some-
thing that only very recently has become possible (Barabási 2012).

No doubt social sciences are becoming more “computational” (Conte 2012). This can 
be seen everywhere, but curiously enough, disciplines like physics and computer sci-
ence are moving towards the social sciences and not so much the other way around. It 
might be the case that the pioneering disciplines in the computational social sciences 
will set the agenda, an agenda that will apparently be mostly based on taking advantage 
of big data and on hypothesis-free approaches. We believe that the social sciences have 
important questions that should be added to that agenda and those questions may not 
be answered only by big data techniques but they may require creating models and sim-
ulations in the style of the best hypothesis-driven research.
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