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To date, it remains unclear how anthropogenic perturbations influence the dynamics
of microbial communities, what general patterns arise in response to disturbance, and
whether it is possible to predict them. Here, we suggest the use of microbial mats as a
model of study to reveal patterns that can illuminate the ecological processes underlying
microbial dynamics in response to stress. We traced the responses to anthropogenic
perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin
(CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination
of three computational approaches. First, we implemented MEBS (Multi-genomic
Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across
spatio-temporal scales with a single informative value. Second, we used robust Time
Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions
at different taxonomic levels. Lastly, we utilized network motifs to characterize specific
interaction patterns. Our results indicate that microbial mats from CCB contain an
enormous taxonomic diversity with at least 100 phyla, mainly represented by members
of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of
anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions,
where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs
indicate that in wet conditions, there was an equilibrium between cooperation and
competition (positive and negative relationships, respectively), while under dry conditions
there is an over-representation of negative relationships. Furthermore, most of the
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keystone taxa of the TS-ENs at family level are members of the RB and the microbial
mat core highlighting their crucial role within the community. Our results indicate that
microbial mats are more robust to perturbation due to redundant functions that are likely
shared among community members in the highly connected TS-ENs with density values
close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic
diversity where all community members interact with each other (low modularity), the
presence of permanent of low-abundant taxa, and an increase in competition can be
potential buffers against environmental disturbance in microbial mats.

Keywords: time series ecological networks, environmental perturbation, MEBS, microbial mats, rare biosphere,
network motifs

INTRODUCTION

Understanding the responses and the mechanisms that constrain
and promote microbial adaptation in face of environmental
perturbation is crucial to evaluate the ecosystem impact at
global scales. Microbial ecological studies have demonstrated that
diverse microbial communities tend to be more stable over time
by promoting functional redundancy, whereas after a disturbance
the community richness and diversity tends to decline (Girvan
et al., 2005; Gihring et al., 2011; Hunting et al., 2015). Recent
studies suggest that the probability that the community will
return to its previous state following a small perturbation
(hereafter referred as microbial stability, see Allesina et al., 2015;
Borrelli et al., 2015; Grilli et al., 2016) could be related to the
great genetic reservoir of low abundant taxa, also known as the
rare biosphere (RB), and the microbial interactions that could
have a crucial role providing a buffer against environmental
disturbances influencing both community assembly and stability
(Hunt and Ward, 2015; Konopka et al., 2015; Lynch and Neufeld,
2015; Jousset et al., 2017; Karpinets et al., 2018; Rivett and
Bell, 2018). Yet, to date it is unclear how microbial community
dynamics (i.e., composition and relationships) are influenced by
environmental constraints, which largely shape the degree of
resistance, resilience, and functional redundancy of a microbial
community (Allison and Martiny, 2008; Fuhrman, 2009; Newton
et al., 2011; Bissett et al., 2013; Konopka et al., 2015).

Natural microbial communities are highly complex systems
that are in constant flux through spatial and temporal scales,
where even minor perturbation can significantly reorder the
function of each community member and the interaction
network (Konopka et al., 2015). In this study we focused on
community level patterns in stable microbial communities during
environmental perturbation and the possible mechanisms that
facilitates or disrupts microbial community stability and their
ability to adapt to change. Due to their capacity to perform
most of the biogeochemical cycles in a physically and chemically
reduced environment, microbial mats are excellent models of
study. Microbial mats are successful ecological communities
which have adapted continuously to environmental changes since
the Archean Eon (van Gemerden, 1993; Guerrero et al., 2002;
Bolhuis et al., 2014; Preisner et al., 2016). Here, we seek to identify
the general patterns caused by environmental perturbation. If
microbial mats are resilient and resistant over time, we expect

that samples taken through time in fixed points in space would
present similar community patterns regardless of the disturbance.
In contrast, if these communities survived by a constant species
turnover, we expect to see systematic differences reflected in
the community composition, function, structure, and overall
relationships.

Despite their importance, low abundance taxa have been
routinely removed from microbial ecology studies (Jousset et al.,
2017). Most existing studies using network inference focus on
evaluating a small percentage of the strongest interaction pairs,
or infer microbial relationships at one single taxonomic level or a
few marker genes involved in several metabolic process ignoring
if those genes are differentially abundant (Shaw et al., 2017).

In order to comprehensively evaluate complex microbial
community dynamics under environmental disturbance,
we suggest the implementation of three approaches to
complement the standard taxonomic ecological analysis.
(1) The analysis of robust time series ecological networks
(TS-ENs) at different taxonomic level to access general patterns
of microbial relationships. (2) The application of MEBS
(Multigenomic Entropy Based Score) to capture the enrichment
of biogeochemical cycles or other complex metabolic pathways
(De Anda et al., 2017) to provide a quantifiable measure
of community response to environmental perturbation. (3)
The use of network motifs or building blocks of biological
networks that have been applied to the study of development,
regulatory, and neuronal networks (Shen-Orr et al., 2002; Prill
et al., 2005; Tran et al., 2013), and in ecological food webs of
plants and animals (Stouffer et al., 2007; Borrelli et al., 2015;
Baiser et al., 2016). The latter is needed since network motifs
studies offer the opportunity to bridge the gap between the
dynamics of simple modules and the analysis of topological
metrics describing the community as a whole (Delmas et al.,
2018).

To examine the community response against anthropogenic
perturbations caused by water depletion, we studied microbial
mats at three sites in the Churince Lagoon in Cuatro Cienegas
Basin (CCB) México during 2012–2014. CCB is an extremely
oligotrophic oasis characterized by low P concentrations (PO4

3−

as low as 0.1 µM) but relatively high concentrations of
inorganic N and thus high N: P ratios (>200:1 by atoms)
(Lee et al., 2015, 2017). Paradoxically, despite this nutrient
limitation, CCB is a World Wildlife Fund (WWF) hotspot
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for biodiversity and a wetland of international importance
under the RAMSAR convention and is a singularity biodiversity
that persisted through time (Souza et al., 2018). However,
despite the importance of this site, increasing demand for water
by agricultural development (mainly for forage and feed for
livestock) has generated critical conservation issues related to the
drying of different aquatic systems in the basin. In particular,
the desiccation process of the Churince Lagoon, a wetland with
a rich input of deep water with magmatic influence (Wolaver
et al., 2012) and a high, endemic biodiversity that now is in
danger of disappearing (Souza et al., 2007, 2018; De Anda et al.,
2018).

In order to focus on the dynamic response of these
communities in the face of anthropogenic perturbation, we
seek to address the following questions: How are the networks
assembled from their basic building blocks? Can we detect the
keystone taxa? Is it possible to discriminate between intrinsic
community changes and those given by the environmental
degradation? Finally, can we mechanistically predict the overall
behavior in the community under environmental stress using
network inference? To this end, we used high throughput
Illumina sequencing to assess the community composition
and function as well as the change in the structure and
membership networks between sites during and after the
anthropogenic perturbation. Our results indicate that even
though microbial mats are resilient and resistant taxonomically
and metabolically, their network of interactions change
during the dry period. During this time, negative interactions
predominate under stress while interactions are more balanced
in wet conditions.

MATERIALS AND METHODS

Sample Collection and Processing
Microbial mats were sampled from a small (ca. 12 m × 4 m)
pond named “Lagunita” that is part of the main Churince
lake in CCB (26.84810◦ N, −102.14160◦ W). Under normal
conditions Lagunita pond is shallow with variable water levels
(<0.42 cm) (Lee et al., 2015, 2017; Figure 1A). However, during
initial fieldwork, we found that long term water extraction
for agriculture had finally overturned the water levels and
Lagunita pond was almost dry, with a majority of its sediment
exposed and in direct contact with the atmosphere, consequently
desiccating and displaying green and yellow tonalities. With the
exception of two wet patches, that were both covered with a
thick white surface with a sulfide smell. We sampled microbial
mats from one dry area (Site A: 26.848120◦N, −102.141604◦W)
and two wet patches (Site B: 26.848093◦N, −102.141608◦W and
C: 26.848084◦N, −102.141577◦W), all less than 3 meters from
each other. We sampled seasonally (Autumn and Spring) from
2012 to 2014 (Figure 1B) resulting in a total of 12 samples
(Figure 1C).

Triplicate samples of each mat were obtained for each time
point (5 cm × 5 cm × 5 cm), using sterile Falcon tubes (50 mL)
and then stored at 4◦C and subsequently frozen in liquid nitrogen
until processing in the lab. Physicochemical water parameters

were registered at each sampling time using Hydrolab Mini
Sonde 5 Multiprobe SE, with the exception of the initial (dry)
sampling (as there was not water to measure). We took great
care in preserving the mat structure and, even if we could
not split the layers due to the mat consistency, we represented
in our DNA isolation all the layers evenly, starting with the
upper photic layer and ending with a similar sized black anoxic
layer.

DNA Extractions
Approximately 0.5 g of microbial mats sample was extracted
for each replicated sample according to Purdy (2005). Replicate
samples for the same site and time point were pooled into a single
sample, yielding a total of 12 DNA samples, each one with more
than 5 µg of high molecular weight DNA.

Metagenomic Library Preparation,
Sequencing and Quality Assessment
Metagenomic shotgun sequencing libraries were prepared and
sequencing at CINVESTAV-LANGEBIO, Irapuato, Mexico. For
each sample ∼5 µg of genomic DNA (DO 260/280 ≤1.8) was
used with Illumina’s TruSeq nano for library preparation, which
supports shearing by Covaris ultrasonication. Fragments were
selected according to agarose gel 0.7% at 70 mV in order
to obtain an average insert size of 550 bp. Libraries were
sequenced using the Illumina MiSeq Paired-End 2 × 300 bp
technology with a run in a single plate generating 12Gb of
sequence data for all 12 samples. Quality of raw reads was
analyzed using FastQC v0.11 (Andrews, 2010). TruSeq Indexed
Adapter and barcodes were removed using cutadapt v1.12
(Martin, 2011). Low quality sequences were discarded with
Trimmomatic using a sliding window of 4 bp, an average quality
per base of 20, and min read length of 36 bp (Bolger et al.,
2014). The assembly of the trimmed reads was conducted with
Megahit v1.1.1-2 using the option – presets meta-large (Li et al.,
2014).

The coding regions were searched from the obtained contigs
using Prodigal v2.6.3 (Hyatt et al., 2010) with the -a option,
to obtain the translated amino acid sequences of the predicted
coding regions and -p meta option. The peptide amino
acid sequences were then scanned against Pfam-A v30 (Finn
et al., 2015). The abundance profile of each Pfam domain
in the metagenomic samples was obtained from a Perl script
extract_pfam.pl which is part of the MEBS software suite (De
Anda et al., 2017). The resulting FASTA files of sequence contigs
have been deposited in the MG-RAST repository under project
number mgp80319.

Taxonomy Assignment
We used the k-mer based taxonomic classification algorithm
of One Codex (Minot et al., 2015) to assign microbial
taxonomy of the Megahit derived contigs. Briefly, One
Codex classifies unknown nucleotide sequences according
to the set of signature sequences that are unique to a specific
taxonomic group using oligonucleotides of 31 bp (k = 31).
The taxonomic profiles obtained from the reference-based
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FIGURE 1 | Sampling site and microbial mats samples description. (A) The Lagunita pond is located at Cuatro Cienegas Basin (CCB) in state of Coahuila, Mexico
Map. Google Maps. Google, 15 Jun 2018. Web, 15 Jun 2018. Here is shown two contrasting conditions during the study period (dry and wet or “water” conditions).
(B) Specific characteristics of the Lagunita pond are showed during the sampling period ranging from Autumn 2012 (time 1), to Spring 2014 (time 4). (C) Microbial
mats were sampled seasonally from three geographically separated sites (A–C) during two-years resulting in a total of 12 samples (3 sites, 4 time points).

approach were used for downstream analyses described
below.

Microbial Mats Diversity, Structure and
Statistics
Several descriptors of alpha diversity were obtained from
Phyloseq-estimate_richness function (McMurdie and Holmes,
2013) implemented in R (R Development Core Team, 2011). In

order to estimate the sampling effort, rarefaction curves were
obtained for each sampling site using the rarefaction function
implemented in Vegan Library in R. Several statistical analyses
were performed in order to test for differences between samples
and estimate components of variation due to year, site, or water
conditions. We first performed a permutational multivariate
analysis of variance (PERMANOVA) using R-vegan function
Adonis in order to establish the differences between sites and
times. A pairwise comparison among samples for the same site
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and water conditions was performed using the STAMP v2.1.3
program (Parks et al., 2014) in order to statistically identify
the significant differences among genera within each sample by
using Welch’s t-test type two-sided, with the confidence interval
(CI) method of Welch’s inverted adjustment of 0.95. Then,
we compared the taxonomic presence/absence profile from the
microbial mats under dry condition versus those from the rest
of the sampling, the particular and shared taxa across water
conditions were plotted with Venn-Euler diagrams using a web-
based tool1. Finally, we identified the core of microbial mats
(those genera present across space and time in all microbial
mat samples) using the parse_pangenome_matrix.pl script part
of the software GET_HOMOLOGUES (Contreras-Moreira and
Vinuesa, 2013).

Biogeochemical Cycling Dynamics
We used MEBS (De Anda et al., 2017) to evaluate the metabolic
machinery of C, O, N, S, and Fe cycles in the microbial
mats across time by using a single value measured in bits
(informational units). Briefly, FASTA peptide sequences for each
microbial mat, obtained with Prodigal, are taken as input of the
main script mebs.pl. We used the -comp option to compute the
metabolic completeness of sulfur and methane cycle (currently
N and Fe cycles are also supported). Cycles enriched in a given
sample are recognized by using the –fdr (False Discovery Rate).
In this case we used a restrictive FDR of 0.0001. We performed
ROC analysis described in De Anda et al. (2017) for each cycle,
computing several cut-offs for fixed FDR rates. In this way, by
using restrictive FDR we can control the rate of true positives and
false positives obtained in each cycle. The exact values for each
cycle are shown in the config file of MEBS github repository2. The
details of those analyses will be published elsewhere, including
the benchmark of each cycle across two-thousand non-redundant
genomes.

To contrast the biogeochemical cycles across several
environments, we used publicly available metagenomes from
MG-RAST of stromatolites from Highborne Cay, Bahamas
4449591.3 4449590.3 (Khodadad and Foster, 2012), Polar
Microbial mats 4445126.3 4445129.3 (Varin et al., 2012);
freshwater microbial mats from CCB 4442467.3 4442466.3
4441363.3 4441347.3 (Bonilla-Rosso et al., 2012; Peimbert et al.,
2012) and stromatolites from CCB, 4440060.4 4440067.3
(Desnues et al., 2008; Breitbart et al., 2009); microbial
mats from Yellowstone 4443746.3 4443747.3 4443762.3
4443749.3 4443750.3 (Bhaya et al., 2007); purple sulfur bacteria
biofilm (Wilbanks et al., 2014); hydrothermal vents 4487624.3
4487625.3 (Tang et al., 2013), 4449206.3 (Jiménez et al., 2012);
microorganisms from the vent-associated polychaete worm
Alvinella pompejana 4441102.3 (Grzymski et al., 2008); acid
mine drainage 4441138.3 4441137.3 (AMD) (Jiao et al., 2011);
polar cryoconite 4491734.3; freshwater microbialites from
Pavilion Lake, Clinton Creek described in White et al. (2015,
2016); hypersaline microbial mats from marine environments

1http://bioinformatics.psb.ugent.be/webtools/Venn/
2https://github.com/eead-csic-compbio/metagenome_Pfam_score/blob/master/
config/config.txt

described in Ruvindy et al. (2016) and Guerrero Negro (Kunin
et al., 2008).

Network Inference
We used the time-series Lotka-Volterra-based network inference
approach MetaMIS (Shaw et al., 2016) to infer the underlying
interactions from microbial mats collected during and after the
perturbation event. For each site, the non-normalized taxonomic
classifications (ranging from Phylum to Family) were used to
compute the consensus networks. Due to the large amount of
network interactions generated at lower hierarchical levels and
the limitation of computing power (Intel Core i7-4500U CPU
@3.20 GHz processor and 16Gb RAM), we were not able to obtain
the consensus networks at genera level. Considering that the three
studied sites are very close together, we constructed a “high order-
network” by concatenating the consensus networks of the three
sites. We named it “global network” and it was constructed to
find general patterns that could reflect the behavior of the mats
within Lagunita pond.

The consensus networks inferred from MetaMIS can include
several types of interaction patterns, yet we decided to further
separate them into more simple networks displaying only either
positive or negative relationships. For each site we obtained three
different networks (consensus, positive and negative) resulting
in a total of 36 Time-Series Ecological networks (TS-ENs). The
global network was also separated by type of interaction at every
taxonomic level, resulting in 12 global TS-ENs per sampling time.
In total, we obtained 48 TS-ENs in our study.

Motif Discovery
Network motifs are defined as a set of recurring circuits on n
nodes. Nodes can represent biological entities such as OTUs,
species, genes or proteins. Network motifs are patterns of
interactions from which the networks are built. These patterns
occur in complex networks more often than expected in a random
network (Milo, 2002; Alon, 2007; Baiser et al., 2016). In order to
compare our data with those derived from the ecological theory
developed in food webs and the tractable number of network
motifs, we focused only on the 13 possible 3-node network motifs.
For comparison, there are 199 and 9364 motifs for four and five
node subgraphs, respectively, which require high computational
performance (Stouffer et al., 2007). To calculate all significant
network motifs of three nodes within the 48 TS-ENs, we used
Mfinder v1.20 (Milo, 2002) with default options.

Network Statistics
To further evaluate the topological features of the 48 TS-
ENs, we developed a software package called NetAn: Network
Analyzer3 that was built on broadly used python libraries
that are freely available, such as Networkx (Hagberg et al.,
2008). The main script NetworkAnalysis.py receives a list
of interactions weighted or unweighted (-d and –u options,
respectively) and computes several metrics. We focused on
identifying key features that are showed to be significant in
comparison with those in random networks. Therefore, we

3https://github.com/valdeanda/NetAn
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extracted properties of the directed networks such as density,
hubs with maximum in-degree and out-degree and clustering
coefficient, among others. Then we assumed the networks as
non-directed and calculated further topological features such as
modularity and communities using the Louvain method (Blondel
et al., 2008).

Given that the real networks are very dense in terms of
connections, we implemented a method to generate random
networks that resemble the real ones using the option
gnm_random_graph from Networkx python module. A hundred
random networks were generated for each real one, with the same
number of nodes and edges. Then, for each one same topological
features were extracted and the average compared to those of real
networks.

RESULTS

Study Field Site Overview
Lagunita pond shows a conductivity ranging from 6.47 to 11.59
mS cm−1. At the end of the study, May 2014, salinity was
almost double in concentration than in the year before, May
2013. Nevertheless, pH remained constant ≈8 for 2 years. Water
physicochemical parameters during wet conditions are shown
in Supplementary Table 1, and nutrients for Lagunita were
extensively reported by Lee et al. (2015, 2017).

Metagenomic Analysis
The dataset comprising 12 libraries, consisting of more than
22 million read-pairs, of which ∼9.3% were discarded during
quality control. The filtered reads were subsequently assembled,
yielding 4,685,929 contigs (N50 ∼417 bp ± 34.36 std).
Around 426,300 ± 116,000 std. proteins were detected with
Prodigal (see details in Supplementary Table 2), which were
then scanned against the Pfam-A v30 database for metabolic
inference.

Microbial Mats Diversity and Community
Structure
Despite the relatively low MiSeq coverage for the twelve
metagenomes, we were able to identify 100 bacterial phyla, 168
classes, 302 orders, 539 families and 1431 genera. The number
of phyla detected exceeds around three times the number of
taxa observed in equivalent studies within mats from Lake
Clifton, Australia (Warden et al., 2016), indicating highly diverse
microbial mats occur in CCB. Within the total genera identified,
97.27% are found in low abundance ≤0.01 consistently across
samples (Figure 2A), and the unclassified sequences are from
the Bacteria domain, Rhodobacteraceae family, Proteobacteria
phylum, Alphaproteobacteria, and Actinobacteria classes as well
as Rhizobiales order, where the abundant taxa among samples
with a relative abundance ≥0.01 (Figure 2A1). According to
the rarefaction curves, the taxonomic assignment at genera level
tends to reach an asymptotic behavior for almost all samples, with
the exception of B1 since this sample had a lower number of raw
reads (See Supplementary Table 2).

From the total genera identified, 373 were present across
all samples, regardless of geographical distance and contrasting
environmental conditions (Supplementary Table 3). This subset
of taxa could be potentially associated with the microbial
mat core. For visual comparisons, the overall abundance shift
of the members of the microbial mat core across time are
shown in Figure 2B. The vast majority of the core members
(344 genera) belong to the RB indicating the presence of
permanent rare taxa within microbial mats. Despite their lower
abundance (<0.01), RB taxa show a constant presence across
samples in all sites during the 2-year study period; hence they
cannot be associated with sequencing errors or under-sampling.
As expected from previous studies at CCB, a considerable
proportion of the members of the microbial mat core, 30%
(114 genera), belongs to unclassified sequences. It is worth
mentioning that deeper sequencing could reveal a larger core
than presented here, for example taxa at lower abundance in all
samples.

Ecological Diversity Index
The alpha-diversity estimators across sites are shown in
Supplementary Figure 1. In general, we observe that Site B is
the less diverse, especially during dry conditions. Unexpectedly,
microbial mats from site A are more diverse at the taxonomic
level. The observed differences in richness and diversity between
Chao and Shannon indexes may be due to the Shannon algorithm
falling short when examining a large number of low abundant
organisms (the RB), that in our case represent most of the taxa
in the microbial mats. The trajectories of Shannon and Pielou
indexes during the period of study indicate little variations of
the three sites, pointing out a resilient microbial mat community
(Supplementary Figure 2).

Due to the high percentage of low-abundance taxa, we used the
genera presence/absence profile to highlight unique and shared
taxa during contrasting water conditions (Figure 3).

During dry conditions we detected a diverse community of
bacteria, but also Archaea, fungi, protists and lesser number
of viruses. Furthermore, we observed the common presence of
halophilic taxa, fungi, and protozoa during dry conditions in the
three sampling sites (a detailed list is included in Supplementary
Table 4). Interestingly, during dry conditions the shared taxa are
mostly from the RB, with the exception of Methanohalophilus
which was common between mats from sites A and C. These
two sites in dry conditions also shared six taxa that were
never detected during wet conditions. These taxa highlight
the implication of a halotolerant and C-cycling community in
these mats (i.e., Gramella and Kordia genus) (more details in
Supplementary Table 4).

During wet conditions, representatives of fungi and protista
were not found within wet patches, contrasting with site dry
mat, where we observed a genus of the Leotiomyceta class
(Ascomycota) (details in Supplementary Table 5). Interestingly,
given the small spatial scale, many unique taxa exist in each
separated community (especially in site B). In contrast to dry
conditions, we found two taxa that are common in all the sites in
the water conditions (Ornatilinea and Rikenellaceae) they belong
to the RB (Figure 4).
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FIGURE 2 | Taxonomic diversity within microbial mats from Lagunita pond at genera level. (A) Boxplot distribution showing the relative abundance of the total genera
found within microbial mats from Churince where each boxplot represents the distribution of each genera across 12 samples. The horizontal red line indicates the
low abundant taxa or RB <0.01 of relative abundance. The inner figure (A1) indicates the distribution of the six most abundant genera (>0.01 relative abundance).
The second inner figure (A2) shows the rarefaction curves of the 12 microbial mats at genera level. (B) Stacked bar plots of 58 members of the microbial mat core
whose abundance is >0.001 for comparative purposes, this plot shows how the actual composition of each site (A–C) change over time (four time points).

Statistical Analysis
The analyses made to identify the proportion of sequences
assigned to each genus that was enriched among dry and
wet conditions (first versus other sampling points Figure 4)
indicate that during dry conditions, unclassified sequences
from Rhodobacteraceae, Alphaproteobacteria, Rhizobiales,
Paracoccus, and Thioalkalivibrio were consistently over-
represented in the three site points. However, when water
conditions were restored unclassified sequences from Bacterial
domain, Proteobacteria and Actinobacteria, as well as sulfate

reducers (Desulfovibrio and Desulfatitalea), were enriched
(Figure 4A).

To gain an insight into the low abundant taxa enriched during
dry and wet conditions in Figure 4B we show the extender
error bar in Welch’s t-test to highlight the differentially abundant
(p < 0.005 genera). In the case of dry conditions eight genera were
observed: Marinovum, Pannonibacter, Paracoccus, unclassified
Rhodobacteraceae, Roseivivax, Oceanicola, Wenxinia, and
Citreicella. In contrast, we observed a total of 24 genera enriched
during wet conditions, including the potential phosphorous
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FIGURE 3 | Venn diagram analysis showing the shared and unique taxa at genus level during contrasting water conditions (RB) rare biosphere, (U) unclassified.

removal by Candidatus Accumulibacter, unclassified sequences
from Nanoarchaeota, and Ornatilinea.

Specific statistical taxonomic differences across sites suggests
a clear involvement of anaerobic taxa in mats from wet patches,
whereas in the dry site we observed mostly photosynthetic
and heterotrophic genera. Among the differentially abundant
genera from microbial mats from site C compared with
those from site A we found several representatives of sulfate
reducing bacteria such as Desulfococcus, Desulfosarcina,
Desulfonatronospira, Desulfatibacillum, and Geoalkalibacter. In
contrast, site A was enriched with marine-related genera such
as Plesiocystis, Hyphomonas, Enhygromyxa, and Arenimonas
(Supplementary Figure 3). The same pattern was observed
in mean proportions between mats from site A and B, being
enriched with the genera Spirochaeta, unclassified candidatus
Daviesbacteria, Desulfonatrospira, Desulfobacterium in site B,
whereas unclassified cyanobacteria along with Synechococcus,
Nostococales, and Oscillatoriales are differentially abundant
within site A (Supplementary Figure 4).

When comparing the differentially abundant genera from
wet patches (site B and C), we observed a representation of
an aerobic community enriched within site C (Rhizobacter,
Rhodospirillum, and Skermanella) (Supplementary Figure 5).
Despite the geographic closeness of the three sites, each one
presents many elements unique from each community and a
unique response of such taxa for perturbation being sulfate
reducers common in wet patches.

PERMANOVA analysis indicates that the microbial mats
have statistically different taxonomic composition (p < 0.05)
depending on site and season, despite having several enriched
taxa in common during contrasting water conditions. Moreover,
when we compare samples metabolic composition, we found
significant differences between sites (p = 0.005) but not
across seasons (p = 0.072), indicating that in every site,
the metabolic potential was maintained over time. This
pattern can also be observed in detrending correspondence
analysis (DCA) (Figure 5) where distribution of samples
according to metabolic functions are clustered principally by
site.

Dynamics of the Main Cycles Over Time
For comparative purposes, we used a restrictive FDR to avoid
false positives and to detect the most enriched cycles within
the microbial mats. By using this approach, we observed that
methane and nitrogen cycles were over-represented in the
microbial mats (with asterisks in Supplementary Table 6 and
bigger markers in Figure 6).

In the first case, the methane cycle, characterized by the
usage of CH4 compounds by methanotrophs, methanogens, and
methylotroph, is always enriched within site B and becomes
significant in all microbial mats after the aquifer recovery at the
end of the period of study.

The dynamics of the nitrogen cycle, which includes pathways
involved in the reduction and oxidation of both inorganic [nitrate
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FIGURE 4 | Taxonomic statistical differences between dry and wet conditions. (A) Profile scatter plot of each site (A–C), x-axis (dry conditions) and y-axis (wet
conditions) microbial mats with the difference in mean proportion among microbial mats within each site along with the associated confidence interval of this effect
size (2th and 98th percentile). Points on each side of the gray dashed y = x line are enriched in one of the two samples, SD for proportion are shown as horizontal
lines. A statistical hypothesis test is required to determine if the observed difference is large enough, to discount it being a sampling artifact safely, however, in dry
conditions there is only one mat for each site therefore no p-values are indicated. (B) The error bar indicating all genera where Welch’s t-test with confidence interval
method DP Welch’ inverted of 0.95 produces a p-value (<0.005). The difference in mean proportion between the microbial mats during dry and wet conditions are
shown in blue and orange, respectively (RB, rare biosphere; C, microbial mat core).

FIGURE 5 | Detrented correspondence analysis (DCA) according to taxonomic (A) and metabolic (B) composition of microbial mats explaining 80.2 and 78.2% of
the variance among samples, respectively. These results are supported by PERMANOVA analysis.

(+5) to ammonia (−3)] and organic nitrogen compounds (i.e.,
taurine, urea, and choline degradation), follows an opposite
behavior, since it is significant in all samples at the third sampling

time in October 2013 (Supplementary Table 6 and bigger
markers in Figure 6). This is interesting since that sampling
period corresponds to a moment of recovery of the aquifer after
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FIGURE 6 | Biogeochemical cycling within microbial mats across space and time using MEBS. (A) Dynamics of the main cycles within microbial mats samples
during the two-year period of study by with a single value MEBS captured in bits. (B) Metabolic completeness in a color gradient, the more complete are red and the
less shift to blue. Sulfur and methane cycle across 58 environments including those analyzed in this study and several environments such as hydrothermal vents,
biofilms, microbial mats, stromatolites and soils. Samples from this study are named according to the site (A–C), and sampling season and year.

the closing of a canal that was draining the site. Furthermore, site
C is the only one that becomes significant at the end of the period
of study compared to the rest of the mats.

In our previous benchmark for the sulfur cycle (Figure 6
in De Anda et al., 2017), we observed that microbial mats
from Churince CCB were among the most enriched in terms
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of sulfur cycle compared with nearly 1000 metagenomes, with a
sulfur score above the 95th distribution (>8.81 bits) are shown
with bigger markers in Figure 6A. We observed a tendency
that indicates that during dry conditions in site A, the overall
machinery of the sulfur cycle was underrepresented compared
to the wet patches sites B and C. These results agree with
the anaerobic differentially abundant taxa within wet patches,
suggesting that the water fluctuations largely determine the redox
gradient within the mats affecting the anaerobic organisms.

In the case of the oxygen and iron cycle (Figure 6A),
our results indicate that there is neither enrichment nor
impoverishment of the above-mentioned cycles in the microbial
mats from Lagunita pond. For example, in the case of
photosynthesis (oxygen score), our results agree with the
low proportion of cyanobacteria detected in the taxonomic
profile, indicating an under representation of the oxygenic
photosynthetic pathways in our community during the period of
study. The iron cycle, represented by the reduction and oxidation
of iron compounds including siderophores uptake, was under-
represented during dry conditions within site B, but then become
stable over time.

In general terms, the comparison of MEBS scores indicates
that the sulfur, methane, and nitrogen cycles are over-represented
in microbial mats from Lagunita, as well as in Pavillon Lake
(White et al., 2016), both sites displaying similar patterns.
Interestingly, Pavillon Lake is another analog of early Earth
studied by NASA, in British Columbia and, as Lagunita, it
is a non-extreme continental site with microbialites. However,
the over-representation of the methane cycle is evident within
microbial mats from our study, compared with the rest of
environments including soil, microbialites, hydrothermal vents,
biofilms, and open ocean samples (Supplementary Table 6).

For a closer look into the dynamics of sulfur and methane
cycles, we employed the completeness module implemented in
MEBS. As established previously, the metabolic completeness
is defined as the full repertoire of protein domains involved
in a given metabolic pathway such as sulfate reduction
or methanogenesis (De Anda et al., 2017). As observed
in Figure 6B, the complete repertoire of protein domains
required to utilize the organic sulfur compounds such
as sulfonates as Dimethylsulfoniopropionate (DMSP), [3-
(methylsulfanyl) propanoate (MTP)] (Jonkers et al., 1998;
Curson et al., 2008; Bullock et al., 2014), as well as the
methanogenesis from organic sulfur compounds (methanethiol
and DMS) were found in the majority of microbial mat
samples with exception of hot-spring mats from Yellowstone
and stromatolite from Bahamas. In addition, the dimethyl
sulfide (DMS) oxidation pathway reported for aerobic
microorganisms (such as Thiobacillus, Hyphomicrobium,
methanogens and sulfate reducing bacteria) was also
found to be 100% complete after the disturbance event in
microbial mats from Lagunita and in site C during dry
conditions.

The elemental sulfur disproportion represented by the
sulfur oxygenase/reductase (SOR) protein isolated from the
thermoacidophilic and chemolithoautotrophic crenarchaeote
Acidianus ambivalens (Kletzin, 2008) was only found in

microbial mats from Lagunita (after the desiccation event
and in a wet patch from site C), and one biofilm from
an Acid Drainage Mine (ADM), but was found to be
absent in the rest of the metagenomes. The main pathways
for oxidation and reduction of inorganic sulfur compounds
(sulfate reduction, sulfide, and sulfite oxidation), are 80–100%
present in all samples from microbial mats of Lagunita, but
their completeness is not always observed in the rest of
microbial mats (i.e., Yellowstone, or stromatolites from Bahamas)
(Figure 6B).

Finally, we can argue that the fact that the methane cycle is
over-represented in our samples, may be due to the majority of
main pathways involved in the methanogenesis, as well as the
oxidation of methane and methanesulfonate are almost complete
in the Lagunita mats, contrary to their poor representation in the
rest of the microbialites.

Network Inference Method Based on
Time-Series Data
First, we evaluated whether the regenerated abundance profiles
obtained from MetaMIS successfully reproduced the microbial
abundance similar to the original by using the Bray Curtis
Dissimilarity (BCD). As observed in Supplementary Table 7, a
small BCD (mean 0.136 ± 0.021 std.) was obtained in the three
sites at all taxonomic levels, suggesting that interactions revealed
successfully the underlying interactive relations of the microbial
mat communities. We also confirmed that the majority of taxa
within microbial mats were found to be rare <0.1% (75% ± 3.06
std.).

From 1600 intermediate networks generated by MetaMIS,
we obtained 48 TS-ENs that comprised the total number of
interactions at every taxonomic level (Supplementary Table 7
for details). We used NetAn to compute the several topological
properties of real and random networks. Due to the high number
of relationships (highly dense networks) and the method used
to generate the random networks, it is not surprising that the
structure of both real consensus and random networks are similar
(Table 1). This data suggests that a large number of taxa (probably
from the diverse RB) co-occur randomly, with exception of those
that belong to the microbial mat core. This also suggests that this
large RB co-occurs randomly, probably being part of the large
and dynamic seed bank of the deep aquifer. Although several
methods were tested to generate the random networks (data not
shown), the values were similar to the real ones, indicating that
small world properties (Zhou et al., 2010) do not characterize our
TS-ENs.

Our results indicate that microbial mats are more robust to
perturbation due to redundant functions that are likely shared
among nodes or functional clades in the highly connected TS-
ENs, with density values close to one (≈0.9) (Montoya et al.,
2006; Steele et al., 2011; Faust and Raes, 2012a; Shaw et al.,
2016). Consensus and negative networks displayed a higher
clustering coefficient (∼0.9 and∼0.7 respectively), while positive
interaction networks showed much lower values (≈0.2–0.3).
Networks with a high clustering coefficient are likely to contain
more hubs or focal nodes than those with a lower coefficient
(Proulx et al., 2005; Peura et al., 2015). Hence, the loss of these
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TABLE 1 | Global network measures obtained from real (consensus) and random networks Std. of the values obtained across the span of taxonomic levels from Phylum
to Family.

Site A Site B Site C

Real Random Real Random Real Random

Clustering
Coefficient

0.9620 (±0.0247) 0.9268 (±0.0497) 0.9507 (±0.0034) 0.9106 (±0.0090) 0.9597 (±0.0069) 0.9288 (±0.0278)

Density 0.927 (±0.043) 0.9269 (±0.0498) 0.911 (±0.008) 0.9106 (±0.0090) 0.892 (±0.024) 0.8920 (±0.0278)

Diameter 2.000 (±0.707) 1.9625 (±0.0750) 2.000 (±0.000) 2.000 (±0.000) 2.500 (±0.500) 2.000 (±0.000)

Modularity 0.003 (±0.002) 0.0010 (±0.0014) 0.002 (±0.002) 0.0005 (±0.0008) 0.004 (±0.002) 0.0015 (±0.0014)

Radius 1.250 (±0.433) 1.1250 (±0.2500) 1.250 (±0.433) 1.0000 (±0.0000) 1.500 (±0.500) 1.0625 (±0.1250)

Mean degree 159.391 (±97.214) 159.3912 (±112.2527) 164.246 (±88.870) 164.2461 (±102.6182) 168.933 (±92.229) 168.9333 (±106.4964)

Communities 2.500 (±1.500) 1.7475 0.9531 2.250 (±1.090) 1.5600 (±0.5931) 3.000 (±1.581) 2.0850 (±0.8296)

hub nodes, which have been likened to ‘keystone’ species (Steele
et al., 2011), reflects potential structural perturbations to the
community and suggests some degree of community stress as
bacterial associations have been fractured.

Our data indicates that negative relationships within mats
may retain a greater number of hubs than positive interactions,
suggesting an important role for competitive interactions
in stressed conditions. As indicated by Grilli et al. (2016),
positive modularity values indicate that interactions occur
predominantly within groups, while negative values indicate
that interactions are more frequent among groups. In our
study, the consensus networks have associated positive values
of modularity close to zero, indicating that taxa within
microbial mats prefer those members from another network
subsystem due to the highly densely connected network.
However, when we separated the consensus networks by
their type of interaction (+ or −), we found a subtle
modularity increase to 0.2 in the negative networks, suggesting
a preference for competitive interactions within the same
subsystem (Table 2).

Our results indicate that modularity in our networks was very
low compared to other reported biological networks (Baldassano
and Bassett, 2016). The low modularity values indicate that

our TS-ENs lack an evident modular architecture. Therefore,
we can hypothesize that modularity values close to zero in the
studied microbial mats point toward a community behavior as
a complete module, where all the members are interacting with
each other.

By comparing the properties of the TS-ENs by their type
of interaction (positive and negative) against the random ones
(Table 2), our data indicates that negative relationships may
retain a greater number of hubs than positive interactions,
highlighting again the important role of competitive interactions
within the mats. We also found that modularity increased in
the negative associations, suggesting large groups of mutually
excluding taxa and a clear dominance of competitive interaction
within the same subsystem, in agreement with the clustering
coefficient mentioned for the consensus TS-ENs.

The consensus TS-ENs at family level are shown in Figure 7.
To facilitate visual representation, we displayed only the 0.05%
of the top relationships. The latter is done since the networks
displaying the 100% of the total interactions are so densely
connected that the network patterns and hubs cannot be
appreciated clearly. At this level of low-resolution, we observed
a crucial role of the family Rhodobacteraceae as a hub within the
three sites, having more negative associations within site C. The

TABLE 2 | Global network measurements of random and real networks.

Negative interactions Positive interactions

A B C A B C

Clustering coefficient 0.7334 (±0.020) 0.5838 (±0.025) 0.7139 (±0.026) 0.3270 (±0.038) 0.1953 (±0.020) 0.2580 (±0.022)

Random 0.5745 (±0.025) 0.5920 (±0.008) 0.4482 (±0.012) 0.3522 (±0.029) 0.3184 (±0.013) 0.4457 (±0.030)

Modularity∗ 0.09 (±0.02) 0.13 (±0.02) 0.24 (±0.01) 0.05 (±0.01) 0.06 (±0.02) 0.02 (±0.01)

Random 0.025 (±0.005) 0.023 (±0.005) 0.037 (±0.011) 0.052 (±0.013) 0.057 (±0.017) 0.037 (±0.007)

Diameter∗ 2.25 (±0.50) 2.50 (±0.58) 2.50 (±0.58) 2.25 (±0.50) 2.50 (±0.58) 2.50 (±0.58)

Random∗ 2 (±0.0) 2 (±0.0) 2 (±0.0) 2 (±0.0) 2 (±0.0) 2 (±0.0)

Number of hubs with max in degree 3.50 (±2.38) 2.25 (±0.96) 6.50 (±7.33) 1.50 (±1.00) 2.25 (±2.50) 1.25 (±0.50)

Random 1.32 (±0.13) 1.27 (±0.14) 1.29 (±0.13) 1.26 (±0.11) 1.26 (±0.04) 1.26 (±0.11)

Number of hubs with max out degree 1.00 (±0.00) 1.75 (±0.50) 1.00 (±0.00) 1.75 (±1.50) 1.50 (±1.00) 6.50 (±10.34)

Random 1.29 (±0.13) 1.22 (±0.06) 1.23 (±0.12) 1.20 (±0.07) 1.28 (±0.11) 1.21 (±0.09)

Std (±) represent the values obtained across the span of taxonomic levels from Phylum to Family. Properties marked by ∗ are calculated on the underlying non-directed
network.
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TABLE 3 | Strongly interconnected taxa or hubs identify at family levels within TS-ENs of microbial mats.

Site Type of interaction Max in-degree (affected by n nodes) n Max out degree (affecting n nodes) n

A Consensus 1. Nannocystaceae (PG)(RB)
2. Desulfarculaceae (C) (PG) (RB):
Desulfarculus
3. Bacteroidaceae (C)(RB): Bacteroides
4. Caulobacteraceae (C)(RB): unclassified
Caulobacteraceae
5. Bradyrhizobiaceae (C): Bosea, unclassified
Bradyrhizobiaceae, Bradyrhizobium
6. Unclassified Oscillatoriophycideae (UC)
(PG)(RB)
7. Rhodobacterales (UC)(PG)(RB) 8.
Actinobacteria phylum 201174 (UC)(PG)(RB)

337 1. Polyangiaceae (PG)(RB) 345

Positives 1. Unclassified Chloroflexi (RB) 275 1. Unclassified Armatimonadetes
(UC)(PG)(RB)

263

Negatives 1. Unclassified Rhodobacterales (UC)(RB) 278 1. Pelobacteraceae (C)(RB)(PB): Pelobacter 275

B Consensus 1. Unclassified Xanthomonadales
(UC)(RB)(PG)
2. Beijerinckiaceae
3. Burkholderiaceae (C): Burkholderia,
unclassified Burkholderiaceae,
Burkholderiales Genera incertae sedis
unclassified, unclassified Burkholderiales
4. Phyllobacteriaceae (C)(PG): unclassified
Phyllobacteriaceae
5. Gemmantimonadaceae

318 1. Thermoactinomycetaceae (C)(RB)(PG):
Thermoactinomyces
2. Actinomycetaceae (C)(RB)(PG):
Actinomyces
3. Alcaligenaceae (C) (RB): unclassified
Alcaligenaceae
4. Gemmantimonadaceae

325

Positives 1. Staphylococcaceae (RB) 226 1. Fusobacteriaceae (RB) 246

Negatives 1. Phyllobacteriaceae (C): unclassified
Phyllobacteriaceae

298 1. Cystobacterineae (UC)(RB)
2. Cloacimonetes (UC)(RB)

289

C Consensus 1. Unclassified Verrucomicrobia (UC)(RB) 2.
Methylobacteriaceae (C) (PG):(unclassified
Methylobacteriaceae, Methylobacterium)

335 1. Chromobacteriaceae (C)(RB)(PG):
unclassified Chromobacteriaceae
2. Mycobacteriaceae
(C)(RB):Mycobacterium
3. Symbiobacteriaceae (RB)

343

Positives 1. Unclassified Archaea (RB) 252 1. Micrococcales (UC)(RB)(PG) 223

Negatives 1. Rhizobiales (UC)
2. Alteromonadaceae
3. Methylococcaceae (C)(RB): unclassified
Methylococcaceae
4. Bacillales (UC)(RB)
5. Corynebacteriales (UC)(RB) 6.
Beijerinckiaceae (RB)

251 1. Bacteroidetes (UC)(RB) 222

Global (A+B+C) Consensus 1. Desulfarculaceae (C) (RB): Desulfarculus
2. Pelobacteraceae (C)(RB): Pelobacter
3. Gemmatimonadaceae

391 1. Bacteroidales (UC)(RB)
2. Microgenomates group (UC) (RB)
3. Nocardiaceae (C) (RB): Nocardia
4. Nitrospiraceae (RB)
5. Prolixibacteraceae (RB)

393

Positive 1. Moraxellaceae (RB) 349 1. Unclassified Eukaryota (UC) 352

Negatives 1. Phyllobacteriaceae (C): unclassified
Phyllobacteriaceae

367 1. Desulfobacteraceae (C):
Desulfatibacillum, Desulfatiglans,
Desulfatirhabdium, Desulfatitalea,
Desulfobacter, unclassified
Desulfobacteraceae, unclassified
Desulfobacterales

362

C, core microbial mat (presence in all samples regardless of environmental conditions and abundances). UC, unclassified sequences belonging to the microbial mat core.
PG, taxa with known members delivering public goods (i.e., metabolites, enzymes, and vitamins). RB, rare biosphere <1% (0.01) abundances.
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FIGURE 7 | Network representation of the consensus networks displaying only to top 0.05% of total interactions. These interactions represent less than 50 from
around 450 consensus families for three sites. In site (A) are displaying 61/122,841 interactions, from which 17/46,200 are positive and 44/76,641 negative. In site
(B) 53/107548, interactions are shown, being 28/37, 170 positive and 25/70,378 negative. From microbial mats of site (C), the consensus network is composed
from 60/121,056, from which 16/57,487 are positive and 40/63,569 negatives. The size of a circle (node) is proportional to the abundance of the family across the
microbial mats from each site. The thickness of a connection (edge) is proportional to the strength of the interaction. Families are colored according to the Phylum.
(D) Distribution of the percentage of positive and negative interactions in the consensus TS-ENs of each site.

family Desulfobacteraceae is also a key component within wet
patches, having both negative and positive relations with fungi
representatives (Aspergillaceae) in site B and C, respectively.

However, these hubs came to light only when we focused on a
small percentage of relationships. Therefore, in order to identify
whether the hubs observed in this low level of resolution, we
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identified the highly connected nodes either affecting (max out-
degree) or being affected (max in-degree) by many links in
the consensus, positive, negative, and global TS-ENs. Those
hubs found in the consensus TS-ENs and in the low-resolution
networks are highlighted with asterisks in Figure 7. In order
to infer possible metabolic roles of the potential key stone
taxa, we focused only on the nodes at family level, identifying
those that were either part of the microbial mat core (C) rare
biosphere (RB) or capable of delivering public goods (PG) to
the system with prior reported evidence to perform such task
(Table 3).

In the case of site A, we identified in the consensus TS-
ENs eight hubs affected by 337 nodes, indicating a high
interconnectivity within the overall system, and one hub
affecting 345 nodes represented by the Polyangiaceae, a type of
myxobacteria that is known for excreting hydrolytic enzymes
and decomposing various and complex biopolymers (Brinkhoff
et al., 2012). Interestingly, the number of hubs in the positive and
negative networks decreases to some keystone taxa that belong to
both the RB and the microbial mat core (see details in Table 3).

Our results indicate that the number of keystone taxa affected
by, or affecting other members in the microbial mat community
within site B is equivalent, being the majority members of both
RB and microbial mat core. An interesting example within these
hubs is the family Thermoactinomycetaceae, which is known for
its protein degradative capacities, strong lipolytic activity, and
alpha-amylase activity, as well as antimicrobial activity (Frikha
Dammak et al., 2017).

By analyzing the consensus network from the microbial mats
of site C, we found two hubs belonging to the microbial mat
core; one is Verrucomicrobia, a lineage that is also part of the
RB. Interestingly, this phylum is known to perform saccharolytic
lifestyle commensal and mutualistic relationships with ciliates
(Vannini et al., 2003).

Unexpectedly, within the positive networks, we observed a
hub of unclassified sequences from the Eukarya domain whose
presence could be potentially associated with an increase in the
energy transfer, and therefore trophic complexity and potential
resilience to environmental change (Duffy and Stachowicz, 2006).

For a visual comparison between low-level resolution
networks and the consensus TS-ENs, we focused on the total
amount of positive and negative interactions within sites. As
observed in Figure 7D, site A displayed a larger percentage of
negative interactions (0.616 mean ± 0.012 std.) compared with
the positive ones (0.384 ± 0.011). In contrast, in the wet patches
(especially in site C) approximately half of the interactions were
found to be equally positive and negative (considering only
average values).

Network Motifs
We focused on the representation of three-node motifs over
48 TS-ENs to observe whether these motifs could reflect the
behavior of microbial mats from three sites during and after
water depletion. In our study, we considered only those motifs
whose probability of appearing is lower than a cutoff value (here
p = 0 and p ≤ 0.05) according to the distribution observed in
randomized networks (Jin et al., 2007). As observed in Figure 8,

these motifs appear numerous times on each particular network
at every taxonomic level. For visual comparison, we normalized
the abundance of each motif by the sum of the total across
taxonomic levels. Therefore, an abundance of one indicates
that a given motif is only found in that particular taxonomic
level.

The occurrence of each motif can be observed consistently
across the span of taxonomic levels when consensus networks are
separated by type of interaction, either positive or negative. For
example, motifs 6, 36, 78, 102, and 110 are under-represented
in the negative TS-Ens, but are highly distributed across the
positive interactions. This is particularly interesting since motif
6 (exploitative competition) occurs when some quantity of
resources is consumed by an individual, thereby depriving other
individuals of it. This type of competition has also been called
consumptive competition (Kawata, 1997), and was never found
among the negative TS-ENs within our microbial mats. The
latter indicates that motif (6) can potentially have a different
ecological connotation in microbial ecology, for example one
bacteria delivering PG to the system. The same pattern is
observed for the apparent competition motif (36) that occurs
when two individuals that do not compete directly for resources
affect each other indirectly as prey for the same predator
(Lang and Benbow, 2013). However, in a microbial ecological
context, the fact that this type of motif is mainly distributed
across positive relationship could indicate beneficial relationships
from two partners. For example, in the case of microbial mats
from CCB, we suggest that this motif could correspond to a
sulfate reducing bacteria using both organic compounds from a
cyanobacteria and sulfate derived from purple bacteria to be used
as the terminal electron acceptor in an energy-gaining respiratory
process.

Furthermore, we found that motifs 12, 46, 108, and 238
are widely distributed across negative TS-ENs, but under-
represented within the positive ones. These motifs seem to display
more complex relationships, for example motif 238 represents the
most mutually exclusive relationships in which all nodes exclude
each other in a cycle form. Consistent with the ecological theory
(Stouffer et al., 2007), the tri-trophic food chain motif (composed
by prey, predator, and top-predator) was over-represented within
negative networks compared to positive ones. However, since we
also found the same motif in the positive interactions and in
the consensus networks, it is possible that in our communities it
represents both beneficial and negative interactions (Baiser et al.,
2016).

The FeedForward-Loop (FFL) motif is one of the most
significant motifs in E. coli and yeast, representing a structural
stable motif with no feedback interaction and it has been found to
be over-represented in transcriptional networks (Shen-Orr et al.,
2002; Mangan and Alon, 2003). In ecological theory, the FFL
involves omnivory, representing a predator consuming species
from two lower trophic levels (Stouffer et al., 2007; Bascompte
and Stouffer, 2009). In our TS-ENs, this motif must have at least
one positive and one negative interaction since it is only found
in the consensus TS-ENs. Another example is the Feedback-
Loop (FBL), which has been recognized as an unstable network
motif that is under-represented in gene regulatory neuronal
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FIGURE 8 | Distribution of the 3-three-node subgraphs or network motifs across 48 microbial mat networks built across the taxonomic levels: Phylum (P), Class (C),
Order (O), and Family (F). The top panel represents the motifs sorted by their ID identifier described in Mfinder. The motifs with specific ecological terminology are
ID6, ID12, ID36, and ID38. The latter motif is also known as Feed Forward Loop (FFL) in regulatory networks. The ID98 represents Feedback Loop (FBL). To facilitate
visual comparison, the abundance of each motif was normalized by its appearance across taxonomic levels. The relative abundance of each one indicates that a
given motif is only found in that particular taxonomic lave (i.e., id 36 Site A in negative networks at class level). It is observed that particular motifs appear
over-represented across the span of taxonomic levels when consensus networks are separated by type of interaction either positive or negative (i.e., Motif 108 in
negative networks or motif 36 in positive ones). The color code in the bars indicate the scale from over representation (red) of a given motif in a given taxonomic level
shifting to underrepresented (blue).
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networks (de-Leon and Davidson, 2007). However, in our study,
we observed an overrepresentation of this motif within the
positive networks that could be an example of positive metabolic
coupling occurring within microbial mats.

Finally, under the hypothesis that the environment can
influence the strength and type of interactions between taxa, we
expected to find similar interaction patterns in the microbial
mats isolated from the wet patches. Interestingly, we only found
that site B displayed a specific type of relationship, -the network
motif ID74-. The latter indicates that specific local roles within
site B that are not found within the microbial mats from the
other sites, highlighting a very specific community dynamic
and structure, even in the presence of the same environmental
constraints.

DISCUSSION

The effects of wet versus dry conditions in Lagunita pond
in Churince, CCB, on microbial communities were the main
focus of our study. We observed that the lack of water in one
site disrupted the fundamental characteristics of well-developed
microbial mats, where the redox gradient includes a deep
anaerobic environment that is fundamental for its function
and stratification (Sorokin et al., 2006; Grimm et al., 2011;
Higashioka et al., 2013; Eren et al., 2014). In contrast to
normal wetland conditions, microbial mats from site A (the
dry patch) were exposed to bright sunlight, in direct contact
with the atmosphere losing their redox gradient and leading
to a harsh photo-oxidative microenvironment at their surface.
Given the remarkable physicochemical-zonation observed in
microbial mats characterized by steep vertical gradients of
oxygen, pH and sulfide (Chennu et al., 2015). Considering
that metabolite exchanges in microbial communities give rise
to ecological interactions that govern ecosystem diversity and
stability (Zomorrodi and Segrè, 2017). It is expected that
the lack of water has affected not only the community
composition, structure and function, but also the community-
level relationships.

Comparing our data with the analysis of microbialites
from Pavilion lake (White et al., 2016), we found that
they are supported by carbonate-rich structures associated
with bacteria producing exo-polysaccharides (EPS). Here
cyanobacteria are important in the organo-mineralization via
dissimilatory sulfate reduction that precipitates compounds
in carbonate stromatolites (White et al., 2016). Meanwhile,
in our study system there is mostly gypsum and the mats
at Lagunita are soft. Nevertheless, it is possible that a type
of organo-mineralization occurs in wet conditions since
we found cyanobacteria as well as unclassified sequences
from Bacterial domain, Proteobacteria, Actinobacteria, and
sulfate reducers such as Desulfovibrio and Desulfatitalea
(also conforming the core and RB). This is interesting
because in Pavilion Lake, the Deltaproteobacteria were
assigned to the same genera of dissimilatory sulfate
reducers that we observe in Lagunita (e.g., Desulfobacterium
and Desulfovibrio). This suggests that even though the

shape and consistency of the microbial communities are
different, they are functionally similar to other marine and
freshwater mats despite geographical and environmental
differences.

Freshwaters Microbial Mats From
Lagunita Are Highly Diverse
The large number of identified taxa (100 Phyla), mainly
represented by low-abundant members within microbial mats
indicate that this environment has a rich “seed pool” of
genetic diversity. The latter suggests not only a large biological
complexity at the micron scale (Minz et al., 1999a,b), but
also a very dynamic structure with different ecotypes with
apparently overlapping ecological features. As expected by the
ecological theory on perturbations (Eng and Borenstein, 2018),
the modifications of environmental conditions lead to changes in
the proportion of species members in the community (measured
at genera level).

When we explored the relationship between taxonomic
and metabolic diversity estimated with ecological metrics (i.e.,
Shannon, Pielou, rarefaction curves) and the functional potential
for several biogeochemical cycles by using MEBS algorithm,
site A (dry in November 2012) was more diverse and resilient
over time than expected, maybe because it was a fluctuating
environment with wet winters until 2014. However, we believe
that such resilience has been lost now that the lagoon has been
permanently dry since 2016. Interestingly, even if wet patches
do not display the same taxonomical dynamics as dry patches,
they retained functional similarity. This functional core may be
fulfilled by different key members of the RB. Another possible
explanation for these results is the micro-dynamics of the deep
aquifer. It is possible that site A was a little bit further from
the micro-filtrations of deep water then the two neighboring
sampling points (B and C), making it drier as the aquifer
became depleted. Nevertheless, fluctuating environments have
been shown to promote diversity in the different studied CCB
environments (Bonilla-Rosso et al., 2012; Peimbert et al., 2012;
Pajares et al., 2015).

Metabolic Dynamics in the Freshwaters
Microbial Mats From Lagunita
By using MEBS, we were able to capture the fluctuation dynamics
of the whole metabolic machinery involved in the main cycles,
not only by focusing on a few marker genes, but rather by
following the importance of the overall behavior over time. Our
results indicate that the anaerobic cycles within microbial mats
from the wet patches are maintained by the redox conditions
probably related with the deep sulfur rich aquifer. This becomes
more apparent when the aquifer recovered in 2013, due to the
temporal closing of a canal 5 km away. When the water returned,
the sulfur cycle became over-represented within the dry patch
(site A, Autumn 2013). This is also evident in the potential
methane cycling, where we observed microbial mats from the
three sites were over-represented during the last two sampling
periods (Autumn 2013 and Spring 2014) when water returned to
the Lagoon.
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Despite having no metagenomic samples before Autumn
2012, the Churince within CCB has been our focal study site
for more than 15 years (Cerritos et al., 2011; Lee et al., 2015,
2017; Ponce-Soto et al., 2015). Long-term observations have
seen the slow but dramatic decay of the ecosystem from a
well-defined wetland to a nearly a dry desert with only a
small spring and sections of the former river (Souza et al.,
2007, 2018; De Anda et al., 2018). Sadly, this study was
the last chance to understand the effect of perturbation and
recovery on microbial mats from Churince, unless changes water
usage policy start to allow the wetland to recover its deep
aquifer.

Our results indicate that the sulfur cycle was only significantly
overrepresented in microbial mats from site A after water
recovery. We can suggest that perhaps site A could have
had the potential for sulfur cycling under initial conditions,
where low-abundant members of the microbial community were
“waiting” the proper ecological conditions to develop particular
metabolic features (i.e., elemental sulfur disproportionation in
Figure 6B). Another hypothesis is that deep-water microbial
migrants filled the empty ecological niche performing key
metabolic processes within the mats. However, due to the large
diversity of low-abundant members within the mats, we can
argue that the “seed bank” hypothesis is more likely to occur,
given the representation of the RB as key stone taxa in the
TS-ENs.

There are other important keystone taxa that are dominant
within mats, especially within dry conditions. For example,
we can associate the abundance of the physiologically and
metabolically versatile Rhodobacterales to their potential as
primordial colonizers for the formation of biofilms in aquatic
environments. This can explain their adaptation to dry
environments by forming biofilms that are able to resist drying
(Dang et al., 2008; Elifantz et al., 2013). Consistent with the
visual structure of wet patches, the genera enriched among dry
conditions were those implicated in the oxidation of inorganic
reduced sulfur compounds (i.e., Thioalkalivibrio) which is a
physiologically and metabolically taxon adapted to hyper-saline
(up to saturation) and alkaline (pH up to 10.5) conditions
(Foti et al., 2006; Sorokin et al., 2011). In contrast when
the water levels were recovered, we detected an unknown
diversity of unclassified Proteobacteria, along with the sulfate
reducing bacteria Desulfatitalea [that is part of the microbial
mat core and common in marine sediments (Higashioka et al.,
2013)]. Our results confirm previous findings showing that
sediments of the hypersaline lakes and lagoons may support
a rich community of anaerobic halophilic bacteria, as the
solubility of oxygen in hyper-saline brines is low and the
amounts of organic matter available are often high (Oren, 1988,
2008).

Even if there are taxonomic shifts under environmental
perturbation in the microbial mats of Lagunita, their resilience
and resistance is evident when we compare their metabolic
diversity, as the microbial mats originally sampled from wet-
patches are metabolically similar. In addition, the anaerobic
community that was shared -including purple sulfur bacteria and
sulfur reducing bacteria- suggests the reestablishment of redox

conditions and stability of the wet patches. This “elastic” property
of the community is also supported by an overrepresentation
of anaerobic cycles within these wet patches. Although there
were shifts in the community composition, the retention of
functionality indicates a shared function in response to water
reestablishment toward a normal condition within the pond.
More interesting is the finding that in Lagunita under stress or
under recovery, there is a bacterial core that is constant, meaning
a set of shared RB persist over time.

Although the three sites are very close in space, the fact that
they have different dynamics and diversity along the time-series
indicates site specific community dynamics. This is not surprising
given the large microbial beta-diversity observed in CCB in
general (Bonilla-Rosso et al., 2012; Espinosa-Asuar et al., 2015;
Pajares et al., 2016) and in the studied Lagunita pond in particular
(Lee et al., 2017). We believe that such community differentiation
in the space could be due to historical factors –such as early
colonizers establishing the ground rules of interactions-, but also
by stochastic events such as virus predation of the dominant
taxa following a “king of the hill” model (Taboada et al.,
2018).

The changes in diversity and function of site A, in particular,
confirm our hypothesis that water conditions in Lagunita and
at the whole Churince Lagoon are important factors influencing
metabolic function-composition within microbial mats. Even
though the lack of water constitutes an obvious environmental
filter for aquatic microbes (Pontarp et al., 2012; Monard et al.,
2016), the fluctuation of such an important resource seems to be
playing a critical role in the distribution and abundance of the
taxa shaping microbial assemblies within the mats.

Microbial Mat Network Analysis
Modeling of interactions using networks is considered a
powerful tool to understand the dynamics of succession within
communities through time, as well as to analyze the stability
within a system (Thébault and Fontaine, 2010; Coyte et al., 2015;
Delmas et al., 2018). Unlike previous studies in which only the
top 25% of interactions were used in the analysis (i.e., Weng
et al., 2017), we used 100% of interactions, to gain information
on the relationships among taxa given the importance of the
RB in the diversity and function of the microbial mats of
Lagunita.

In order to obtain the general patterns, we used the consensus
network relationships and dissected them into positive and
negative to find meaningful statistical properties. For instance,
the network density or degree of network connectivity gives us
an idea of how quickly perturbations may spread, by providing
a measure of how dense the network is. A small diameter
indicates presence of a densely connected nodes or hubs hence
fast propagation among nodes, which may make the network
more sensitive to perturbation (Delmas et al., 2018). The large
network density obtained indicates that in Lagunita microbial
mats, the networks of bacterial community are composed of
highly connected groups. This was expected given the resilience
of the system since a largely connected community is more
robust to changes than low density networks (Sun et al.,
2013).
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It has been suggested that communities with modular
organization of the type “small world” are more stable facing
perturbations; modular arrangement allows different groups
of nodes to perform different functions with some degree of
independence (Newman, 2006). In practice, modularity values
for biological networks typically fall in the range from about
0.3 to 0.7, and higher values are rare (Newman and Girvan,
2003). However, more recently, it has been suggested that it is not
likely that the modularity maximum values (closer to one) always
correspond to the best network for a stable community structure
(Fortunato and Hric, 2016). Our study highlights the possibility
that complex, densely connected networks can have modularity
values that are lower than what it has been previously suggested
(Newman and Girvan, 2003; Newman, 2006; Blondel et al., 2008;
Poisot, 2013; Fortunato and Hric, 2016). In our study, the three
microbial mat sampling sites are uniquely cohesive despite their
large diversity. We consider that at CCB, the RB has been building
complex bacterial communities that can survive under extremely
unbalanced C: N: P conditions for a very long time (Souza et al.,
2012) explaining the singularity of this site (Souza et al., 2018).

Building Blocks of Microbial Mats
Networks
Although the networks described herein are highly dense and
similar to those obtained from random networks, the appearance
of each network motif do not occur randomly. Rather, their
presence across the TS-ENs in all taxonomic levels increase the
robustness of the analysis. Therefore, evaluating such motifs
provides a link to understand the unique type of relationship
dynamics in contrasting sampling points.

Recently these motifs have been used to define species trophic
roles in the context of their community and therefore, the
network’s stability (Borrelli et al., 2015; Delmas et al., 2018). As
far as we know, this is the first study to incorporate network
motifs for the analysis of microbial mats under perturbation
conditions. Further studies are needed to corroborate whether the
overrepresentation of network motifs is specific to microbial mats
or other environments, compared for example with neuronal,
transcription and food webs (Tran et al., 2013; Borrelli et al.,
2015).

Under the hypothesis than the environment can influence the
strength and type of interactions among taxa, we expected to find
similar interaction patterns among wet patches (sites B and C)
while the dry patch at time 1 would be unique. Unexpectedly, site
B was the only site that displayed a specific type of interaction,
motif 74, a motif whose arrows suggest cross feeding among two
members of the interaction, and a type of Black Queen dynamics
toward the third member (Morris et al., 2012), suggesting a
very unique mutualistic dynamic. In this site (B) we detected a
wider range of interactions at the family level. Since all of these
relationships are part of the microbial market and are context
dependent (Mccully et al., 2017), we do not know what made
site B unique. One possibility is that each site has a particular
source of deep water by microfiltration. This idea may explain
the specific RB dynamics within each site, since each one is “fed”
from a slightly different seed bank.

To better understand why some motifs are found in high or
low abundances within our microbial mats we need to explore
not only the mathematical properties of such networks motif
but also design experiments of direct interactions to understand
the ecological meaning of generalists and specialists within each
node.

Keystone Taxa Are Part of the Rare
Biosphere and of the Microbial Mat Core
In general, we found that site B has a higher number of hubs in
max out-degree (four in total); meanwhile site C has three and
the site A has only one hub. This suggests that the dry patch is
possibly more fragile because if a single hub is removed, more
relationships may be lost compared to sites B and C (see Table 3).
In addition, we observed that most hubs belonging either to the
RB or microbial mat core seem to provide PG. This is particularly
meaningful, given that in ecological studies there is no way to
discriminate the role of particular taxa within natural systems by
simply highlighting their low abundance. However, in our study
we found a direct implication of the RB in microbial mats under
environmental perturbation.

We also observed that some of the hubs, which were detected
independently in the three sites, were also detected in the global
network. Interestingly, unclassified members of Eukarya domain
were identified as a hub with positive relationships. It has been
observed that diverse communities of eukaryotes live in microbial
mats including not only a broad range of taxa, but also a
large functional diversity, including phototrophs from several
algal phyla and a variety of heterotrophic organisms. In this
context, microbial mats could provide different microhabitats
under contrasting conditions, which gives protection against
oxidative, osmotic, freeze-thaw, and dehydration stressors for
all microorganisms embedded within the microbial mat matrix
(Jungblut et al., 2012). A global positive interconnection
among unknown eukaryotic taxa within the global network
in microbial mats of Churince is important to highlight
regarding the presence of saprophytic, phagotrophic, parasitic,
and predatory eukaryotes that would increase the number of
links within a mat for nutrient and energy transfer (Duffy and
Stachowicz, 2006). It would be very interesting to test these
ideas by experimentally removing certain taxa (using particular
antibiotics, for instance) and observing if their disappearance
affects the entire system.

Suggesting Possible Drivers of Microbial
Mat’s Stability
Our results are in agreement with other studies that have
proposed negative interactions increase the resilience of
microbial communities (Foster and Bell, 2012; Coyte et al.,
2015; Zelezniak et al., 2015; Deng et al., 2016). In addition,
it has been suggested that microbial cooperative networks
(characterized by mutualism) are often unstable, while a higher
proportion of competitive interaction pairs (-/-) help the
host maintain a stable microbial community in the case of
the human microbiome (Coyte et al., 2015). However, it is
expected that when resources are limited (as is the case of our

Frontiers in Microbiology | www.frontiersin.org 19 November 2018 | Volume 9 | Article 2606

https://www.frontiersin.org/journals/microbiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-09-02606 November 28, 2018 Time: 12:45 # 20

De Anda et al. Microbial Mats Under Perturbation

extremely oligotrophic system), some species may outcompete
others and stability is reached with one species per resource
in the classic niche model (Borrelli et al., 2015). On the other
hand, in silico studies suggested that modularity was able to
have a positive effect on stability only when (a) the system
is composed of two subsystems of about the same size and
(b) the overall mean interaction strength is negative (Grilli
et al., 2016). Here, consistent with the theory, we observed
that in the stressed mat of site A the negative interactions
are, on average, larger than the positive ones even though
this site is the most resistant according to our ecological
indexes.

However, under wet conditions there is an equilibrium
between positive and negative interactions due to the
metabolic interdependency based on cooperation or mutualistic
relationships. This has been observed under nutrient-poor
conditions where metabolic complementarity can provide group
advantage (Morris et al., 2013). However, if this frail balance
is tipped over by environmental disturbance, then the negative
relationships exceed the positive ones. This type of behavior has
been found in complex food webs due to low transformation of
prey into predator (Allesina et al., 2015; Grilli et al., 2016). The
latter do not apply for the CCB microbial mats since predators
are virus and recycling of the nutrients are so efficient that we
observe extremely low organic P (Lee et al., 2015). Furthermore,
it has been suggested that large systems in which the positive
interactions dominate, the negative ones are unstable and will
likely lose stability through a “hop bifurcation” (conversion
efficiency of resources of consumers) (Allesina et al., 2015).
Hop bifurcation should be most common in the presence of
an inverted biomass pyramid, typically occurring in planktonic
or other aquatic systems (Allesina et al., 2015; Grilli et al.,
2016). Moreover, it has been suggested that a strong network
of interactions among organisms can provide a buffer against
disturbance beyond the effect of functional redundancy, as
alternative pathways (with different combinations of microbes)
can be recruited to fulfill specific functions, thus increasing
the negative interactions (Konopka et al., 2015). This is what
we observed in our study: during wet conditions, the ratio of
cooperation versus competition under equilibrium, however,
negative interactions increase under dry conditions (see
Table 3).

The hypothesis that closely coordinated metabolic
associations promote homeostasis and become a buffer
against stressful, resource-limited conditions has been previously
described (Guerrero et al., 2002; Konopka et al., 2015; Wong
et al., 2017). In general, is accepted that there is a metabolic and
ecological congruence in a community as long as biogeochemical
and environmental gradients allow individual niches to exist
in close proximity. Thus, metabolically diverse microorganisms
are oriented according to energetic, nutrient and ecological
requirements and tolerances (Guerrero et al., 2002; Wong et al.,
2017).

Metabolic dependencies based on the Black Queen hypothesis
(Morris et al., 2012) are a starting point for the evolution
of cooperative behavior, where the cross-feeding (bidirectional
dependency) is obligated in communities were essential functions

are costly for producers (Mas et al., 2016). To explore Black
Queen ideas, we separated the effect of network complexity from
specific traits of individual members in hubs. To find keystone
candidate taxa important for the maintenance of structure
and function of a community, we focused on microorganisms
from the microbial mat core (present in all samples) and
low abundant taxa (RB) to infer putative ecological niches
and functional roles. We found that the majority of nodes
are members of the RB and microbial mat core and despite
their low abundance, their role in the community seems to
be critical by establishing indirect, mutualistic relationships.
An example of this is the case of a positive relationship
between unclassified members of Oscillatoriales (cyanobacteria)
and a sulfate reducing bacteria Desulfobacteraceae, along with a
candidatus Parcubacteria and Rhodobacteraceae (heterotroph).
In this example (see Figure 7C), the cyanobacteria release
public goods in the form of carbon sources that are degraded
by the candidatus Parcubacteria (Nelson and Stegen, 2015),
making them available to Rhodobacteraceae. Therefore, by
establishing mutualistic relationships, the RB is allowing co-
occurrence of several small niches (Thébault and Fontaine,
2010; Zhou et al., 2010; Faust and Raes, 2012b; Mccully et al.,
2017).

As aforementioned, in microbial mats the biogeochemical
cycles through networks of metabolite exchange are structured
along energetic gradients (Guerrero et al., 2002; Wong et al.,
2017). As energy yields become limiting, these networks promote
co-metabolic interactions to maximize energy disequilibrium
(Wong et al., 2017). Thus, when there are more species than
resources, some of them will invariably outcompete with others,
in theory resulting in a final community with at most one
species per resource, that should reach equilibrium and stability
despite variable environmental parameter values (Borrelli et al.,
2015).

CONCLUSION

Microbial mats from three close by sites within Lagunita in
the Churince system of the CCB displayed a high microbial
diversity. Most of this diversity is represented by members of
the RB, but also included a particular core of microorganisms
that were present in all samples across spatial-temporal scales.
Our analysis shows that when the aquifer re-established
its deep flow, the anaerobic-dependent functions within the
sulfur and methane cycles also reestablish. This rebound was
likely possible due to a large “seed bank” that makes the
microbial mat redundant and diverse. In their interaction
motifs, we detected a type of site-specific “fingerprint,” even
though they are few meters apart. The microbial mat under
stressful conditions displayed more negative interactions than
the wetter communities where mutualistic interaction balances
with antagonism. This suggests an important role of the
members of the RB in the permanence of these bacterial
communities.

In conclusion, we suggest that the mechanisms behind
microbial mats stability in Lagunita are related to an increase in
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negative interaction during perturbation, low modularity, large
taxonomic diversity (represented by a large number of rare taxa),
and core microorganisms which can carry out essential functions
in the community. We consider that at CCB, the RB has been
building complex bacterial communities that can survive under
extremely unbalanced C: N: P conditions for a very long time
explaining the singularity and resilience of this site, and we hope
that this biodiversity will allow this wetland to be reborn from its
stored seed bank.
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