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The repertoire of 304DNA-binding transcription factors (TFs) in Escherichia coliK-12 has beendescribed recently,
with 196 TFs experimentally characterized and 108 proteins predicted by sequence comparisons. Based on 303
expression profile patterns retrieved from the Colombos database 12 clusters were identified, including
hypothetical and experimentally characterized TFs, using a spectral clustering algorithm based on a 3NN graph
built using 14 principal components that represent 65% of the variance of the expression data. In a posterior
step, clusters were characterized in terms of their associated overrepresented functions, based on KEGG, Supfam
annotations and Pfam assignments among other functional categories using an enrichment test, reinforcing
the notion that the identified clusters are functionally similar among them. Based on these data, thewe identified
12 clusters in which hypothetical and known TFs share similar regulatory and physiological functions, such as
module associations of toxin-antitoxin (TA) systems with DNA repair mechanisms, amino acid biosynthesis,
and carbon metabolism/transport, among others. This analysis has increased our knowledge about gene regula-
tion in E. coli K-12 and can be further expanded to other organisms.

© 2018 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural
Biotechnology. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In recent years, the amount of information associatedwith biological
data has increased exponentially, and it has also increased the number
of protein and DNA sequences with no evident functions. In this regard,
although experimental determinations of protein functions are the
most reliable way to characterize proteins of unknown activity, it is
a challenge to conduct experiments for the large number of proteins
predicted so far. A common strategy to determine functions and guide
experimentalists is to compare sequences and structures between
experimentally determined proteins and hypothetical ones. However,
the gap between proteins with an experimentally determined function
and thosewith still-unknown function is rapidly increasing [1]. A recent
study suggested that N40% of known proteins lack any annotation in
cadémica Yucatán, C.P. 97302
lular y Biocatálisis, IBT, UNAM,

ez-Rueda).

. on behalf of Research Network of C
public databases, although many are evolutionarily conserved and
probably play important biological roles [2].

Escherichia coli K-12 strain MG1655 represents one of the most
important model organisms in biology. Its chromosome is composed
of a 4.6-MB circular, negatively supercoiled DNAmolecule that contains
4679 genes. Although E. coli K-12 MG1655 represents an archetype
for molecular biology because of the large amount of experimental
information that researchers have accumulated for this organism,
only two-thirds of its protein-encoding genes are associated with an
assigned function in the HAMAP database [3], demonstrating the neces-
sity of finding approaches to identify probable functions associatedwith
the protein repertoire.

An important element associatedwith gene expression in this bacte-
rium corresponds to DNA-binding transcription factors (TFs), which
provide the ability to contend with environmental changes by blocking
(via negative regulation) or allowing (via positive regulation) access of
the RNA polymerase (RNAP) to promoters [4–6]. Previous analyses
identified 304 TFs that could regulate gene expression in E. coli [7]; of
these, 196 TFs have been experimentally characterized, whereas 108
omputational and Structural Biotechnology. This is an open access article under the CC BY

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.csbj.2018.03.003
ernesto.perez@iimas.unam.mx
Journal logo
https://doi.org/10.1016/j.csbj.2018.03.003
http://creativecommons.org/licenses/by/4.0/
http://www.sciencedirect.com/science/journal/20010370
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csbj.2018.03.003&domain=pdf
www.elsevier.com/locate/csbj


158 E. Flores-Bautista et al. / Computational and Structural Biotechnology Journal 16 (2018) 157–166
correspond to predictions based on sequence comparisons [8]. In this
work, in order to elucidate the diverse regulatory functions associated
with hypothetical TFs, clustering analyses based on 303 expression
profile pattern data were performed using a spectral clustering algo-
rithm based on a 3NN graph. We describe a workflow to retrieve the
enriched pathways and biological processes from the resulting clusters
of coexpressed genes, based on the target genes deposited on the
RegulonDB and Ecocyc databases. In our analysis, we identified 12 clus-
ters in which hypothetical and known TFs share similar regulatory and
physiological functions.

2. Material and Methods

2.1. Identification of DNA-binding TFs

A total of 196 TFs have been experimentally characterized, and this
information has been deposited in RegulonDB [8] and Ecocyc [9];
these TFs were used as seeds in BLASTP searches against the complete
proteome of E. coli. E-values of ≤1e−6 and a coverage of 70% were
considered for further analysis. In addition, TFs were retrieved that
were specifically associated with E. coli K-12 and for which information
has been deposited in the DBD, HAMAP [3], Superfamily DB [10], or
PFAM [11] databases. Finally, those TFs were scrutinized to assess
their domain organization by using the Superfamily and PFAM database
assignments [10], with an E-value at ≤10−3 to be considered as signifi-
cant. In addition, superfamily domains were associated to functional
categories.

2.2. Expression Data Pre-processing

All statistical analyses conducted in this study considered the
expression of 291 out 304 genes over 303 expression profiles (See
Supplementary material Table S1) obtained from the Colombos data-
base [12]. 13 TFs were not included in the dataset because they did
not contain robust information concerning expression pattern. In brief,
the Colombos database is a compendium on expression by bacterial
organisms, as it combines expression information from different micro-
array platforms and experiments. The compendium also incorporates
annotations for both genes and experimental conditions. These hetero-
geneous data are integrated to allow interactive browsing and queries
of the compendium, not only for specific genes or experiments but
also formetabolic pathways, aswell as transcriptional regulationmech-
anisms, and other related topics.

In order to select the most informative attributes, i.e. expression
values that explain a high percentage of the overall variance, a principal
component analysis (PCA) was performed, using the program prcomp
from the package stats in the R statistical program. PCA is a linear
dimensionality reduction technique that uses a linear combination of
the variables to maximize the variance in a high-dimensional dataset.
In our analysis, each principal component is a linear combination of all
conditions of the expression data. Attributes were selected based on
the value of projections over the first 14 components accounting for
65% of the overall variance. For this a two-step procedure was used.
First, a threshold valuewas established by visual inspection of the corre-
lation heatmap. A good threshold was assumed to provide a significant
contrast among selected variables (based on correlations). Visually, this
produces a block diagonal image with high contrasts with out-of-the-
diagonal points. If the threshold is too small, contrasts decrease. If the
threshold is too big few points are selected. Based on this procedure a
threshold of 0.15 was selected (see Fig. 1). Second, to exclude highly
correlated points only one point was selected per block. Namely, points
were selected in such a way as to assure that correlations among them
were lower than 0.9. With this procedure 16 attributes were selected:
×67, ×71, ×79, ×138, ×315, ×434, ×468, ×498, ×516, ×535, ×971,
×1499, ×1911, ×1976, ×1835, and ×2364. It is however important
to stress the linear nature of PCA. Although a powerful method for
dimension reduction, it does not necessarily provide a robust clustering
procedure if clusters are not radial in nature. That is, defined by
correlation-based similarities.

2.3. Cluster Identification

Spectral clustering relies on k-means clustering of the smallest
eigenvectors of the Laplacian or normalized Laplacian of a “similarity”
graph associated with an ensemble of points [13]. We define the
Laplacian L value considering a weight matrix W, to be L = D − A, or
LW=D−W, whereD is the degreematrix and A is the adjacencymatrix
of a graph. The normalized Laplacian is then defined according to
whether the nonsymmetric or symmetric version is considered: LN =
D(I − D−1W) or LNS = D−1/2LD−1/2. The smallest eigenvectors corre-
spond to the smallest eigenvalues (excluding the first, which is zero)
of the considered Laplacian. Effectiveness of the method is based on
two key observations. First, typically, the associated graph is based on
nonlinearmethods such asnearest neighbors (NN) thus ensuring a non-
linear embedding of the original data set into an appropriate feature
space. Second, eigenvectors associated to the (second) smallest eigen-
values choose the directions minimizing a functional, which can be
interpreted as a continuous version of themincut problem. That is, elim-
inating the smallest amount of edges in order to obtain a nonconnected
graph, where connected components are then interpreted as clusters.
Efficiency of the proposed method is increased by prior linear dimen-
sion reduction using a PCA. Next, spectral clustering was used and was
based on the selected 16 attributes with specClust in the package kknn,
using the nearest-neighbor standard (weak)-associated graph with
the 3 nearest neighbors and the symmetric normalized Laplacian, LNS.
However, results did not vary when we considered more complex
nearest-neighbor structures (number of NN values considered ranged
from 3 to 10). The number of clusters was selected by (local) minimiza-
tion of the total within the sum of squares (WSS) for clustering 2 to 90
clusters. Thefirstmajor descent of thismetric occurred at k=6 clusters.
Enriching this clustering the second occurred for k = 12 clusters. In
order to study stability of proposed solutions, 500 random trials of the
spectral clustering were considered obtaining a coefficient of variation
of 0,1%, indicating a strong stability of the solution. For the final cluster-
ing scheme, a ratio of between sums of squares to the total sum of
squares of 70.1% was achieved. The obtained clusters are shown in
Table 1, along with their individual WSS values and the list of TFs in
each cluster. Clusters were relatively uniform in size and in spread, as
measured by the WSS.

2.4. Functional Classes of the Regulated Genes

To evaluate the associations between the functional categories and
their corresponding clusters, we used one-tailed Fisher's Exact Test
(FET). FET is based on the hypergeometric probability and can be used
to calculate the significance, or P-value of the overlap between two
independent datasets. We set statistical significance at a P-value of
b0.045. Together with FET, we also determine the False Discovery Rate
(FDR) of the tests to account for Type I errors. Multiple-testing correc-
tions were performed using the Benjamini and Hochberg step-up
false-discovery rate (FDR)-controlling procedure to calculate adjusted
P-values. All analyses were performed using the R software [14].

3. Results

3.1. Regulatory Mechanism Associated With Hypothetical TFs in the
Bacterium E. coli K-12

TFs were defined as DNA-binding proteins needed to activate or
repress the transcription of a gene, but TFs are themselves part of
neither the RNAP core nor the holoenzyme [15]. Therefore, sigma fac-
tors were not considered TFs in this study. Based on the information



Fig. 1. a) Cummulative proportion of explained variance as a function of the number of principal components. Dashed line corresponds to 16 components accounting for 68% of total
variance. In X-axis is the number of dimensions and in Y-axis is the cumulative variance ratio. b) Heatmap of absolute value of correlations of projections of original attributes over the
first 14 principal components, accounting for over 65% of the overall variance. Red is equivalent to low correlations and white to high correlations.
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deposited in RegulonDB and Ecocyc, our literature search, and our
sequence analyses, 196 TFs were experimentally characterized and
108 predicted TFs were identified. The 196 experimentally character-
ized TFs regulate a total of 1807 genes out 4679; that corresponds to
38.6% of the total genes in E. coli K-12, and represents 4490 regulatory
interactions according RegulonDB, reinforcing the notion that it is one
the best known organisms described so far, in terms of gene regulation.

Based on information deposited in RegulonDB and Ecocyc, we
determined that around 16% of the total number of hypothetical TFs is
regulated by 25 different regulatory proteins, among them global regu-
lators, such as Crp and HNS, and sigma factors, like RpoS and RpoD. In
detail, four global regulators (Crp, Fis, Fnr and HNS) are regulating the
expression of 9 hypothetical TFs (SfsA, YjjQ, CspD, CspE, CspI, DctR,
LgoR, MalQ, and YjjQ), suggesting their integration on well-known
regulons. In addition, 8 hypothetical TFs are regulated by one protein,
7 hypothetical TFs are regulated by two proteins, and 2 hypothetical
TFs are regulated by three or more proteins, like CspD and DctR.
In this regard, the most plausible explanation is that hypothetical
regulators belong to regulons already described, reinforcing the notion
of recruitment of new elements of previously identified regulatory net-
works, however further evidences are necessary.

3.2. Identification and Consistency of Functional Clusters Based on Similar
Expression Patterns

Previous analyses describing the important role of coregulation in
the regulatory network of E. coli K-12 have been reviewed elsewhere
[16], and the analyses showed that the interplay of TFs in a regulatory
region will determine expression. In this regard, it is reasonable to ask
whether similar expression profiles also suggest common regulatory
processes. If this hypothesis is true, hypothetical TFs could be associated
with functional categories that would be posteriorly experimentally



Table 1
Clusters of TFs identified by similar profile patterns of expression.

Cluster Experimentally characterized Hypothetical TFs N WSS

Strong Weak

C1 AraC, CsgD, FeaR, GadX, GalS, LsrR, MelR, Mlc, RclR
(YkgD)

AbgR, CdaR, FucR, MhpR, SrlR (GutR),
HcaR, MtlR, PrpR, RhaR,TdcA, YiaJ, YeiL

YahB, YbiI, YneJ, YgeV, YgfI, YihL, ChpS, SfsA (MalQ),
DmlR (YeaT), LgoR (yjjM), YebK (HexR)

32 11.81

C2 GalR, LrhA, NarP, RelE, RelB, PuuR, MqsA,LexA, McbR
(YncC), SoxR, YefM

GlcC, Hha, MalI, MntR, NsrR, UidR, YdjF, YeeY, YgjM (HigA), YgiT, YjgJ 22 5.43

C3 AlaS, ArgR, BaeR, CpxR, CysB, FruR, NhaR, NikR, NrdR,
PepA, PurR, SdiA, TreR, TrpR, TyrR, UxuR, YehT, YjiE
(HypT), YqhC,

AllR, AppY, BglJ, DeoR, EbgR, FabR, IdnR,
LacI, UhpA,

YcaN, YdiA (PpsR), YfeR, YgbI, YggD (FumE), YhaJ,
YidZ

35 10.88

C4 Ada, CadC, ChbR, GlpR, DpiA, IhfB, HipB, GlrR (YfhA),
PhoB, RutR, SlyA, TtdR, YdeO,

Crl, CreB, DhaR, IlvY, PerR, SfsB DicC (regulated by DicA), (regulated by RcsB-BglJ),
YbcL, YbcM, YbeF, YbhD, YdaS, YddM, YnfL, YdhB,
YfhH, YqeH, YhjB, YjhI, YjjQ, YjjJ

34 9.13

C5 CaiF, Cbl, CytR, FlhDC, Hns, HupA, HupB, IhfA, Lrp,
NarL, GlnG, StpA,

CsiR, EutR, MalT, OgrK, YpdC, YphH, 19 8.52

C6 CspA, MarA, UlaR, ComR (YcfQ), MarR, NemR (YdhM) CspH, CspG, YdfH, YbaO 10 2.13
C7 AidB, GadE, PutA, BolA, LldR, CspD, DctR, YhjC, YiaG, YjdC 10 1.59
C8 AgaR, DicA, ArgP, EvgA, ExuR, FadR, FNR, Fur, IscR,

GadW, NagC, NanR, PdhR, Rob, RstA, UvrY, YcgE (BluR)
MlrA

GcvA, GntR, KdgR, YbaQ, YciT (DeoT), YfgA (RodZ) 25 3.14

C9 AdiY, ArcA, CueR, HdfR, LeuO, Nac, OmpR, OxyR, PhoP,
PgrR (YcjZ), PspF, RcsA, RcsB, SoxS, YqjI YeaM (NimR),

AsnC, BetI, DsdC, LysR, PspC, PspF, YfaX
(RhmR)

YafC, YbiH, YeiE, YieP, YtfH, YijO 28 7.15

C10 AtoC, Crp, CusR, DcuR, FhlA, Fis, KdpE, MprA, SgrR,
RhaS, XylR

AllS, AlpA, ArsR, EnvR, EnvY, HycA, NadR,
GutM, HyfR, PhnF, RbsR, RpiR (AlsR),
RtcR, TdcR,

YbdO, CspE, YmfL, YdiP, YqeI, YgeH, YidL, YidP, FrvR,
FimZ (YbcA), SgcR (YjhJ), SlmA (YicB), DgoR (YidW)

38 9.93

C11 AcrR, IclR, ModE, RcnR, TorR, YdcN, YedW, YegW,
RcdA (YbjK), YahA (PdeL)

Cnu YagI, YbfE, CspI, CspB, CspF 16 3.44

C12 BirA, BasR, CynR, MetR, MngR, MurR (YfeT), PaaX, AscG, FrlR (yhfR), NorR, XapR, MazE YafN, YcjW, YdcQ, YdcR, YeiI, YfiE, YiaU, YihW, YjhU, YjiR 22 3.4

Columns are as follow: Cluster number, known TFs (strong and weak evidences) and hypothetical TFs; number of TFs per cluster; and individual (within) sum of squares (WSS).
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corroborated. Based on this assumption, PCA and spectral clustering
algorithms were applied. 12 clusters with similar expression patterns
were identified, yielding hypothetical and well-known TFs in each
group or cluster. Moreover, the well-known TFs included regulated
geneswith similar physiological functions, suggesting that, in functional
terms the obtained clusters are robust. In order to evaluate the consis-
tency of our clusters, we compared the 11 modules using the EcoMAC
expression dataset, and 12 modules using the COLOMBOS dataset
(including non-coenriched TFs) recently identified by Fang et al. [17]
against clusters identified in this work at the target gene level. From
this, we identified a functional enrichment in 5 out 11 modules for at
least one cluster from the EcoMAC dataset (Supplementary material
Table S2). All these comparisons represent a significant biological coher-
ence. Interestingly, in both methods the toxin-antitoxin (TA) systems
are clustered (Cluster 2 and Module 6, P-value b 0.001, Fisher Exact
Test) with oxidative stress response and DNA-repair TFs, that is consis-
tent with the functional roles of the TA systems. Another interesting
functional insight was that of the co-clustering of multistress response
TFs (Cluster 9 and Module 1, P-value b 0.001), which represent a func-
tional relationship that has been previously described [7,17]. We also
performed an enrichment analysis on the COLOMBOS dataset modules
and similar results were obtained. Overall, these results suggest a func-
tional relationship between the expression patternswithin themodules
of the regulatory network of E. coli K-12, that can be verified by similar
approaches. In what follows, we describe the most relevant clusters
identified.

3.3. Clusters Included Genes With Common Regulatory Processes

3.3.1. Carbohydrate Metabolism Cluster (Cluster 1)
In cluster 1, 21 TFs that have been experimentally characterized,

such as AraC and MelR, and 11 hypothetical TFs identified by sequence
comparisons were included. These 32 TFs were identified to have simi-
lar expression patterns according to the Colombos database and cluster
analysis. In this cluster, members of the LysR and AraC/XylS families
are overrepresented (P = 0.056 and 0.0078, respectively), showing
evolutionary consistency in terms of the protein members associated
with this group. In order to evaluate functional coherence, 321 genes
regulated by these 21 TFs experimentally described were analyzed.
Based on KEGG Pathway annotation and Supfam functional categories
annotations we found carbohydrate metabolism (Fructose and man-
nose, Amino sugar and nucleotide sugar, Propanoate, and Galactose
metabolism, among others); Cell motility (Flagellar assembly); and
Cellular community (Biofilm formation and Quorum sensing) systems
enriched with adjusted P-values below 0.045 (See Table 2). These
data correlates with the Pfamdomains enriched in the target genes reg-
ulated by the experimentally TFs, such as those AraC_binding domain
(arabinose binding), FGGY_C and FGGY_N related to carbohydrate
kinase family, and Aldolase_II, among others (Table 2 and Fig. 2).
These tests suggest a functional relationship between carbohydrate
(AraC-arabinose, FucR-fucose, RhaR-rhamnose, and GalS-galactose)
transport and metabolism regulons. Therefore, based on the expression
patterns, similar regulatory processes, and physiological functions, we
suggest that hypothetical TFs associated with this cluster participate in
carbohydrate metabolism.

3.3.2. Biosynthesis and Stress Metabolism Cluster (Cluster 2)
A total of 22 different TFs were included in cluster 2: 17 TFs experi-

mentally described and 5 TFs identified by sequence comparisons. It is
interesting that members of the GalR/LacI family (P-value = 0.0515),
such as GalR and MalI, were identified as predominant. Based on
RegulonDB information, 82% of the 272 target genes associated
with the experimentally described dataset are negatively regulated
(enrichment corrected P-value equal to 1.42E−36). Therefore, this clus-
ter involves genes that are mainly repressed, and they are probably
expressed in the absence of the TF in a holo-conformation, as has been
previously suggested [18]. In functional terms, toxin-antitoxin (TA)
system was found to be enriched in this cluster. Interestingly, this
functional module has previously been described [19,20]. Toxins are
activated upon amino acid starvation, and degraded by proteases.
Moreover there is a functional link between superoxide response,
DNA damage, and proteases module and TA regulons in this cluster.
In addition, genes devoted to DNA-replication repair and transcription
(information processes) were also identified as enriched in Supfam
and KEGG functional annotations. Finally, PFAM assignments identi-
fied domains associated to Mur_ligase, peptidase, RelB, helicases and



Table 2
Functional characterization of clusters.

Cluster
no.

Number of
target genes

Regulatory
mechanism

KEGG Supfam PFAM

C1 321 – Carbohydrate metabolism; amino acid
metabolism; metabolism of other amino acids

Metabolism - amino acids; carbohydrate;
energy

FGGY_C;MR_MLE_C;Rieske; FGGY_N;
Asp_Glu_race; BPD_transp_2; Aldolase_II;
AraC_binding;

C2 272 Repressor Replication and repair; Metabolism of other
amino acids; drug resistance: antimicrobial

Information - DNA replication-repair;
metabolism - other enzymes, redox;
Processes_EC - toxins-defense;
Processes_IC - proteases

Mur_ligase_C; Mur_ligase_M; HOK_GEF;
IMS; IMS_C; IMS_HHH; Peptidase_S24;
PhdYeFM_antitox; RelB; UVR; UvrD_C;
UvrD-helicase

C3 371 Repressor Amino acid metabolism; energy metabolism;
nucleotide metabolism; glycan biosynthesis and
metabolism; metabolism of cofactors and vitamins

Metabolism - amino acids, carbohydrate,
coenzyme, transferases; Processes_IC –
transport

DAHP_synth_1; GATase; LTXXQ; MGS;
SBP_bac_3; SKI;CPSase_L_D3;
CPSase_sm_chain; PAPS_reduct

C4 177 Activator Lipid metabolism; membrane transport; signal
transduction

Information - DNA replication-repair;
regulation - signal transduction

HTH_18

C5 869 Repressor Carbohydrate metabolism; xenobiotics
biodegradation and metabolism; energy
metabolism; amino acid metabolism;
translation; membrane transport

General – general; metabolism – redox;
Processes_EC - cell adhesion;
Processes_IC – protein modification,
transport

Fimbrial; molybdopterin;
Molydop_binding; Molybdop_Fe4S4;
Fer4_11; ABC_tran; Peripla_BP_6; Fer4_4

C6 51 Activator Metabolism; carbohydrate metabolism; glycan
biosynthesis and metabolism; drug resistance:
antimicrobial

Metabolism – carbohydrate, E-transfer;
regulation - kinases-phosphatases

AA_permease_2; GerE

C7 47 Activator Amino acid metabolism; glycan biosynthesis and
metabolism; metabolism of other amino acids

Information - DNA replication-repair;
metabolism - other enzymes;

AA_permease_2; ABC_tran

C8 745 Dual Energy metabolism; Lipid metabolism; amino
acid metabolism; metabolism of terpenoids and
membrane transport; polyketides

Information – transcription; metabolism
- coenzyme other; Processes_IC -
transport

FecCD; Fe-S_biosyn; Plug; TonB_dep_Rec;
N_methyl

C9 474 Activator Metabolism of other amino acids Metab - energy transfer BPD_transp_2; Peripla_BP_4; FGGY_C;
HTH_8; FGGY_N; Proton_antipo_M

C10 939 Activator Carbohydrate metabolism; metabolism of
cofactors and vitamins; translation membrane
transport

Information - DNA replication-repair;
metabolism – nucleotide; other enzymes,
transferases

Nitroreductase

C11 86 – Drug resistance: antimicrobial; folding, sorting
and degradation; membrane transport; signal
transduction; cellular community - prokaryotes

Metab - redox –

C12 64 Repressor Metabolism of cofactors and vitamins;
metabolism of other amino acids

Metabolism - other enzymes
Processes_IC - protein modification

PaaA_PaaC

Columns are as follows: cluster number; number of target genes per cluster; enriched regulatory roles associated to target genes; functions according to Supfam, KEGG and Pfam.
A P-value b0.045 were considered as threshold.
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Antitoxin Phd_YefM, type II toxin-antitoxin system, associated to DNA-
repair and stress responses. Table 2 and Fig. 2. Altogether, PFAM,
Supfam, KEGG annotations suggest common regulatory processes
related to the genes regulated by the experimentally characterized
TFs, and suggesting that the five hypothetical TFs could be associated
with regulation of biosynthetic metabolism or stress responses in a
negative fashion, as is true for most of the regulatory processes associ-
ated with well-known TFs.

3.3.3. Multiple Types of Stress Response and Anaerobic Metabolism Cluster
(Cluster 9)

In cluster 9, 21 experimental and 7 hypothetical TFs were included
(see Table 2 and Fig. 2). These proteins were mainly classified as mem-
bers of the LysR (P-value = 0.002415236), AraC/XylS (P-value =
0.05321101), and OmpR (P-value = 0.05058147) families. In general,
a total of 57% of the regulated genes are associatedwith positive regula-
tion (P-value=0.006887). Those regulated genes aremainly associated
to metabolism of cofactors and vitamins and other amino acids, and
cellular community processes (KEGG annotations). These functions
correlate with the SUPFAM annotation (Metabolism E-transfer). Finally,
PFAM assignments identified domains associated to the nitroreductase
family that comprises a group of FMN- or FAD-dependent and NAD(P)
H-dependent enzymes able to metabolize nitrosubstituted compounds
[21] Table 2.

Therefore, it is interesting that the oxidative stress response OxyR
and SoxS regulons, the GadEWX regulons [22,23] for acid stress
response, and other stress-related genes (such as the low-Mg2+-
sensitive PhoPQ two-component system, efflux system-related channel
TolC, and acid stress chaperones HdeAB) clustered together. In this
context of ROS and low pH signals, the shutdown of aerobic respiration
(through ArcA) while NADH concentrations are sustained forces E. coli
to overproduce oxidoreductases to prevent metabolic collapse [23,24].
For example, activation of zwf links glycolysis to the pentose phosphate
pathway; also, it generates its finest ROS-resistant aconitase, AcnA
(more stable against ROS than AcnB), which is activated by SoxS
[23–25]. ROS-detoxifying enzyme-related genes, like sodA, ahpCF, and
katG, are also associated with the TFs included in this cluster.

Cluster 9 also contains proteins related to metal transport, such as
MntH for Mn2+, ZinT for Zn2+, and MgtA for Mg2+ transport, DNA
repair enzymes Dps and Nfo, Fe-S cluster regeneration proteins TrxC
and GrxA, and the suf operon product. An interesting fact is that the
operon gadEWX was associated with TFs included in this cluster,
suggesting cross-talk for regulation of transcription in the context of
acid tolerance and ROS resistance. This result can be explained by
MgtA being activated by both SoxR and PhoP TFs. Moreover, cross-
stress protection is a phenomenon that arises in evolutionary scenarios
where one stress signal provides fitness for another stressor [26];
this interconnectedness provides robustness to bacterial populations.
Indeed, these regulons were identified in a cluster comprising genes
for resistance to antibiotics, ROS, and organic solvents [7]. Thus, these
results show that stress response genes have several expression mod-
ules that are coordinated robustly across multiple strains. All of these
findings are consistent with data from the RegulonDB Gensor Units
database [8]. In summary, this module may have evolved due to the
requirements of certain proteins for specific metal ions, like SodA and
AroF (which require Mn2+), TrxC, MepM, and MetE (which require
Zn2+), and finally housekeeping enzymes like DNA polymerases and
kinase (which require Mg2+) [23].



Fig. 2. Functional assignments based on a) KEGG, b) SUPFAM and c) Pfam annotations. Functional assignmentswere evaluated per cluster. Only enriched functionswere plotted as a heatmap.
Colorbar represents −log P-value with Benjamini Hochberg correction.
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3.3.4. Global Regulation Cluster (Cluster 10)
Cluster 10 includes 38 different TFs (see Table 2 and Fig. 2). Of

these, 25 TFs experimentally described are regulating the expression
of 939 genes, with the global regulators Crp and Fis the best represen-
tatives; in addition, the cluster includes 13 hypothetical TFs. The
most prominent families of these regulators correspond to AraC/XylS
(P-value = 0.06001661), OmpR (P-value = 0.01137062), and EBP
(P-value = 0.00319223). In this cluster, regulated genes associated to
TF of the cluster are preferentially activated (P-value of 1.54E−48).
Based on an enrichment analysis we identified diverse regulated
genes devoted to carbohydrate metabolism, mainly associated to
Fructose, Pentose and Glycolysis/Gluconeogenesis, membrane trans-
port and translation processes (KEGG annotations). Therefore, we
suggest that hypothetical TFs could be involved in regulate genes
devoted to carbohydrate metabolism, and transport across mem-
brane. These data are consistent with PFAM domains identified in
the dataset, such as those associated to transmembrane transport
(Proton-conducting membrane transporter), Periplasmic_BP_4 and
membrane transport according PFAM, with P-values of 0.0035, 0.0077
and 0.00073 respectively. In addition, two hypothetical TFs belonging
to the two-component system of YqeI/YgeH were identified as being
located within a cryptic genomic island corresponding to a type III se-
cretion system, the ETT2. YgeH is homologous to a master regulator of
HilA in Salmonella enterica serovar Typhimurium, and YqeI is aMarT ho-
molog, which is a member of the Spi-3 pathogenicity island [27]. Both
regulators are clustered with other two-component system regulators,
reinforcing their probable role in oxoacid metabolic processes. Despite
there still being some unidentified ETT2 TFs that could be involved in
chemotaxis to increase pathogenicity [28], it is not certain to what sig-
nal(s) or histidine kinase(s) these TFs respond.

3.4. Concluding Remarks

In this work, by applying spectral clustering to the E. coli K-12 global
expression data from the Colombos database, we have shown that TFs
with similar expression profile patterns could regulated common
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processes together hypothetical regulators and this is a strategy to de-
termine functions. Large-scale functional analysis with the KEGG,
Supfam and Pfam databases provided an automated and statistically
robust classification of the genes into clusters with similar physiological
roles. For instance, superoxide dismutase SodA detoxifies superoxide
anion and is activated by GadW and SoxS [22,23]. In turn, GadW is



Fig. 3.Heatmapof cluster 9 TFs (TFs formultiple types of stress response and anaerobicmetabolism). Experimental andwell-known TFsweremapped into Colombos, and their expression
patterns are displayed.
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activated by PhoP clustered together with SoxS; thus, it is interesting to
speculate whether the acid and ROS stress response modules display
cross-resistance. Moreover, GadW and SoxS are members of the AraC/
XylS family, consistent with our observations of overrepresentation of
certain regulatory families inside the clusters.

Additionally, there are some interesting functional implications
of the putative TFs in the clusters, especially for processes that
are beneficial in coping with environmental changes. For example
NimR, an AraC/XylS-like regulator that confers resistance to the anti-
bacterial agent nitroimidazole [29], was clustered together with
SoxS, a member of the same superfamily, and YafC (Fig. 3), a TF prob-
ably involved in resistance to ionizing radiation [30]. These findings
therefore suggest that the repertoire of global stress response pro-
teins is potentially larger than previously known, allowing our
method to expand the known repertoire of genes associated with
this function. Moreover, we also found interesting results related to
metabolism. The YfhH putative regulator has a SIS domain (Pfam ID
PF01380) that plays role in phosphosugar regulation. It is located
in a genomic region next to PgpC, an enzyme that catalyzes the
dephosphorylation of PGP, an essential phospholipid of the inner
and outer membranes of E. coli K-12, suggesting that there might
be a functional relationship with this membrane lipid.

Finally, the compilation and analysis of regulatory elements in E. coli
have led us to better understand the regulatory network organization
of this bacterium. Although TFs are the most extensively used elements
in regulatory networks, the extended repertoire of other regulatory
mechanisms has resulted in a significant increase in the versatility of
the network, as it accurately modulates gene expression. Altogether,
this analysis shows a strategy for functional assigment to TFs, provides
new clues about the E. coli genetic regulation network, and such infor-
mation can be determined for other organisms through gene expression
databases.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.csbj.2018.03.003.
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