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1 Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de
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Abstract

We examine the relationship between two different types of ranked data, frequencies and

magnitudes. We consider data that can be sorted out either way, through numbers of occur-

rences or size of the measures, as it is the case, say, of moon craters, earthquakes, billion-

aires, etc. We indicate that these two types of distributions are functional inverses of each

other, and specify this link, first in terms of the assumed parent probability distribution that

generates the data samples, and then in terms of an analog (deterministic) nonlinear iterated

map that reproduces them. For the particular case of hyperbolic decay with rank the distribu-

tions are identical, that is, the classical Zipf plot, a pure power law. But their difference is larg-

est when one displays logarithmic decay and its counterpart shows the inverse exponential

decay, as it is the case of Benford law, or viceversa. For all intermediate decay rates generic

differences appear not only between the power-law exponents for the midway rank decline

but also for small and large rank. We extend the theoretical framework to include thermody-

namic and statistical-mechanical concepts, such as entropies and configuration.

Introduction

Ranking data that originates from apparently disconnected subjects in many fields —astro-

physical, geophysical, ecological, biological, technological, financial, urban, social, etc.— has

revealed universal patterns [1, 2] and opened intriguing questions about their origin. The

empirical law of Zipf [3, 4] for the numbers of occurrence (frequencies if normalized) of words

in texts has played a central role in the development of this widespread research topic of multi-

disciplinary complex systems. Zipf’s law has been found to be (approximately) followed by

many sets of ranked data outside linguistics, that record the number of occurrences [5] of

other types of items. But also, and this is an important distinction we address here, for the

magnitudes or sizes of many measurable objects or entities, such as firmament voids, lengths

of rivers, city populations, etc. [6].

Here we analyze the conceptual, and also quantitative, difference between frequency and

size ranked data. To this purpose we make use of a straightforward stochastic procedure [7–9]

to reproduce ranked data from an assumed parent distribution that governs sets of values of

random variables that constitute samples. Examination of the expressions for the two types of
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rank functions indicate that they are functional inverses of each other. See also [6, 10, 11]. In

particular, we focus in the case where the parent distribution P(N), where N is a magnitude

random variable, has the power-law form P(N) * N−α, 1� α<1. We find that in the limit α
= 1 the size-rank distribution N(k), where k is the rank, decays exponentially as k grows, while

the frequency-rank distribution F(k0) decays logarithmically as k0, the corresponding rank vari-

able, increases. On the contrary, in the limit α!1 N(k) decays logarithmically while F(k0)
does so exponentially. The intermediate case α = 2 is the special exponent value when both N
(k) and F(k0) decay as a power law with exponent −1, the classical Zipf’s power law value. To

complement our description we replicate the procedure by considering instead a starting par-

ent distribution Q(F) * F−β, 1� β<1 where F is a frequency random variable, and obtain

an equivalent account with 1 − β = 1/(1 − α).

We have recently [8, 9, 12] shown that the above-referred stochastic approach to size-rank

distributions can be exactly represented by deterministic nonlinear one-dimensional iterated

maps close to tangency [13]. Here we extend this strict analogy to determine frequency-size

distributions within this nonlinear dynamical language. These distributions are given by areas

below map trajectories. To explore the duality between size-rank N(k) and frequency-rank F
(k0) distributions, we look at specific sets of real data that can be sorted out in both ways, mag-

nitudes or numbers of occurrences, such as the cases of earthquakes [14] and forest fires [15]

(see Fig 1), and we find agreement with the theoretical approach. We also comment on how

Benford’s law [16, 17] for the frequency of digits corresponds in our scheme to the case α = 1.

Finally, we extend our statistical-mechanical interpretation with generalized entropies of

rank distributions [12, 18] to include the role of F(k0).

Rank distributions from a size parent distribution

The basic ingredient in the stochastic method [7–9] for rank distributions is the probability

distribution P(N) of the magnitude or size data N under consideration. The scheme is

phenomenological since the form of P(N) is assumed, and so, the first common choices are:

gaussian, exponential, or power law expressions. For the latter case we write

PðNÞ � N � a; 1 � a <1: ð1Þ

Sets of data N can be generated from Eq (1) and subsequently examined if they match, statisti-

cally, real ranked data sets. Each data set formed by a total of N entries, expressed with given

suitable precision, can be ranked according to their sizes N or the numbers of times F with

which their items appear. We shall consider that N takes positive values within an interval

Nmin� N� Nmax, where we allow as limiting values Nmin = 0 and/or Nmax!1. To obtain

the number of occurrences F for real numbers N recorded with a given precision it may be

necessary to introduce a partition and count incidences within intervals.

The entries in the sample set N can be sorted out starting with the largest, Nmax, and con-

tinuing with decreasing magnitudes down to Nmin. And then labeled with the rank variable

variable k, with k = 0 for Nmax and k = kmax for Nmin. We call the function N(k) the size-rank

distribution. The rank k can be an integer k = 0, 1, 2, 3, . . ., kmax (often, elsewhere, the 1st value

is k = 1) and it can be generalized to be a real number. The set N can also be ordered in terms

of the frequency with which they appear, that is, the number of occurrences F having size

equal or greater than N, or equivalently the rate f, 0� f� 1, of occurrences having size equal

or greater than N. For this second sorting the occurrences are labeled with a rank variable k0,
with k0 = 0 for the most frequent and k0 ¼ k0max for the least frequent. We call F(k0) the fre-

quency-rank distribution. Similarly, the rank k0 can be an integer k0 ¼ 0; 1; 2; 3; . . . ; k0max

(often the 1st value is k0 = 1) but it can be generalized to be a real number. The normalized
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frequency-rank distribution is f ðk0Þ ¼ Fðk0Þ=N . The main task is to determine N(k) and F(k0)
from P(N).

We now introduce the complementary cumulative distribution of P(N),

PðN;NmaxÞ ¼

ZNmax

N

PðN 0ÞdN 0; ð2Þ

Fig 1. Two examples of ranked data. (a) Data for the energy released by earthquakes in California [14]. (b) Same earthquake data ranked

according to number of occurrences of earthquakes of similar magnitude showing behavior compatible with the Guttenberg-Richter law. (c)

Data for the areas burnt in forest fires in the U.S.A. [15]. (d) Same forest fires data ranked according to the number of occurrences of similar

burnt areas. See text for description.

https://doi.org/10.1371/journal.pone.0186015.g001
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where the normalization of P(N) implies P(Nmin, Nmax) = 1. The parent distribution P(N) can

be recuperated from P(N, Nmax) via

PðNÞ ¼ �
@

@N
PðN;NmaxÞ: ð3Þ

In the theoretical approach the evaluation of P(N, Nmax) is the means by which the values N
generated by P(N) are sorted out and leads to the rank distributions.

The cumulative distribution P(N, Nmax) increases monotonically as N decreases, taking val-

ues from P(Nmax, Nmax) = 0 to P(Nmin, Nmax) = 1. This distribution P(N(k), Nmax), where we

have now indicated the rank k occupied by the variable magnitude N, is identified with k=N ,

that is

k
N
� PðNðkÞ;NmaxÞ: ð4Þ

The size-rank distribution N(k) is obtained by solving

k
N
¼

ZNmax

NðkÞ

PðN 0ÞdN 0; ð5Þ

for N(k). Normalization of P(N) indicates that kmax ¼ N . If k is to be an integer the possible

lower limits in the integral in Eq (5), N(1), N(2), . . ., N(kmax) are such that the integral takes

values 1=N , 2=N , . . ., kmax=N .

On the other hand, the fraction k=N can also be seen as the rate or scaled frequency with

which the sizes equal or greater than N occur, small for small k’ 0 and large for k’ kmax.

Therefore we identify the normalized frequency-rank distribution f(k0) as

f ðk0Þ � PðN;NmaxÞ; ð6Þ

where k0 � N. If k0 is to be an integer the values of N to be used in P(N) are integers. In practice,

the non-normalized frequency-size distribution Fðk0Þ � N f ðk0Þ is often used as it is con-

structed directly from the numbers of occurrences in data samples. From the above definitions

k0 � N, and Fðk0Þ � N f ðk0Þ, together with Eqs (4) and (6), it is clear that the rank distributions

N(k) and F(k0) are functional inverses of each other. That is, k = F(N) or N = F−1(k). The inverse

of a cumulative distribution is referred to as the quantile function [6, 10]. We refer to N(k) as

the size-rank distribution even though technically it is not a probability distribution, as P(N)

and f(k0) are.

Rank distributions from a power-law parent distribution

We look now at the specific expressions that come out of the general equations in the previous

Section when P(N) is given by Eq (1). We have

PðNðkÞ;NmaxÞ ¼

ZNmax

NðkÞ

N � adN

¼
1

1 � a
½N1� a

max � NðkÞ1� a
�;

ð7Þ

or, in terms of the q-deformed logarithmic function lnq(x)� (1 − q)−1[x1−q − 1] with q a real
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number,

ln aNðkÞ ¼ ln aNmax � N � 1k: ð8Þ

The size-rank distribution N(k) is explicitly obtained from the above with use of the inverse of

lnq(x), the q-deformed exponential function expq(x)� [1 + (1− q)x]1/(1 − q), this is

NðkÞ ¼ Nmax exp a½� Na� 1
maxN

� 1k�: ð9Þ

While the frequency-rank distribution f(k0) is given by

f ðk0Þ ¼ ln aNmax � ln ak0

¼ 1þ ln aN min � ln ak0:
ð10Þ

In Fig 2 we show the agreement of Eqs (9) and (10) with the data on earthquakes and forest

fires already shown in Fig 1. Our method for fitting the data to Eqs (9) and (10) is heuristic.

We first select a data point to define Nmax. We then approximate with a straight line segment a

section of the data that appears lined when displayed in logarithmic scales (involving a choice

of its two extremes) via minimum squares. This gives us, with the use of Eq (8), a set of two

equations from which we determine numerically preliminary values for α and N (notice that

Eq (7) has no normalization constant). We iterate this procedure to improve fitting (mostly

only N changes its value appreciably). Once the parameters in Eq (9) are determined F(k0) fol-

lows from Eq (10).

When α = 1 Eq (9) acquires the ordinary exponential form

NðkÞ ¼ Nmax exp ð� N � 1kÞ; ð11Þ

while Eq (10) becomes an ordinary logarithmic function,

f ðk0Þ ¼ ln ðNmax=k0Þ

¼ 1 � ln ðk0=N min Þ:
ð12Þ

We take the limit α!1 to signify that P(N) = N0exp(−N0 N), and we choose N0 = 1. We find

NðkÞ ¼ � ln ½ exp ð� NmaxÞ þN � 1k�; ð13Þ

and

f ðk0Þ ¼ exp ð� k0Þ � exp ð� NmaxÞ ð14Þ

¼ exp ð� k0Þ � exp ð� N min Þ þ 1: ð15Þ

In the limit Nmax!1 Eq (9) becomes the power law N(k) * k1/(1 − α) that when α = 2

gives the simple hyperbolic form N(k) * k−1. Whereas Eq (10) in the same limit becomes the

power law f(k0) * k0(1−α) that when α = 2 gives, coincidentally, the same hyperbolic form f(k0)
* k0−1. For many sets of frequency-rank real data α’ 2 and the standard Zipf law is α = 2,

whereas the same feature for real size-rank data has led to refer (concurrently) to the observa-

tion of Zipf’s law in relation to N(k). In contrast, when α!1, in the limit Nmax!1 the

rank distributions become NðkÞ ¼ ln ðN =kÞ and f(k0) = exp(−k0), N(k) decays very fast as k
increases since the argument in the logarithmic function lies in the interval 0 < k=N < 1,

while f(k0) decays exponentially as k0 increases. This can be compared with the case α = 1, but

Nmax finite, when N(k) decays exponentially as k increases while f(k0) decays very fast as k0
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increases since again the argument in the logarithmic function lies in the interval

0 < k0=Nmax < 1.

A note on normalization. The choice of P(N) given by Eq (1) is not compatible with finite

data sets (N <1), these should be represented by a different expression for P(N), at least one

that differs from Eq (1) for some values of N, specially small N. Normalization of Eq (1) obeys

kmax ¼ N , with both kmax!1 and N !1, while Nmin! 0.

Fig 2. Theoretical fitting of ranked data. Same two examples in Fig 1 of ranked data on earthquakes and forest fires fitted with the

expressions in Eqs (9) and (10). (a) Size-rank distribution N(k) for earthquakes. (b) Frequency-rank distribution for earthquakes (with

Fðk0Þ ¼ N fðk0Þ). (c) Size-rank distribution N(k) for forest fires. (d) Frequency-rank distribution for forest fires (with Fðk0Þ ¼ N fðk0Þ). As can be

seen, the values of α needed for fitting are close to α = 2 that corresponds to the classical Zipf law exponent. See text for description.

https://doi.org/10.1371/journal.pone.0186015.g002
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Rank distributions from a frequency parent distribution

To show a duality feature of the approach to rank distributions we now consider the derivation

of these distributions from a different parent distribution. This distribution, Q(F), generates

values of the numbers of occurrences F to form data sets. As before we introduce a comple-

mentary cumulative distribution

XðF; FmaxÞ ¼

ZFmax

F

QðF0ÞdF0; ð16Þ

where the normalization of Q(F) implies X(Fmin, Fmax) = 1. We denote by F the total number

of elements in the occurrences sample set.

Proceeding as before we indicate the rank k0 occupied by the number of occurrences F in

the distribution X(F(k0), Fmax) and identify this as k0=F . That is

k0

F
� XðFðk0Þ; FmaxÞ: ð17Þ

When we assume the power law expression

QðFÞ � F � b; 1 � b <1; ð18Þ

we obtain

XðFðk0Þ; FmaxÞ ¼
1

1 � b
½F1� b

max � Fðk0Þ1� b
�; ð19Þ

or, in terms of the q-deformed logarithmic function,

ln bFðk0Þ ¼ ln bFmax � F � 1k0: ð20Þ

The frequency-rank distribution F(k0) is explicitly obtained from the above with with use of

the q-deformed exponential function, this is

Fðk0Þ ¼ Fmax exp b½� Fb� 1
max F

� 1k0�: ð21Þ

While the size-rank distribution N(k), following arguments parallel to those given before for F
(k0), is given by

NðkÞ � FXðk; FmaxÞ; ð22Þ

where k� F. Explicitly,

NðkÞ ¼ ln bFmax � ln bk

¼ 1þ ln bF min � ln bk:
ð23Þ

Again, it is clear that the rank distributions F(k0) and N(k) are functional inverses of each

other. That is, k0 = N(F) or F = N−1(k0).
The exponent α in the previous two sections and the exponent β in this section are related

via

1 � a ¼
1

1 � b
; ð24Þ

and coincide in value when α = β = 2, and both distributions acquire the simple hyperbolic
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functions F(k0) * k0−1 and N(k) * k−1 when in addition Fmax!1 and Nmax!1, that is,

the classical Zipf case.

Rank distributions from a nonlinear map at tangency

We have shown recently [8, 9, 12] that there is an exact analogy between the expressions for

the rank distributions as presented above for N(k) and those for the trajectories associated

with the tangent bifurcation in one-dimensional nonlinear iterated maps. A map g(x) at the

tangent bifurcation is written locally as x0 = g(x) = x−u|x|z + � � �, x� 0 [13], z> 1, and trajecto-

ries initiated at x0≲0 are obtained via repeated iterations of g(x), i.e.

xtþ1 ¼ xt � ujxtj
z
; t ¼ 0; 1; . . . ð25Þ

These trajectories move monotonically towards the point of tangency at x = 0. If we make the

replacement, valid for large time τ, of the difference xτ+1 − xτ by dxτ/dτ in Eq (25) (written as

−u|xτ|
z = xτ+1 − xτ) we obtain the differential form udτ = −|xτ|

−z dxτ, and integration of both

sides of it yields

ut ¼

Z xt

x0

dxt

� jxtj
z

¼
1

1 � z
½� jxtj

1� z
þ jx0j

1� z
�;

ð26Þ

or

ln zjxtj ¼ ln zjx0j � ut: ð27Þ

The iteration number or time t dependence of all trajectories is obtained by solving the above

for xt, i.e.

xt ¼ x0 exp z½� jx0j
1� zut�: ð28Þ

The equivalence of the trajectory positions xt with the size-rank distribution N(k) is made clear

by comparison of Eqs (27) and (28) with Eqs (8) and (9), respectively, together with the identi-

fications t = k, u ¼ N � 1
, xt = −N(k), x0 = −Nmax and z = α. Also, comparison of the right-hand

side of Eq (26) with that of Eq (7), taking into account Eq (6), indicates that the analog of the

frequency-rank distribution f(k0) is the quantity

At ¼

Z xt

x0

dxt

� jxtj
z

¼ ln z jx0j � ln z jxtj;

ð29Þ

where −xt plays the role of k0. In [8] it is pointed out that the trajectories given by Eq (28) have

precisely the analytical form for all trajectories with generic x0 that are generated by the func-

tional composition renormalization group fixed-point map [13, 19] at the tangent bifurcation.

And therefore the areas At in Eq (29) have also the same property. That is, all trajectories of the

fixed-point map for all t initiated at the generic position x0 obey Eq (28). Also Eq (29) enjoys

the degree of universality given by the fixed-point map.

In Fig 3 we illustrate the iterated map properties for the case z = α = 2 that translate into the

equivalent description of the rank distributions N(k) and F(k0).
When z = 1 we have

xt ¼ x0 exp ½� ut�: ð30Þ

Rank distributions: Frequency vs. magnitude
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and

At ¼ ln jxtj � ln jx0j: ð31Þ

The trajectories in Eq (30) are obtained when a linear map intersects the identity line, i.e.

x0 ¼ f ðxÞ ¼ ð1 � aÞx; ð32Þ

and this occurs locally when the tangent map is shifted into a double-secant map.

In the limit z!1 the counterpart of Eq (28) is

xt ¼ ln ½ exp ðx0Þ þ ut�; ð33Þ

as this expression transforms into Eq (13) for N(k) under the same equivalences t = k,

u ¼ N � 1
, xt = −N(k), x0 = −Nmax, while that corresponding to Eq (29) is

At ¼ exp ðx0Þ � exp ðxtÞ: ð34Þ

Rank distributions associated with Benford’s first digit law

Benford’s first digit law [16, 17],

pðnÞ ¼ log
nþ 1

n

� �

; ð35Þ

where n is the first digit of a decimal base number N and log denotes the decimal base logarith-

mic function, can be readily expressed in terms of the complementary cumulative distribution

Fig 3. Iterated map at tangency. The map parameters are z = α = 2, the curvature is u = 0.0125, and the

trajectory xt, t = 0, 1, 2, . . . t, is initiated at x0 as given by Eq (28). Also shown is the area At (shaded) as given

by Eq (29). The map properties translate into the equivalent description of the rank distributions N(k) and F(k0)

via the identifications t = k, u ¼ N � 1
, xt = −N(k) = k0, x0 = −Nmax and At ¼ Fðk

0=N Þ. See text for description.

https://doi.org/10.1371/journal.pone.0186015.g003
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Eq (2) when α = 1 and the parent distribution is P(N) = 1/N. This is

pðnÞ ¼ PðN;NmaxÞ � PðN þ 1;NmaxÞ ¼ log ðnþ 1Þ � log ðnÞ; ð36Þ

where N + 1 = (n + 1).000� � � and N = n.000� � �.

Thus, by considering the cumulative version of Benford’s law,

PðN;NmaxÞ ¼ log ðNmaxÞ � log ðNÞ; ð37Þ

with Nmax = 10 and N = n.000� � �, n = 1, 2, . . ., 9, we have

Fðk0Þ ¼ N log ðNmax=k0Þ; k0 ¼ 1; 2; . . . ;Nmax; ð38Þ

and

NðkÞ ¼ Nmax10� k=N ; k ¼ 0; 1; . . . ;Nmax: ð39Þ

In Fig 4 we show these distributions together with numerical data that follows Benford’s law as

shown in the figure’s inset.

Benford’s law has been generalised to the case α> 1 [7], so that its associated (complemen-

tary) cumulative distribution Eq (7) provides the connection with the rank distributions stud-

ied here. In particular the case α = 2 corresponds to the classical Zipf’s law described by F(k0)
with k0 = 0, 1, 2, 3, . . ., shifted and limited to the values of the first digits 1, 2, 3, . . ., 9, when

using decimal base logarithms.

Fig 4. Rank distributions for Benford law. Rank distributions for Benford law together with numerical data that follows this law (shown

in the inset). (a) Frequency-rank distribution F(k0). (b) Size-rank distribution N(k). They are obtained from the general formalism with α =

1. Data taken from Table I in the original Benford’s article Ref. [17]. See text for description.

https://doi.org/10.1371/journal.pone.0186015.g004
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Rank distributions as expressions of a thermodynamic structure

As pointed out N(k) is a the functional inverse of F(k0), that is, the inverse of a (non-normalized

complementary) cumulative distribution in reverse order, a quantile function [6, 10]. Also N(k)

has been interpreted [8, 9] as the total number that the size variable unit occurs at fixed rank k.

That is, in thermal system language, N(k) is equivalent to the degeneracy of a micro state of

‘energy’ k, or a micro-canonical partition function with fixed k, where the associated uniform

probability is pðkÞi ¼ pðkÞ � 1=NðkÞ for all i = 1, . . ., N(k). Thus, we can call S(k)� ln N(k) an

entropy for α = 1 and define S(k)� lnα N(k) as a generalized entropy for α> 1. Likewise

Smax� ln Nmax for α = 1 and Smax� lnα Nmax for α> 1, N(0)� Nmax. Eq (8) is written now as

Smax ¼ SðkÞ þN � 1k; ð40Þ

where, if S(k) is thought of as the entropy for the system with fixed k, then SmaxðN
� 1
Þ would be

a generalized Massieu potential when the variable k is replaced by the (conjugate) variable N � 1

via a Legendre transformation.

Just like thermodynamic quantities are dominant values of statistical-mechanical fluctuat-

ing quantities in a macroscopic system, we think of Eq (11), valid for α = 1,

Nmax ¼ NðkÞ exp ðN � 1kÞ; ð41Þ

to be the result of the application of the saddle-point approximation for large N on

Nmax ¼

Z

Nðk0Þ exp ðN � 1k0Þdk0: ð42Þ

The consideration of the emergence of dominant rank fluctuations for the general case α> 1

in the ‘thermodynamic’ limit kmax ¼ N !1 is less straightforward and here we do not dis-

cuss it further.

We recall [20, 21] that the formalism of thermodynamics can be expressed in two equiva-

lent ways. One of them is to consider as starting point the entropy as the fundamental mono-

tonic function of the energy (and other basic variables) that characterise the system, while the

other alternative is to begin with the internal energy as the fundamental quantity, a monotonic

function of the entropy (and the same other variables). The expressions obtained from the par-

ent distribution P(N), Eqs (8) and (9), correspond to the former choice, while those obtained

from the parent distribution Q(F), Eqs (20) and (21), relate to the second one.

In this statistical-mechanical interpretation the rank k plays the role of energy and the

entropy is S(k) = ln N(k), when α = 1. In the alternative description F plays the role of energy

while the entropy is ln(k0), again when α = 1. Thus here the quantities representing entropy

and energy are, as customary, functional inverses of each other in accordance with the usual

two equivalent thermodynamic frames [20, 21].

As a consequence of the precise analogy between the rank distributions obtained from a

parent distribution and the nonlinear iterated fixed-point map at tangency, we note that the

thermodynamic structure observed above for the rank distributions quantities translates thor-

oughly into an equivalent structure for the nonlinear dynamical problem. It is only necessary

to recall the identifications z = α, t = k, u ¼ N � 1
, xt = −N(k), x0 = −Nmax and At = −f(k0) with xt

= −k0.

Summary and discussion

We have analyzed the relationship that exists between two types of ranked data, numbers of

occurrences and sizes or magnitudes of items. The technical relationship is well understood
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for statistics specialists, frequency-rank data is represented by a (complementary) cumulative

probability distribution while size-rank data is described by its functional inverse, a quantile

function [6, 10]. It is of wider interest, for those studying the many topics of the complex sys-

tems science, where universal patterns are observed in ranked data samples from very different

sources, such as the empirical laws of Zipf and Benford, to understand the physical origin of

the documented behavior We have obtained expressions for size-rank N(k) and frequency-

rank F(k0) distributions from a stochastic method and or from an equivalent nonlinear deter-

ministic approach and corroborated that the two functions are inverses of each other. Their

differences are most apparent when the exponent α of the power-law parent distribution dif-

fers from α = 2, but they coincide and behave as hyperbolic functions (with deviations for

small and large rank) when α = 2. In this latter case we have a nonlinear map at tangency with

nonzero curvature, the most common case of analytic map at tangency. This being the case of

the classic Zipf law. On the other hand we illustrated the case when α = 1 with the first digit

Benford law.

We complemented our description by also considering the option for the parent distribu-

tion for the source of data to be that for the number of occurrences F instead of that for the

size N. When these two distributions are assumed to have the power-law forms P(N) * N−α

and Q(F) * F−β we obtain parallel (and equivalent) descriptions for the size and frequency

rank distributions with the roles of cumulative distribution and quantile function inter-

changed and with the exponents relationship 1 − α = (1 − β)−1. Further, we advanced a thermo-

dynamic and statistical-mechanical interpretation to be associated with the properties

obtained for the rank distributions and indicated that the rank k plays the role of energy and N
(k) takes the place in a prototypical thermal system of the number of configurations at fixed

energy k with entropy S(k) = ln N(k) when α = 1. The interpretation of the alternative descrip-

tion corresponds to F playing the role of energy while ln(k0) that of entropy when α = 1. Thus

entropy and energy as functional inverses of each other provide two equivalent thermody-

namic formalisms [20, 21].

The case α> 1 suggests the use of the generalized entropy expression S(k) = lnα(k) in the

thermodynamic description, but this poses a question for its corresponding statistical-mechan-

ical formalism in that the validity of the usual saddle-point approximation requires reconsider-

ation. The outcome may be one in which fluctuations are not suppressed in the

thermodynamic limit, here represented by kmax!1 and N !1. The reproduction of the

rank distributions via a nonlinear map at a tangent bifurcation indicates a reason for the

appearance of generalized entropy expression through the drastic contraction of configuration

space from a real number set of possible iterated map trajectories positions to only a finite

number in the limit kmax!1 and N !1 that corresponds to t!1 [12, 18].
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