
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO
    
     POSGRADO EN CIENCIA E INGENIERÍA DE LA COMPUTACIÓN

 

 MEASUREMENT AND REPAIR OF REFERENTIAL 
INTEGRITY ERRORS

       

             T      E      S      I      S  

                   QUE PARA OBTENER EL GRADO DE:

                DOCTOR EN CIENCIAS  
            (COMPUTACIÓN)

              P      R      E      S      E      N      T      A:    

 

  JAVIER GARCÍA GARCÍA

      DIRECTOR DE TESIS: DRA. HANNA OKTABA 
      COTUTOR:                     DR. CARLOS ORDOÑEZ MONDRAGÓN

         
México, D.F. 2008.



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 



Dedicada a
Norma, Claudia y Andrea



Agradecimientos

    Primeramente deseo agradecer el apoyo invaluable que me otorgó la Universidad
Nacional Autónoma de México para la realización de mi trabajo de investigación que
culminó en esta disertación.   Estoy convencido de que mientras en México existan
instituciones como la Universidad, nuestro país siempre tendrá un futuro mejor.
    A continuación deseo agradecer el apoyo incondicional que recibí por parte de mis
tutores la Dra.   Hanna Oktaba y el Dr.    Carlos Ordoñez Mondragón.     Su guía, sus
enseñanzas y sus siempre atinados comentarios fueron un faro que me guió en todo este
trayecto. El saber que siempre contaba con ellos me dio conanza y ambos fueron un
factor importante para que culminara estos trabajos. Asimismo, el Dr. Sergio Rajs­
baum Gorodezky, miembro de mi comité tutoral, fue un aliado que siempre me brindó
desinteresadamente sus consejos y opiniones. Su experiencia y visión me ayudaron en
todo momento en la realización de los trabajos de investigación. Deseo agradecer tam­
bién al Dr. Humberto Carrillo Calvet y al Dr. Christopher Rhodes Stephens Stevens,
miembros de mi jurado doctoral.    Sus comentarios y valiosas opiniones enriquecieron
en gran medida los trabajos realizados.   Al Dr.   Christian Lemaître y León y al Dr.
Fernando Gamboa Rodríguez les agradezco el haber revisado y comentado versiones
preliminares de mi trabajo de investigación. A todos ustedes amigos, muchas gracias.
    Deseo agradecer el apoyo que me brindó el Dr. Ramón Peralta y Fabi, Director de
la Facultad de Ciencias por haberme permitido llevar a cabo los trabajos del programa
doctoral.  Su paciencia, compañerismo, y su contagioso ímpetu, fueron siempre una
motivación para seguir adelante. Agradezco al Coordinador del Posgrado en Ciencia
e Ingeriería de la Computación, el Dr.   Boris Escalante Ramírez y a todo su valioso
equipo de trabajo por su disposición para ayudarme siempre en todo lo que requerí.
    Agradezco el apoyo recibido por parte del Macroproyecto: Tecnologías para la Uni­
versidad de la Información y la Computación, que hizo posible el proyecto del cual
formaron parte los trabajos de investigación que aquí se presentan.
    Un lugar muy especial ocupan tres personas que fueron como un motor que siempre
me animó a continuar con este proyecto y a disfrutarlo plenamente. Norma, Claudia y
Andrea, con mucho amor les maniesto mi agradecimiento.

Javier García García
Agosto 2008



Related Publications

[54] C. Ordonez, J. García-García. Referential integrity quality metrics. Decision
Support Systems Journal, 44(2):495-508, 2008

[55] C. Ordonez, J. García-García, Z. Chen. Measuring referential integrity in dis-
tributed databases. In ACM First Workshop on CyberInfrastructure: Information
Management in eScience, CIMS, pages 61-66, 2007

[53] C. Ordonez, J. García-García. Consistent aggregations in databases with ref-
erential integrity errors. In ACM International Workshop on Information Quality in
Information Systems, IQIS, pages 80-89, 2006



Abstract

Referential integrity is an essential global constraint in a relational database, that main-
tains it in a consistent state. This dissertation studies measurement and repair of ref-
erential integrity errors. We revisit this classical database problem considering modern
applications.

We propose to measure referential integrity errors on centralized and distributed re-
lational databases. We de�ne a set of local and global quality metrics at four granularity
levels: database, relation, attribute and value, that measure referential completeness
and consistency. Quality metrics are e�ciently computed with standard SQL queries,
that incorporate several query optimizations. We base the calculations of our metrics
on the computation of frequency tables of the foreign key values present in the refer-
encing tables. In a distributed scenario, we present a computation strategy using set
reconciliation techniques.

We study the problem where a query in a database involve tables and columns with
referential integrity errors. In a query involving SQL aggregations computed over a
joined relation on foreign key-primary key attributes, with potential referential integrity
violations, tuples with invalid foreign key values are skipped e�ectively discarding po-
tentially valuable information. This problem is common in an integrated database.
We extend aggregate functions computed over tables with referential integrity errors to
return complete answer sets in the sense that no tuple is excluded. While computing
the aggregation, we dynamically associate to each valid reference, a probability which
is the degree to which an invalid reference should actually refer to the valid value. In
certain contexts, it is possible to use tuples with invalid references by taking into ac-
count the probability that an invalid reference actually be a certain correct reference.
This way, improved answer sets are obtained from aggregate queries in settings where
a database violates referential integrity constraints. We prove fundamental properties
of our extended aggregate functions.

We present an extensive experimental evaluation with real and synthetic databases.
We discuss applications of our proposals in several scenarios. Our proposals are useful
in database integration, multiple database interoperability and data quality assurance.
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CHAPTER 1

Introduction

Referential integrity is a fundamental global constraint in a relational database [20],
that basically ensures a foreign key value exists in the referenced relation. Referential
integrity issues are found in database integration, data quality assurance, data ware-
housing and data modeling. Referential integrity is violated or relaxed for practical
reasons. Database integration represents a common scenario where referential problems
generally arise because similar tables coming from multiple source databases (OLTP sys-
tems) have di�erent referential integrity constraints and each DBMS provides distinct
mechanisms and rules to enforce referential integrity [53]. Therefore, source databases
may violate referential integrity and their integration may uncover additional referential
integrity problems. Performance is a common reason, where referential integrity check-
ing is disabled to allow fast insertions in batch mode. Finally, the logical data model
behind a relational database evolves, incorporating new attributes and new relations
not de�ned before, causing old data to violate new referential integrity constraints.

The issues outlined above motivated us to revisit the fundamental concept of refer-
ential integrity. In short, referential integrity is an important broad problem in modern
relational databases. To our knowledge, data quality metrics have not been proposed
with respect to referential integrity. Also, the problem of dynamically improve answer
sets of aggregation functions has not been studied in the presence of referential integrity
violations.

1.1 Thesis Contributions

Referential Integrity Quality Metrics. We propose several Quality Metrics (QMs)
that measure completeness and consistency with respect to referential integrity . Our



Introduction 2

QMs not only cover normalized databases whose relations are incomplete when they
have missing foreign key values, but also measure the inconsistency that arises when
a relation is not normalized and an attribute value, determined by a foreign key, does
not match the corresponding attribute value in the referenced relation. This is common
when tables are denormalized, views are materialized or similar tables, from di�erent
source databases, are integrated. Our QMs can be used to measure how well referential
integrity has been enforced, or alternatively, how severe referential integrity violations
may exist at di�erent granularity levels.

Distributed Referential Quality Metrics. Nowadays many organizations use mul-
tiple databases, residing at di�erent locations, that are communicated through the
Internet. With the growing usage of the Internet and faster computers, an increas-
ing number of organizations are interested in collaborating with other organizations
working at di�erent locations and storing shared data in their local computers. We
propose distributed referential quality metrics to e�ciently identify tables and columns
with referential integrity problems in distributed databases so that users detect and
avoid inconsistency or incompleteness issues. In our approach there is the underlying
assumption that it is expensive to maintain all databases synchronized with the latest
updates. We believe distributed databases combined with referential integrity veri�ca-
tion represent a promising alternative to detect and �x data quality issues in order to
maintain data repositories in a collaborative environment.

Estimating and Bounding Aggregations in Databases with Referential In-

tegrity Errors. One way to deal with the problem of violation of integrity constraints
is by updating the database in order to achieve consistency. This strategy has been thor-
oughly studied recently and several solutions have been proposed. In [32, 4] consistency
is achieved by inserting or deleting tuples, whereas in [68] attribute values are changed.
The objective of the proposed techniques is to repair the original database to convert
it into a consistent database. Once repaired, the database is ready to be exploited, for
example, with OLAP queries. Fixing errors is di�cult since it requires understanding
inconsistencies across multiple tables, potentially going back to the source databases.
A good overview on data cleaning can be found in [24] and [60]. This strategy presents
several disadvantages. First of all, in many real-world scenarios, we cannot be sure that
the techniques used to repair the database are error-free. The chief disadvantage about
such approach is that the database must be modi�ed. Second, the original database is
updated and the user loses track which data elements represent either repaired data or
correct data. Third, another solution to the problem is to repair the database by re-
moving inconsistent data. Removing data is the easiest, but generally not an acceptable
solution.

In our work we propose a di�erent and innovative strategy in order to obtain im-
proved answer sets produced by queries posed over tables with referential integrity errors
that involve aggregation functions. Instead of repairing (changing) the invalid values
of a foreign key in the original database, we estimate and bound aggregation answer
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sets by using the most likely values from the correct references, this way, performing a
dynamic repair. We introduce two separate families of aggregate functions computed
over databases with referential integrity errors, the weighted referential aggregates and
the full referential aggregates. The objective of the �rst family of aggregate functions
is to obtain an expected answer set. In contrast with the repair techniques mentioned
above, we are not interested in updating the database foreign key values by substituting
invalid speci�c data with valid data, this way repairing speci�c values. Our interest
is to dynamically and e�ciently determine the expected correct values of aggregations
where foreign keys are involved. The full referential aggregates, on the other hand, give
upper or lower bounds of each element of the aggregate list, simulating a dynamic re-
pair where the answer sets represent for each element in the aggregate list, a potential
repair which consisted in updating each invalid reference with the value of the cor-
rect reference that represents each group. We present a probabilistic interpretation of
the extended aggregate functions and show that both families together with the stan-
dard SQL grouped attribute aggregations computed over a joined relation on foreign
key-primary key attributes with potential referential integrity violations are part of a
common probabilistic framework.

SQL to compute QMs and extended aggregates. We introduce a basic set of
SQL queries to compute QMs and identify two main optimizations. We also show
which query variants are fast, but still reasonably accurate for real data. Our extended
aggregate functions are clean extensions of their counterpart standard SQL aggrega-
tions. We compare accuracy and speed of query variants on synthetic databases with
large relations, where attributes have several basic probability distributions.

1.2 Organization

The chapters of this dissertation are organized as follows:
Chapter 2 Referential Integrity QMs in a Centralized Database - We as-

sume the database may violate referential integrity and relations may be denormalized.
We propose a set of quality metrics, de�ned at four granularity levels: database, rela-
tion, attribute and value, that measure referential completeness and consistency. Qual-
ity metrics are e�ciently computed with standard SQL queries, that incorporate two
query optimizations: left outer joins on foreign keys and early foreign key grouping.

Chapter 3 Referential Integrity QMs in a Distributed Database - Dis-
tributed relational databases are used by di�erent organizations located at multiple sites
that work together on common projects. We focus on distributed relational databases
with incomplete and inconsistent content. We propose to measure referential integrity
errors in them for integration and interoperability purposes. We propose global refer-
ential integrity metrics at three levels: database, relation and attribute. We assume
each table can be asynchronously updated at any site and new records are periodically
broadcasted to all sites. We explain several distributed query optimization issues. Our
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proposal is useful in database integration, multiple database interoperability and data
quality assurance.

Chapter 4 Estimating and Bounding Aggregations - Database integration
builds on tables coming from multiple databases by creating a single view of all these
data. Each database has di�erent tables, columns with similar content across databases
and di�erent referential integrity constraints. Thus, a query in an integrated database
is likely to involve tables and columns with referential integrity errors. When two ta-
bles are joined, normally tuples with invalid foreign key values are skipped e�ectively
discarding potentially valuable information. With that motivation in mind, we extend
aggregate functions computed over tables with referential integrity errors on OLAP
databases to return complete answer sets in the sense that no tuple is excluded. While
computing the aggregation, we dynamically associate to each valid reference, a prob-
ability which is the degree to which an invalid reference should actually refer to the
valid value. The main idea of this part of our work is that in certain contexts, it is
possible to use tuples with invalid references by taking into account the probability
that an invalid reference actually be a certain correct reference. This way, improved
answer sets are obtained from aggregate queries in settings where a database violates
referential integrity constraints.

Chapter 5 Experimental Evaluation - We present an extensive experimental
evaluation with real and synthetic databases. We evaluate our local metrics and our
extended aggregates, and propose SQL query optimizations, showing they can help in
detecting, explaining and repairing referential errors.

Chapter 6 Related Work - This Chapter presents a literature survey of works
related to the topics covered in this dissertation. First, the related work for refer-
ential QMs is discussed. It is followed by an overview of works related to extended
aggregations.

Chapter 7 Conclusions and Future Work - We conclude the dissertation sum-
marizing the insights gained from our studies on the measurement and repair of refer-
ential integrity errors in relational databases, and discuss issues for future work.

1.3 De�nitions

The following de�nitions and notations will be used throughout the present dissertation.

Relational Databases

A relational database is denoted byD(R, I), whereR is a set ofN relations (tables)R =
{R1, R2, . . . , RN}, Ri is a set of tuples and I a set of referential integrity constraints. A
relation Ri of degree di is denoted by Ri(Ai1, Ai2, . . . , Aidi

), where each attribute comes
from some domain. One attribute from Ri is the primary key (PK), called Ki, and
the remaining attributes Aij are functionally dependent on Ki: denoted Ki → Aij. To
simplify exposition we use simple PKs. Relations are manipulated with the standard
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relational algebra operators σ, Π, 1 (i.e. with SPJ queries [16]) and aggregations. The
cardinality (size) of Ri is denoted by |Ri| and ni (to avoid confusion with N).

Referential Integrity

A referential integrity constraint, belonging to I, between two relations Ri and Rj is a
statement of the form: Ri(K) → Rj(K), where Ri is the referencing relation, Rj is the
referenced relation, K is a foreign key (FK) in Ri and K is the primary key (PK) or a
candidate key of Rj. In general, we refer to K as the primary key of Rj. To simplify
exposition we assume the common attribute K has the same name on both relations
Ri and Rj. Let ri ∈ Ri, then ri [K] is a restriction of ri to K. In a valid database state
with respect to I, the following two conditions hold for every referential constraint: (1)
Ri.K and Rj.K have the same domains. (2) for every tuple ri ∈ Ri there must exist
a tuple rj ∈ Rj such that ri [K] = rj [K]. The primary key of a relation (Rj.K in this
case) is not allowed to have nulls. But in general, for practical reasons the foreign key
Ri.K is allowed to have nulls when its value is not available at the time of insertion
or when tuples from the referenced relation are deleted and foreign keys are nulli�ed
[25]. We also study integrity over inclusion dependency (ID). An ID constraint between
attributes Ai and Aj from relations Ri and Rj holds when ΠAi

(Ri) ⊆ ΠAj
(Rj).

Referential integrity can be relaxed. We assume the database may be in an invalid
state with respect to I. That is, some referential integrity constraints may be violated
in subsets of R. We refer to the valid state de�ned above as a strict state. A database
state where there exist referential errors is called relaxed state. In a relaxed database
Ri may contain tuples having Ri.K values that do not exist in Rj.K.

We add one practical aspect: relations can be denormalized. We compute referential
integrity metrics on attributes such that each attribute is either a foreign key (as de�ned
above) or a foreign attribute (functionally dependent on some foreign key). We use K

to refer to a foreign key and F for a foreign attribute, in a generic manner. Recall we
assume primary and foreign keys consist of one attribute to simplify exposition, but
in practice a foreign key may consist of two or more attributes (i.e. composite keys).
Notice a foreign attribute introduces a potential source of inconsistency. Relation Ri has
ki foreign keys and fi foreign attributes. Attributes that depend only on the primary
key, and not on any foreign key, are assumed to be correct. Therefore, we do not de�ne
quality metrics on them.

Aggregations

Let Fagg(R.A) be a simpli�ed notation to denote the answer set returned by an aggre-
gation, where agg() is an aggregate function and A is some attribute in R to compute
aggregations on, or equivalently in SQL

SELECT agg(R.A)
FROM R.
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The value of this atomic relation with one tuple and one attribute will be denoted as
agg(R.A) to make it compatible for arithmetic and logical expressions. The aggregate
function list over attribute A associated to the values of grouping attribute B will be
denoted as BFagg(R.A), or in SQL

SELECT agg(R.A)
FROM R

GROUP BY R.B.

Throughout our work, since there exist several di�erent de�nitions for aggregate func-
tions [44] which have distinct semantics, when we refer to an aggregate function agg(),
it is taken from {count(*), count(), sum(), max() and min()} based on the standard SQL
de�nition [36]. Our proposal can be applied in any database. However, our examples
refer to an OLAP database. In this work, the following two relations will be used:

Ri(PK, . . . ,K, . . . A, . . . ), Rj(K, . . . ),

where Ri with primary key PK represents a referencing relation playing the role of
the fact table and Rj represents a referenced relation acting as the dimension table.
Attribute K is a foreign key in Ri and the primary key in Rj, A is a measure attribute
over which the aggregate function is applied.

We are particularly interested in computing aggregations over a joined relation on
foreign key-primary key attributes, with potential referential integrity violations, in
this case, over Ri 1K Rj. Motivated by the fact that a null reference provides no
information and the 1 operator eliminates Ri tuples with a null on K, if Ri.K in the
referencing relation is null in some tuple we may consider such tuple incorrect. However,
for the cases where foreign keys are allowed to have nulls, as happens especially in
data warehouses, less restrictive de�nitions are required that assume that foreign keys
are allowed to have nulls. To consider both scenarios, and in order to simplify our
exposition, we will denote as R[K] the set of values in πK(R) and may or may not
include the null value depending on if it is considered valid or not. When null in the
foreign key is considered correct, all the tuples with a null in its foreign key are treated
as members of a single group of tuples, the null group. Proper explanations will be
given for each case. We denote a generic null value by η.

With these ideas in mind, the answer set returned by an aggregation over a joined
relation on foreign key-primary key attributes, with potential referential integrity vio-
lations will be denoted as: Fagg(Ri.A, ri[K] ∈ Rj[K]) or equivalently in SQL assuming
η is invalid

SELECT agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj.K
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where agg() is an aggregate function, as de�ned above. The corresponding aggregate
function list with grouping attribute K will be denoted as:

KFagg(Ri.A, ri [K] ∈ Rj[K]), written in SQL as

SELECT agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj.K

GROUP BY Ri.K

One of the main problems we are trying to solve is the following. An inconsis-
tency may arise due to referential integrity errors when group and total aggregates are
computed over joined tables:

KFagg(Ri.A) 6=K Fagg(Ri.A, ri[K] ∈ Rj[K])

or

Fagg(Ri.A) 6= Fagg(Ri.A, ri[K] ∈ Rj[K]).

Finally, given k ∈ Rj[K], we will denote as agg(Ri.A, ri [K] = k) the value of the
aggregate function list KFagg(Ri.A, ri [K] ∈ Rj[K]) that corresponds to the tuples
where ri [K] = k. This is a convenient shorthand for the value that corresponds to the
answer set given by the equivalent expression written in SQL as

SELECT agg(Ri.A)
FROM Ri JOIN Rj ON Ri.K = Rj.K

GROUP BY Ri.K

HAVING Ri.K = k.

Equivalent SQL expressions are given throughout our work since our proposals were
implemented and evaluated in a SQL platform.

Distributed Databases

Our proposals are also based on a distributed database at n sites [56]. Let D =
{D1, D2, . . . , Dn} be a set of n relational databases. To have a uniform framework,
all databases have the same tables (i.e. same structure), but potentially di�erent con-
tent (i.e. inconsistent or incomplete content).

Each table Ri can be updated at any site since all sites have local copies of Ri

(replicas) that are periodically refreshed with sets of new records. Since the database
is distributed any site can receive local updates and sets of new records.



CHAPTER 2

Referential Integrity QMs in a Centralized Database

In this Chapter we discuss database operations that may violate referential integrity,
[54]. We introduce QMs that measure completeness and consistency in a relational
database with absolute and relative error. QMs are de�ned at di�erent storage levels to
help the diagnosis and repair of referential errors. Finally we discuss how to compute
our metrics using SQL.

2.1 Operations Violating Referential Integrity

Referential integrity can be violated basically for two reasons: (1) a relation (table)
coming from a di�erent source database is integrated into a central database, such as
a data warehouse. (2) A database operation at the row level introduces a referential
integrity violation when a constraint is disabled or non-existent. This is a common sce-
nario in a data warehouse which stores tables coming from multiple source databases. In
general, referential integrity constraints are disabled with two reasons in mind: Adding
new data more e�ciently and avoiding the elimination of tuples with invalid references.
The database operations that can cause a relaxed state are: (a) Inserting or updating
a foreign key value Ri.K in Ri, such that the Ri.K is null or it does not exist in Rj.K

at the time of insertion or updating (completeness issue); (b) Deleting or updating tu-
ples from Rj, whose primary key Rj.K leaves a set of referencing tuples in Ri without
a corresponding matching tuple with the same Ri.K value (completeness issue); (c)
Updating or inserting an attribute F in Rj, functionally dependent on Rj.K, that is
used as a foreign attribute in Ri leaving both attributes with inconsistent values or,
conversely, updating F in Ri, but not on Rj (inconsistency issue). This case arises
when referencing tables are denormalized, when views are materialized or when query
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Table 2.1: Logic for acronyms of metrics.

Letter Meaning
a absolute error
r relative error
com completeness
con consistency

results are stored.
There are a variety of DBMS mechanisms to enforce referential integrity [25] in

databases that are assumed to be in 3NF. A common mechanism is to forbid insert
or update operations on a referencing relation that have tuples with inexistent foreign
keys on the referenced relation. Orthogonal referential actions associated with delete or
update operations on referenced relations commonly are: restrict, cascade, nullify, set
a default value or no action at all. These actions are commonly used to neutralize the
possible referential integrity violation. In general, a DBMS does not enforce referential
integrity on non-key attributes because databases are assumed to be in 3NF and views
are materialized. Triggers [25] can be used to detect referential violations.

2.2 Absolute and Relative Error

Let X represent an attribute (foreign key K or foreign attribute F ), a relation or a
database. We de�ne the absolute error of object X as a(X), given by its number of
incorrect references. Let t(X) be the total count of references in X. The relative error
of X is de�ned as r(X) = a(X)/t(X).

Absolute error is useful at �ne granularity levels or when there are few referential
violations. In contrast, relative error is useful at coarse granularity levels or when the
number of referential violations is large.

2.3 Hierarchical De�nition of QMs

We introduce referential integrity QMs at four granularities: (1) database; (2) relation;
(3) attribute; (4) value. QMs are intended to give a global picture and a micro-view
of the database. Database level QMs constitute the �rst step towards discovering
referential errors. Relation level QM isolate those relations with referential problems.
Attribute QMs provide speci�c information that may be used to explain and �x speci�c
referential integrity errors. QMs are hierarchically de�ned starting with the attribute
QMs and ending with the database QMs.
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Attribute and attribute value QMs are de�ned over foreign keys and foreign at-
tributes. QMs over foreign keys represent a measure of completeness. QMs over foreign
attributes represent a measure of consistency. Therefore, denormalization introduces
potential inconsistency. Table 2.1 summarizes the logic to name our metrics.

Attribute level QMs

Given an attribute K that is a foreign key, using the notation introduced in Section
1.3, a referencing tuple in Ri, ri ∈ Ri, is considered correct if there exists a matching
tuple in the referenced relation Rj, rj ∈ Rj, with the same K value, ri[K] = rj[K].
For a foreign attribute F in a referencing table that is denormalized, a referencing
tuple is considered correct if ri[F ] = rj[F ] for the matching tuples ri and rj, that is,
ri[K] = rj[K]. Otherwise, a tuple is considered incorrect. Therefore, a tuple in Ri

with null values in K or F is considered incorrect. We even consider the case that a
foreign attribute is also a foreign key, where we treat it as a foreign attribute so that
inconsistency can be detected. Summarizing, referential integrity for K (a foreign key),
requires just an existential check, but referential integrity for F (foreign attribute) also
requires an equality test.

We de�ne the attribute level metric on Ri with referential integrity Ri(K) → Rj(K)
on foreign key K. We start by de�ning the attribute level absolute error metric, that is
de�ned in terms of unmatched values and nulls. If K is a foreign key in Ri referencing
Rj then, using the logic to name our metrics in Table 2.1, we have

acom(Ri.K) = |Ri| − |Ri 1K Rj| (2.1)

This QM is a measure of completeness. In this case, null values and unmatched
foreign keys contribute to absolute error. Motivated by the fact that sometimes foreign
keys are allowed to have nulls, especially in data warehouses, we provide a less restrictive
de�nition, where K is allowed to have nulls. In this case error is computed over a subset
of Ri, where K is not null. That is, tuples where K is null are assumed correct.

acom(Ri.K) = |σ
notnull(K)

(Ri)| − |Ri 1K Rj| (2.2)

Let F be a foreign attribute in Ri dependent on a foreign key attribute K and let
P be the primary key of Ri where Ri references Rj. That is, we have the following
functional dependencies: Ri.P → Ri.K, Ri.P → Ri.F and Rj.K → Rj.F . But notice
Ri.K → Ri.F is not necessarily valid because R can be in a relaxed (inconsistent) state.
We de�ne the absolute error for a foreign attribute as:

acon(Ri.F ) = |Ri| − |σRi.F=Rj .F (Ri 1K Rj)|. (2.3)

This QM is a measure of consistency. Notice the metric for a foreign attribute is
strict in the sense that in order to consider a reference a correct one, not only must its
foreign key exist, but also have the same value and such value must be di�erent from
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null. A comparison between two values in which either value is null returns null by three-
valued logic [20] and therefore it increases acon(Ri.F ). Notice that in Equation 2.3 we
adopted a conservative strategy in the sense that if the foreign key of the corresponding
foreign attribute does not match, then it will be counted as an error, no matter the value
of the foreign attribute. If F is also a foreign key then we treat it as a foreign attribute
so that inconsistency can be detected. If we only need the number of inconsistent values
from F where the foreign key is valid we can compute acon(Ri.F )−acom(Ri.K). In an
analogous manner, we provide a less restrictive de�nition, where K can be null. Notice
when F is null it will still be considered incorrect since comparison with any value is
unde�ned.

acon(Ri.F ) = |σ
notnull(K)

(Ri)| − |σRi.F=Rj .F (Ri 1K Rj)|. (2.4)

We can now de�ne the attribute level relative error QM.

(a) rcom(Ri.K) =
acom(Ri.K)

ni

(b) rcon(Ri.F ) =
acon(Ri.F )

ni

(2.5)

This metric is unde�ned for empty relations. The QM rcom(Ri.K) over a foreign key
K is a measure of completeness and rcon(Ri.F ) on a foreign attribute F is a measure
of consistency.

Value level QMs

We de�ne a value level QM for one foreign key value kp ∈ Ri.K as acom(Ri.K, kp) =
|σ

K=kp
(Ri)| −|σ

K=kp
(Ri 1K Rj)|, for each key value kp, where kp may be null. This

QM provides the frequency of invalid key values, including null. This QM is a measure
of completeness. The value QM for each foreign attribute value fq ∈ Ri.F is similarly
de�ned counting those tuples that contain values kp ∈ K and fq ∈ F in Ri and Ri 1K

Rj. This QM measures consistency and provides the frequency of each non-matching
foreign attribute value. If nulls in K are considered correct then fq will be considered
correct if it is null. When nulls are not considered correct a null value in K will cause fq

to be considered incorrect, regardless of null. Therefore, incompleteness in K leads to
inconsistency in F . Relative error for attribute values is de�ned dividing by ni = |Ri|.

Statistics and Correlations on Attribute QMs

We introduce univariate and bivariate statistics to understand the probability distribu-
tion behind referential errors in some attribute and also, to discover interrelationships
among two unrelated attributes. We calculate univariate statistics on attribute QMs
including the minimum, maximum, mean and standard deviation of absolute error (fre-
quency) of invalid attribute values. Statistics on QMs are useful to explain why errors
happen and to develop a database repair plan. As we shall see in Chapter 5, these
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statistics can give us speci�c information on the probability distribution behind invalid
values in a relation. For instance, we can know how many tuples there are per invalid
value on average. To have an idea about the scatter of frequencies of invalid values we
compare their mean and standard deviation. The minimum and maximum frequencies
help us detect critical values (outliers). We also introduce an error correlation measure
between two attributes on the same relation. In general, the correlation between a
foreign key and a functionally dependent foreign attribute is close to 1. Error correla-
tion can reveal interesting facts among two attributes that do not have any functional
dependency between them. A correlation between two unrelated foreign keys or two
unrelated foreign attributes provides valuable insight to explain why referential errors
happen.

Relation level QMs

We de�ne relation QMs for table Ri with ki foreign keys and fi foreign attributes.
When Ri is normalized fi = 0.

Based on attribute QMs we de�ne independent error aggregations on foreign keys
and foreign attributes. The following QM measures the completeness of Ri:

acom(Ri) =

ki∑

j=1

acom(Ri.Kj) (2.6)

This QM measures completeness since it tells us how many foreign key values are
not matched in each Rj or are simply null. Similarly, we de�ne a consistency QM for
Ri as:

acon(Ri) =

fi∑

j=1

acon(Ri.Fj) (2.7)

We de�ne relative error QMs for completeness and consistency, respectively:

rcom(Ri) =
acom(Ri)

kini

(2.8)

rcon(Ri) =
acon(Ri)

fini

(2.9)

rcom() and rcon() are η (unde�ned) when ki = 0, fi = 0 or ni = 0. Also, acon(Ri) is
η when Ri is normalized. Observe that relation level QMs quantify completeness and
consistency in a relation based on all its attributes.

Database level QMs

We de�ne database absolute error QMs, for completeness and consistency respectively.
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Table 2.2: Attribute level QMs.

Data Quality absolute relative
dimension error error
Completeness acom(Ri.K) rcom(Ri.K)
Consistency acon(Ri.F ) rcon(Ri.F )

acom(R) =
N∑

i=1

acom(Ri) (2.10)

acon(R) =
N∑

i=1

acon(Ri) (2.11)

Finally, we de�ne global relative error QMs.

rcom(R) =
acom(R)
∑

N

i=1
kini

(2.12)

rcon(R) =
acon(R)
∑

N

i=1
fini

(2.13)

Our database level QMs exclude relations Ri with ki = 0 (e.g. lookup relations
without references). If ki = 0 for some Ri then Ri does not contribute to relative error.

Discussion on QMs

Completeness and consistency are measured separately. In our proposal we do not give
di�erent weights to references coming from large or small relations. An incorrect refer-
ence in a small relation (e.g. a lookup table) is as important as an incorrect reference
in a large relation (e.g. a transaction table). Correlations and further multidimensional
statistical models can be used to explain relationships between referential errors in dif-
ferent attributes. QMs can be ranked by the cardinality of the referencing relation so
that references in smaller or larger relations carry more or less weight based on user's
preferences. Table 2.2 summarizes attribute-level QMs, which can be thought as the
atomic metrics from which relation and database QMs are aggregated. Value QMs
can be considered a zoomed view of attribute QMs. Figure 2.1 shows the hierarchical
relationship among QMs; everything is derived from attribute level QMs.
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Figure 2.1: QMs diagram.
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Table 2.3: Database level QMs

R N rcom(R) rcon(R)
storeDB 14 0.02% 0.02%

Table 2.4: Relation level QMs

Ri ki fi ni acom(Ri) acon(Ri)
categ 0 0 20 η η

product 4 5 100109 2444 3100
txHeader 2 2 2003569 0 220
txLine 4 2 19130964 7200 7495

2.4 Example

We now present examples of QMs using a store database schema. Since the goal of
our QMs is to help a user discover and explain referential errors in a database, we
present QMs going from the highest level down to the most detailed level, in opposite
order from their de�nition. We start showing global measures of quality of referential
integrity at the database level in Table 2.3. The �rst important observation is that
rcom(storeDB) and rcon(storeDB) are not zero, which indicates there exist referential
errors in the database. The second observation is that incompleteness and inconsistency
have similar importance. If it is desired to maintain a database in a strict state this QM
table can be periodically refreshed and monitored, by a set of SQL queries, as we will
discuss in Section 2.5. Going down one level we can discover which speci�c relations
are giving us problems. Table 2.4 helps us identify those relations with errors. For each
relation there are completeness and consistency QMs with acom() and acon(). Relation
product has a mixture of completeness and consistency problems. Relation txHeader has
only consistency problems in its foreign attributes (e.g. customerId). Relation txLine
reveals completeness and consistency problems: some foreign keys have invalid values
or referenced relations are incomplete.

The next level gives us more speci�c evidence about referential problems, as shown
in Table 2.5. Relation categ has no references, and it has attribute categName which is
neither a foreign key or a foreign attribute; therefore, this attribute does not contribute
to absolute/relative error. Relation city indicates there exists a serious completeness
problem in the database with a high fraction of invalid foreign keys. Relation product
indicates denormalization introduces important consistency problems since it has many
inconsistent values in categName. In relation txLine we can see that the main source of
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Table 2.5: Attribute level QMs.

Ri Aij com or con a() r()
categ categName ∅ 0 0.00%
city stateId com 12 9.01%
product categId com 2444 2.00%
product categName con 3100 3.00%
txLine prodId com 7200 0.02%
txLine prodPrice con 7495 0.02%

Table 2.6: Value level QMs for foreign key K.

Ri.K kp acom(Ri.K, kp)
store.stateId η 4

0 3
blank 2
T. 2
XX 1

referential problems are invalid foreign keys, but we can see there are 7495-7200=295
rows with inconsistent values for prodPrice even when the foreign key exists. Finally, at
the �nest storage granularity level, Tables 2.6 and 2.7 show value level QMs, exhibiting
unmatched foreign key values and inconsistent foreign attribute values in a denormalized
relation, as well as their respective frequencies. Values are sorted in descending order
by their absolute error to quickly identify critical values in order to develop a database
repair plan. In other words, when acom(K) or acon(F ) have skewed distributions we
can learn which values can help us �x most errors. Value level metrics for F consider

Table 2.7: Value level QMs for foreign attribute F .

Ri.K F kp fp acom(Ri.F, fp)
store.cityId cityName SF η 67

LA η 43
SF blank 34
SF Los Angeles 1
η New York 1
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every existing combination between K and F , which can help explain why denormalized
values do not match and assess their relative importance. In this case we can see that
the functional dependency between K and F does not hold. When a database is in
a strict state, these value level tables are empty. Another important aspect is that
these QM tables represent extended statistics on the database metadata. Therefore,
QM tables can be queried by an end-user to explore a database for completeness and
consistency.

2.5 QMs Implementation

Absolute error metrics are distributive [31] based on the fact that they are counts.
Therefore, from a query evaluation perspective, most of the e�ort is spent on computing
attribute level or value level QMs. But since relative error is a quotient it cannot be
used to compute relative error at coarser granularity levels. This is a consequence of
the relative QM being an algebraic [31] function.

We present two query optimizations that are particularly useful to compute QMs.
The �rst optimization favors a left outer join over a set containment computation to
compute absolute QMs. The second optimization evaluates error aggregations grouping
by foreign keys either before or after joining Ri and referenced relations Rj.

Set containment and left outer join

The following query computes acom(Ri.K) as de�ned above, with the constraint Ri(K) →
Rj(K). We call this query �set containment�. This query is generally computed with a
nested loop algorithm.

SELECT count(*) FROM Ri WHERE Ri.Ki NOT IN
(SELECT Ri.Ki FROM Ri JOIN Rj ON Ri.K = Rj.K)

We introduce an equivalent query to compute acom(Ri.K) that may be more e�-
cient, when using a di�erent join algorithm, like a merge-sort join. We call it �left outer
join�.

SELECT count(*)
FROM Ri LEFT OUTER JOIN Rj ON Ri.K = Rj.K

WHERE Rj.K is null

A similar framework can be used for foreign attributes. The following query com-
putes acom(Ri.K) and acon(Ri.F ) in a single table scan over Ri. In general, the left
outer join optimization will be applied by default.
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SELECT
sum(case when Rj.K is null then 1 end) AS acom

,sum(case when Rj.K is null or Ri.F <> Rj.F then 1 end)
AS acon

FROM Ri LEFT OUTER JOIN Rj ON Ri.K = Rj.K;

Early or late foreign key grouping

This optimization evaluates a �group-by" clause by foreign keys either before or after
joining Ri and referenced relations Rj. The rationale behind this optimization is re-
ducing the size of Ri before joining with Rj. We also call this optimization the �cube�
variant because we build a cube whose dimensions are foreign keys before joining. The
early foreign key grouping query optimization with Ri and Rj computes acom(Ri.K)
as follows:

INSERT INTO RK SELECT K,count(*) AS acom

FROM Ri GROUP BY K;
SELECT sum(acom) FROM RK LEFT OUTER JOIN Rj

ON RK.K = Rj.K WHERE Rj.K is null;

On the other hand, the late group-by evaluation on Ri and Rj to get acom(Ri.K)
is shown below. The derived table T can be materialized to e�ciently query value level
QMs.

INSERT INTO Rij SELECT Ri.K

FROM Ri LEFT OUTER JOIN Rj

ON Ri.K = Rj.K WHERE Rj.K is null;
SELECT sum(acom) FROM (
SELECT K,count(*) AS acom FROM Rij GROUP BY K) T ;

The early foreign key grouping optimization can be generalized to Ri being joined
with m relations R1, R2, . . . , Rm on foreign keys, K1, K2, . . . , Km, respectively.

2.6 Summary

We proposed a comprehensive set of quality metrics (QMs) for referential integrity,
which can be applied in data warehousing, database integration and data quality as-
surance. Our QMs measure completeness in the case of foreign keys and consistency
in the case of foreign attributes in denormalized databases. QMs are hierarchically
de�ned at four granularities: database, relation, attribute and attribute value. Quality
metrics are of two basic types: absolute and relative error. Absolute error is useful
at �ne granularity levels or when there are few referential violations. Relative error is
adequate at coarser granularity levels or when the number of referential violations is



Referential Integrity QMs in a Centralized Database 19

relatively large. We presented two query optimizations. The �rst optimization favors a
left outer join over a set containment to use a hash or merge-sort join algorithm instead
of a nested loop algorithm. The second optimization performs a group-by operation
on foreign keys before a join (pushing aggregation, early group-by) to reduce the size
of the referencing relation. This optimization is e�ective for large relations with many
foreign keys, where the number of distinct values per foreign key is small.



CHAPTER 3

Referential Integrity QMs in a Distributed Database

In this Chapter we introduce distributed referential integrity metrics, [55]. We explain
several distributed query optimization issues. Finally, we conclude by showing how
set reconciliation techniques can be adapted to compute our distributed referential
integrity QMs. Our proposal generalizes the referential integrity quality metrics for a
single database presented in Chapter 2, [54]. We generalized the local metrics to n

databases.

3.1 Assumptions

We make two assumptions:

1. Metadata has been integrated before; this is a separate problem.

2. Database content may be inconsistent due to both local and global issues.

We assume table structure is known and uniform across databases. Broadcasting
updates happens independently and asynchronously for each table in one database.
Therefore, tables may violate referential integrity over time.

3.2 Attribute Level Distributed Metrics

An invalid foreign key or a foreign key with nulls is considered incorrect. In prac-
tice nulls are sometimes considered correct FK values. It is straightforward to extend
our de�nitions to ignore nulls for metric computation. We generalize de�nitions to n

databases. Let T∪ be de�ned as the global union of all local copies of table R:
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T∪ = D1.R ∪ · · · ∪ Dn.R. (3.1)

Observe that identical tuples that appear in di�erent replicas will appear once in
the global union. Let T∪i

= D1.Ri ∪ · · · ∪ Dn.Ri be the referencing global union and
T∪j

= D1.Rj∪· · ·∪Dn.Rj the referenced global union. The next metric measures global
completeness for Ri.K and detects the existence of table replicas with missing foreign
keys in K.

grcom(T∪i
.K) =

|T∪i
| − |T∪i

1K T∪j
|

|T∪i
|

(3.2)

Contrast Equation 3.2 with Equation 2.5(a). Observe that if the same erroneous
tuple appears in several replicas it will be accounted as one erroneous tuple. This is
motivated by the fact that an inserted erroneous tuple in a replica will eventually be
replicated to all the local instances. If the tuple was being deleted while running the
metric computation, the result will show the pessimistic case. That is, it will count the
erroneous tuple.

We now concentrate on consistency metrics. Let F be a foreign attribute in a
denormalized table Ri. Recalling Equations 2.3 and 2.5(b), the following equation
measures the local consistency:

rcon(Ri.F ) =
|Ri| − |σRi.F=Rj .F (Ri 1K Rj)|

|Ri|
. (3.3)

This equation can be computed in a simpler manner with one relational operator as:

rcon(Ri.F ) =
|Ri| − |Ri 1K,F Rj|

|Ri|
. (3.4)

We generalize the previous de�nition to n databases reusing the global union tables
T∪i

, T∪j
. The following metric detects foreign columns F that do not match their

corresponding reference values in the referenced table.

grcon(T∪i
.F ) =

|T∪i
| − |T∪i

1K,F T∪j
|

|T∪i
|

(3.5)

3.3 Table Metrics

We �rst de�ne a metric to know if a table has all latest updates (i.e. if it is current).
This global metric is applicable to both the referencing table Ri and the referenced
table Rj and is similar to the Jaccard coe�cient [34]:

gcur(Ri) =
|D1.Ri ∩ D2.Ri ∩ · · · ∩ Dn.Ri|

|D1.Ri ∪ D2.Ri ∪ · · · ∪ Dn.Ri|
=

|T∩i
|

|T∪i
|

(3.6)

where T∩i
is the global intersection.
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Given a global union T∪i
with k foreign keys K1, . . . , Kk its referential completeness

is measured by:

grcom(T∪i
) =

∑
k

j=1
grcom(T∪i

.Kj)

k
(3.7)

Given the global union T∪i
with f foreign columns K1, . . . , Kf its referential consis-

tency is:

grcon(T∪i
) =

∑
f

j=1
grcon(T∪i

.Fj)

f
(3.8)

3.4 Database Metrics

Finally, we de�ne global metrics for the entire distributed database D for completeness
and consistency, respectively:

grcom(D) =

∑
N

j=1
|T∪j

|grcom(T∪j
)

∑
N

j=1
|T∪j

|

(3.9)

grcon(D) =

∑
N

j=1
|T∪j

|grcon(T∪j
)

∑
N

j=1
|T∪j

|

(3.10)

Contrast Equations 3.9 and 3.10 with Equations 2.12 and 2.13 respectively. Absolute
distributed QMs are computed accordingly. The diagram in Figure 3.1 shows our
proposed metrics classi�cation according to data quality dimensions, being local or
global and absolute or relative, and gcur as a separated metric.

3.5 Query Optimizations

Generalizing optimizations to n databases is interesting because updates can happen
asynchronously at any site. We adapted distributed query optimization techniques
[56] to our problem, assuming the cost to transfer a large table is high. For global
metrics the most important relational operation is the global union of all local copies of
one table. Such union can be optimized by computing pairwise intersections of tables
projecting only the foreign key to determine which tables have new rows and then
transfer only new rows. Metrics are based on foreign keys and foreign columns which
can be projected before the global union. The second important operation is computing
the global intersection to �nd out records existing at every database. The intersection
operation is less demanding because intersections generally return smaller tables.

Global metrics for all tables (say N) and the database can be computed with several
approaches:

� A static approach is to transfer n−1 copies to some site designated as the �central�
site. When this is done for all N tables it becomes expensive.



Referential Integrity QMs in a Distributed Database 23

Figure 3.1: Classi�cation of metrics.

� A second approach is to compute metrics at one site one time and then incre-
mentally update them when new records are inserted; metrics are continuously
recomputed for all N tables when they are refreshed. The challenge is to maintain
a low overhead.

� A third approach is to compute metrics for each pair of tables linked by a foreign
key on demand, when their referential integrity needs to be veri�ed.

When tables are large, sampling can be used to get an approximation of referential
metrics. Iterated sampling are preferred over transferring large tables. To process a
distributed join the program can take advantage of a replicated table, being locally
stored at the same site, but which may be outdated. When there is a need to join
tables stored at di�erent sites the program projects only a minimum set of primary
keys, foreign keys and foreign attributes, covering the generated query. When a join
requires two tables stored at di�erent sites the smallest table is transferred to the other
site. Set reconciliation algorithms can be adapted to the computation of our distributed
referential integrity metrics as we explain next.

3.5.1 Set Reconciliation Techniques

Observe that the computations of our global metrics are based on counts over expres-
sions with the following relational algebra binary operators: intersection ∩ union ∪ and
join 1. Also observe that the tables used to compute each global table T∪i

and the
ones used to compute the metric gcur for a given table are replicas (of the same table).
We can expect that the number of di�erences among the replicas of a given table that
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participate in a union or intersection operation is low. The number of tuples could be
very large, maybe millions of tuples. However, the number of di�erences among replicas
is expected to be low. An alternative to compute the binary operations involved in our
metrics could be, as we explained above, to transfer an entire operand from one site
to another in order to keep the two operands involved in one site and then compute
the operations, for example, computing an antijoin [38]. This alternative could be very
expensive in terms of communication complexity since the operands may be tables with
millions of tuples. Although a projection of one of the operands could be transfered
instead since we are only counting tuples, still the amount of data to be transferred
could be too much. The amount of data to be transfer ed may be dramatically reduced
considering the following ideas.

As for the computation of global tables observe that

T∪ = D1.R ∪ · · · ∪ Ds.R ∪ · · · ∪ Dn.R

= Ds.R ∪ (
n⋃

k=1

k 6=s

(Dk.R − Ds.R))

That is, to compute the union of, for example, two replicas, say Da.R and Db.R, in
a given site, say site a, aside from Da.R we need the di�erence Db.R − Da.R, since

Da.R ∪ Db.R = Da.R ∪ (Db.R − Da.R)

Likewise, to compute the union in site b we only need Da.R−Db.R. Note that since
Da.R and Db.R are replicas (of the same table), the number of tuples that belong to
the di�erence between the two replicas is expected to be low.

Note that since Da.R ∩Db.R = Da.R− (Da.R−Db.R) to compute the intersection
of replicas we have

T∩ = D1.R ∩ · · · ∩ Ds.R ∩ · · · ∩ Dn.R

= Ds.R − (
n⋃

k=1

k 6=s

(Ds.R − Dk.R))

Again, we only need the corresponding di�erences in one site to compute the inter-
section.

As for the join, 1, this operator is computed on foreign key-primary key attributes
with potential referential integrity violations. In our metrics, this operator is used to
count the number of tuples that correspond to the valid references in the referencing
table. Stated di�erently, to achieve the same goal we can compute the set of referencing
values that are not in the set of referenced values, that is, the set of invalid references.
Afterwards, count the tuples of the referencing table that do not hold these values or do
not have a null value in the foreign key, when we assume null is invalid. For example,
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we can compute the metric grcom(T∪i
.K) as follows. Let T∪i

and T∪j
be the referencing

global union and the referenced global union respectively. Suppose also that site s holds
T∪i

and in this site we decided to compute grcom(T∪i
.K). The metric can be computed

as follows

grcom(T∪i
.K) =

|T∪i
1K T∪j

|

|T∪i
|

=
|T∪i

| − |(ΠK(T∪i
) − ΠK(Tj)) 1K Ti| − |σK is η(T∪i

)|

|T∪i
|

To compute the above expression in site s, among other computations we need
the di�erence ΠK(T∪i

) − ΠK(T∪j
). This expression computes a table with the foreign

key invalid values. Observe that if we suppose that the di�erence is low, this table
di�erence could be small compared to the size of T∪j

or even ΠK(T∪j
). Metric grcon

can be obtained following the same ideas using Equation 3.5.
The question that remains now is how can we e�ciently compute the mentioned

di�erences without transferring large amounts of data. In the case of the union and the
intersection in our examples, how can we compute in site a the di�erences Da.Ri−Db.Ri

or Db.Ri − Da.Ri without transferring one of the tables involved to the corresponding
site. In the case of the join operation we need to e�ciently compute ΠK(T∪i

)−ΠK(T∪j
)

without transferring one of the global tables or the corresponding projection. To accom-
plish this goal, we propose to adapt techniques used to reconcile sets whose di�erences
are small [48], that avoid the need to transfer large amounts of data. The amount of
data transferred depends on the number of di�erences rather than on the size of the
tables involved although once the data is transferred, the computation complexity of
the algorithms that compute the actual di�erent values could be cubic in the number
of di�erences.

3.5.2 Global Operations

The techniques we adapted consider the following assumptions and actions:

� The sets to be reconciled are represented by their characteristic polynomials.

� A number of evaluation points mutually agreed must be evaluated using each one
of the characteristic polynomials. The number of points evaluated must not be
less than the number of symmetrical di�erences.

� In case that an upper bound of the number of di�erences can not be determined
a priori, there are probabilistic techniques to compute the di�erences [49].

� Instead of transferring one of the reconciling sets from one site to the other, the
evaluation points with their corresponding characteristic polynomial evaluations
are transferred, this way minimizing the communication complexity.



Referential Integrity QMs in a Distributed Database 26

� Both sets of characteristic polynomial evaluations are used to interpolate a ra-
tional function which will have as roots of its numerator and denominator the
symmetrical di�erences.

� The missing values are obtained by reducing the rational function and �nding the
roots of the numerator or the denominator.

The following example gives an overview of how the mentioned techniques can be
used to reconcile two replicas of a table, although it is not our intention to give here all
the technical details of the set reconciliation algorithm (See [49] for details ).

Example 3.1. The following example uses the synthetic database generated with TPC-
H DBGEN program [64]. Suppose table orders, with approximately 1.5M tuples is
replicated at two sites, say site a and site b in an asynchronous multi-master replication
scenario. Assume we know the primary key o_orderkey holds positive integers stored
in a 32-bit signed integer. Suppose the number of symetrical di�erences between the
two sets of primary key values is no more than 50. To reconcile both replicas, �rst both
sites agree in 50 evaluation points, one for each possible di�erent value. At each site
the characteristic polynomial, that is, the polynomial whose roots are all the primary
key values of the corresponding replica, is evaluated in each one of the 50 evaluation
points. Let ki, i = 1 . . . 1.5M be the primary key values of the replica at site a. The
corresponding characteristic polynomial would be then Π1.5M

i=1
(x − ki). Let ke be one

of the 50 evaluation points. The evaluation of ke using the mentioned characteristic
polynomial is Π1.5M

i=1
(ke−ki). To avoid working with very large numbers while computing

the evaluations of the characteristic polynomials, we need to work in a �nite �eld with
an order not less than v = (231

− 1) + 50 in order to map the primary key values and
the evaluation points. The selected �eld could be then Fq, q= 2147483713, being the
value of q the lowest prime greater than v. Observe we can �x the value of q since
the domain of the primary key values does not change as well as the upper bound of
the number of symmetrical di�erences. The 50 mutually agreed evaluation points may
be the integers in the closed interval [−49, 0]. Since these numbers are not members
of the set of possible primary key values, they will never be zeros of the characteristic
polynomials. Both sites keep an updated vector, lets call it the evaluation point vector,
with 50 pairs of values containing each evaluation point associated to its corresponding
evaluation of the characteristic polynomial. Also, both sites keep the cardinality of
their replica. To keep the vector updated, whenever a tuple with a primary key value
of say k0 is inserted/deleted, all the 50 current values of the characteristic polynomial
have to be multiplied/divided (mod q) by (ke − k0), where ke is an integer in [−49, 0].
The cardinality is updated as well by adding/subtracting one to the current cardinality.
Suppose that in a given moment both replicas agree in all the primary key values that
cover the positive integers in the closed interval [1, 1′500, 000]. In both evaluation point
vectors the value that corresponds to the evaluation point −1 is

929792600 = (−1 − 1)(−1 − 2)...(−1 − 1′500, 000) mod q
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Suppose site a receives a tuple with value 1′600, 000 in its primary key and site b
receives one with value 1′700, 000 in its primary key. The updated values of the char-
acteristic polynomials that correspond to the evaluation point −1 would be 252388150
and 594709911 respectively.

When the set reconciliation is required, both sites exchange their evaluation point
vector and the cardinality of its corresponding replica. Observe that the size of the
transferred data depends on the number of symmetrical di�erences and not on the
table cardinality. At each site, with both vectors, at each evaluation point, the two
values of the evaluation of the characteristic polynomials are divided (mod q) and the
divisions are used together with the cardinality of the functions, to interpolate a reduced
rational function which will have in its numerator and its denominator the characteristic
polynomials of the di�erences of each set of primary key values. Take for example the
values of both vectors that correspond to the evaluation point −1 above. The division
between both values gives

252388150

594709911
=

(−1 − 1)(−1 − 2)...(−1 − 1′500, 000)(−1 − 1′600, 000)

(−1 − 1)(−1 − 2)...(−1 − 1′500, 000)(−1 − 1′700, 000)

=
(−1 − 1′600, 000)

(−1 − 1′700, 000)
=

2145883712

2145783712
= 501706218

The above equations are written to highlight the key aspect of this technique. Ob-
serve that the common factors cancel out so the result is the evaluation of a rational
function whose zeros in the numeration and the denominator are the di�erent values.
In case the maximum number of di�erences of each replica is not known and we only
count with a global bound, the cardinality of the tables together with the global bound
can be used to determine the bounds of the degrees of both characteristic polynomials
in order to interpolate and reduce the rational function. By �nding the zeros of the
corresponding characteristic polynomial, each site is able to determine the primary keys
of the tuples that the other site is missing and can send to its counterpart the missing
tuples.

In case the keys are not integers, the key domain values are mapped to the values
of a �nite �eld. This can be done considering their binary representation.

Note that to compute our distributed metrics, we do not need the complete set of
tuples at all the sites where the replicas reside as in the set reconciliation problem. Also,
we focus on counting tuples instead of determining precise di�erent values. Next, we
show how to use the set reconciliation techniques mentioned above in order to compute
the global operations required to compute our metrics.

Global Union T∪

Observe that to compute our metrics, the information needed from the global tables is
the set of values of the primary keys and the set of values of foreign keys and foreign
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columns that are to be measured. We will �rst assume that the maximum number of
symmetric di�erences among any two sets is less than an upper bound, say dp. Later
on we will study the case where the number of di�erences cannot be bounded.

To compute the global union, say T∪i
, we have to keep at each site where a replica

of Ri resides, the evaluation of the characteristic polynomial of the primary key of Ri at
dp evaluation points mutually agreed among all the sites that hold a replica of Ri. At
each site we will keep a vector with dp pairs of values each pair containing an evaluation
point and its characteristic polynomial evaluation. We will call this vector evaluation
point vector. Observe that the evaluation points should be chosen so that they are not
zeros of the characteristic polynomials to avoid complications in the interpolation of the
rational function. Note that the evaluations can easily be updated each time a tuple is
inserted or deleted. The cardinality of each replica of Ri is also maintained at each site.
To evaluate the global table, a site is chosen to eventually hold the global table. Let s

be that site. This site broadcasts its evaluation point vector. Let site u 6= s represent
each one of the sites where a replica of Ri resides. With the evaluation point vector of s

and its own, site u computes the values of the primary keys of Ri that are at site u and
not at site s and transfers to site s the tuples that correspond to the computed missing
primary key values. Observe that instead of the complete tuples, site u only needs to
transfer the primary key and the foreign key and/or foreign columns that are required
depending on the metric that is evaluated. Site s builds a table with the same schema
of Ri, say R+

i
and inserts in it the missing tuples sent by the other sites. Observe

that since R+

i
has the same schema as Ri, then duplicate tuples will be rejected. The

global table T∪i
will be Ri ∪R+

i
and its cardinality can easily be computed since site s

maintains the cardinality of (its replica) Ri and only |R+

i
| has to be computed.

Global Intersection T∩

The intersection of the replicas of a given table can be obtained in a similar fashion.
Take sites s and u as de�ned in the previous section. Again site s broadcasts its
evaluation point vector. Now site u transfers the values of the primary keys that are in
s but not in u. Site s builds a table, say R−

i
, with a single column containing the primary

key values eliminating duplicates. The size of the intersection is then |Ri| − |R−
i
|.

Observe that to compute gcur at site s, the computation of the union and the inter-
section may be done simultaneously and s needs to broadcast only once its evaluation
point vector, and the corresponding sites send the required values of R+

i
and R−

i
.

Example 3.2. Following our running example, suppose now there are several replicas
of table orders. The site that will hold the global union or the site where the metric
gcur is to be computed, say site s, broadcasts its evaluation point vector in order that
the involved sites where the other replicas of table orders reside compute the values
of the primary keys of table orders that are needed depending on the desired metric.
For the global union, they are required to send the primary key values that are in their
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replica but not in the one at site s. For the global intersection they are required to send
the primary key values that are at site s and not in their replica.

Valid References

To compute the valid references of a referencing global union, once the involved tables
are computed as in the global union, see page 27, if both tables are at di�erent sites, we
procede the following way. Let r be the site with the referencing global union, say T∪i

,
and s the one with the referenced global union, say T∪j

. Suppose that the maximum
number of di�erences between ΠK(T∪i

) and ΠK(T∪j
), the set of foreign key values of

the referencing global union, and the set of primary key values of the referenced global
union, is less than an upper bound, say dq. The case where an upper bound cannot be
established will be treated later on. Suppose dq = dp, if not, an additional evaluation
point vector should be computed for each referenced table at the site of the replica
where the global referenced union is computed and we procede using this table instead.
At site s we compute a temporal evaluation point vector from the evaluation point
vector of the replica Rj in s as if the tuples of table R+

j
were inserted in Rj. By doing

so, we obtain the evaluation point vector of ΠK(T∪j
).

As for the referencing global union T∪i
in r, the evaluation point vector for ΠK(T∪i

)
has to be computed from scratch. A frequency table is built with the values of the
foreign key of the global union T∪i

excluding η since we are considering η an invalid
foreign key. The idea is to keep the number of tuples for each foreign key value . While
doing so, with the dq evaluation points we compute the corresponding evaluation point
vector. Later on, the frequency table will be used to compute the number of valid
tuples. Site r transfers the computed evaluation point vector to site s where the values
of ΠK(T∪i

)−ΠK(T∪j
) are computed. The set of values are in turn transferred to r and

using the frequency table the number of valid references is obtained.

Communication and Computational Complexity

The communication complexity to compute our metrics using the set reconciliation
techniques just described depend linearly on the number of di�erences among the sets
of values involved. Let d be the maximum number of di�erences between two replicas.
To compute the gcur metric one of the sites that holds a replica, say site s, has to
broadcast only once an evaluation point vector with its size bounded by d. In return,
it receives from the sites that have a replica, take site u as one of these sites, the values
that belong to the symmetrical di�erence between the primary key values of s and u.
This is done to compute the size of the union and the intersection. Computed this way,
the communication using set reconciliation techniques has complexity O(d). At each
site that holds a replica, the computation to interpolate the rational function using
the evaluation point vectors by Gaussian elimination and the Euclidean algorithm to
reduce the rational function, has complexity O(d3).
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To compute grcom and grcon we need a frequency table with the number of tuples
per value for each foreign key to be measured. This table can be computed by several
means. Via a simple scan of the global referencing union if a table containing the
di�erent values and their frequencies can be stored in memory or sorting a projection
of the referencing global union containing its primary key and its foreign key and then
computing the needed table. Notice that in case of grcon we need the foreign key and
the foreign column. In the worst case, the cost is O(n log(n)) where n is the size of
the referencing global union. Observe that while computing the frequency table, the
evaluation point vector can be computed simultaneously. Observe that to compute our
metrics we can use the frequency table instead of the referencing global union.

Unknown Upper Bound

In many cases an upper bound of the number of symmetrical di�erences, d, is not
known. A more realistic scenario is that an upper bound is not known. We present an
overview of a method to apply the techniques proposed without knowledge of an upper
bound, considering �rst two tables, Da.Ri and Db.Ri. This method is an adaptation of
the probabilistic veri�cation presented in [49].

We estimate a maximum number of symmetrical di�erences above which it would
be unfeasible to use this method in contrast to the one that consists in transferring a
projection of the table needed depending on the metrics we are computing. Observe that
the real number of di�erences could be bigger. We determine a �rst set of evaluation
points mutually agreed between the involved sites with this number of points. Lets
call this set Q. Next, we need to determine a number of additional evaluation points
that will be used to test with a given probability if an interpolated rational function is
indeed the function we are looking for. To do this, we determine a low probability, p,
representing the maximum probability we can tolerate for the case where we erroneously
interpolate a rational function di�erent from the correct rational function whose zeros of
the numerator and the denominator constitute the values of the symmetrical di�erences.
According to this probability we determine a second set of points mutually agreed
drawn randomly from a subset of the �eld of the rational function we are willing to
determine. We will use these random evaluation points to �nd out if the computed
rational function is indeed the desired one with certain probability. Lets call this set
R. Now our evaluation point vectors will hold the evaluations of the characteristic
polynomials of Q and R.

When a metric is required, the site where the rational function would be determined,
say a. receives the evaluation point vector of its counterpart, say b, with |Q| + |R|

evaluation points and its cardinality and computes the corresponding divisions. Next,
it interpolates a rational function assuming the size of the symmetrical di�erence is |Q|

and tests if this function is in fact the rational function we want with a probability of
failure of p. This is done by comparing the divisions that correspond to the points in
R against the values of the interpolated function evaluated at those same points. If
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the test is successful, then the current interpolated function is reduced and the zeros
are obtained. If at least one point fails, then this method is not feasible to determine
the di�erences. Each time the set R of random points is used to evaluate a metric, the
sites involved compute another mutually agreed random set. Observe that this can be
done asynchronously. Also, since normally R is small, several sets can be maintained
simultaneously. Since the interpolation is done once, and |R| is �xed, the computational
complexity is O(|Q|

3) and the communication complexity is |R|+ |Q|. Bearing in mind
this complexity we can better estimate the size of Q.

It only remains to show how to compute the size of R from p. Observe that if the
values of a key can be mapped to a �eld of values of size b-bits we can add an additional
bit to enlarge the �eld and we have 2b more values of size b-bits, where we can take the
values of Q and R. Since Q is a �xed set of values, the random values may be chosen
from a set of 2b

− |Q| values. According to Theorem 4 in [48] and considering the
�eld described above, the probability that two monic rational functions with the sum
of their numerator and denominator less than B = |Da.Ri| + |Db.Ri| or another upper
bound of the number of the symmetrical di�erences, agree in one randomly selected
point although they are di�erent is no more than

p = (B − 1)/(2b
− |Q|).

Observe that since the rational function is constructed from the division of the
characteristic polynomial the way it was described, two di�erent rational functions
cannot agree in more than the number of points equal to the symmetrical di�erences of
the involved sets minus one. In our case, we took as an upper bound of the symmetrical
di�erence the union of both sets. Observe that if the two rational functions agree at
more than this number of points, then they are equivalent. With these ideas in mind,
we can determine that the probability that two rational functions are di�erent after
agreeing at e consecutive randomly selected evaluation points is no more than Bpe. Let
this probability be p, then the size of R is

|R| = ⌈logp(p/B)⌉ ≥ ⌈logp(p/d)⌉

where d is the real number of symmetrical di�erences.

3.6 Summary

We proposed metrics to discover and quantify referential integrity problems in a dis-
tributed database, considering normalized and denormalized schemas. Referential com-
pleteness and consistency metrics are de�ned in a hierarchical fashion at the column,
table and database levels. We discussed research issues on distributed query optimiza-
tion to e�ciently compute metrics. Speci�cally, we studied how to compute our metrics
using set reconciliation techniques.



CHAPTER 4

Estimating and Bounding Aggregations

There has been a growing interest on the problem of obtaining improved answer sets
produced by queries in a setting where a database has incomplete content or violates in-
tegrity constraints [17, 18, 14, 3, 9, 2]. This is a common scenario in a data warehouse,
where multiple databases of di�erent reliability and similar contents are integrated.
Databases with referential integrity errors commonly arise in scenarios where several
organizations have their databases integrated or where exchanging or updating infor-
mation is frequent, or where table de�nitions change. In this Chapter we will study the
problem of dynamically improve answer sets of aggregation functions in the presence
of referential integrity violations.

4.1 Motivating Examples

Our examples throughout this Chapter are based on a chain of stores database with
three relations:

sales(storeId, cityId, regionId, amt,qtr., . . . )
city(cityId, cityName, country, . . . )
region(regionId, regionName, . . . )

which are the result of integrating two databases from two companies, X and Y, that
are in a process of database integration. X had store information organized by city
and Y had it organized by region. Also, suppose that within a region there are several
cities. Tables from both databases share a common key, storeId without con�icts. The
integrated database in a relaxed state is shown in Figure 4.1, where invalid references
are highlighted.
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sales
storeId cityId regionId amt qtr . . .

1 LAX AM 54 1 . . .
2 LAX AM 64 2 . . .
3 MEX AM 48 1 . . .
4 NXX AM 33 2 . . .
5 η AM 65 3 . . .

6 ROM EU 53 1 . . .
7 ROM EU 58 2 . . .
8 MAD EU 39 1 . . .

city
cityId cityName country . . .
LAX Los Angeles US . . .
LON London UK . . .
MAD Madrid SP . . .
MEX Mexico MX . . .
ROM Rome IT . . .

region
regionId regionName . . .
EU Europe . . .
AM Americas . . .

Figure 4.1: A store database in a relaxed state with invalid foreign keys highlighted.

SELECT city.cityId, cityName,

sum(amt)

FROM sales JOIN city ON

sales.cityId=city.cityId

GROUP BY city.cityId, cityName

UNION

SELECT `-TOTAL', `-', sum(amt)

FROM sales

cityId cityName sum(amt)

LAX Los Angeles 118

MAD Madrid 39

MEX Mexico 48

ROM Rome 111

-TOTAL - 414

Figure 4.2: Inconsistent answer set (total is inconsistent).

Example 4.1. The attribute cityId in sales is a foreign key. The referential integrity
constraint, sales(cityId) → city(cityId), should hold between the two relations. Now
observe the query in Figure 4.2. The unioned query computes the sales amounts grouped
by city.cityId, cityName and the total sales amount. But, as we can see from the query
in Figure 4.3, the answer set is inconsistent in a summarizable sense. That is, using the
notation introduced in Section 1.3, let s ∈ sales:

Fsum(sales.amt) 6= Fsum(sales.amt, s[cityId] ∈ city[cityId]).

Their total sum of sales amount is di�erent.
In this relaxed state the answer sets are inconsistent due to the existence of referen-

tial integrity errors. The �rst unioned query gives grouped aggregates, that considered

SELECT sum(amt)

FROM sales JOIN city

ON sales.cityId=city.cityId

sum(amt)

316

Figure 4.3: Total sales from valid references (total is inconsistent).
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SELECT region.regionId, regionName,

sum(amt)

FROM sales JOIN region ON

sales.regionId=region.regionId

GROUP BY region.regionId,

regionName

UNION

SELECT `-TOTAL', `-', sum(amt)

FROM sales

regionId regionName sum(amt)

AM Americas 264

EU Europe 150

-TOTAL - 414

Figure 4.4: Total sales from all valid references on another FK (total is consistent).

as a whole, are inconsistent with respect to the total given by the same query. The
answer set represents the original database, but with the tuples with referential in-
tegrity errors deleted. Invalid tuples are eliminated from the aggregate function answer
set. Now, assuming that there is a high probability that the tuples with invalid foreign
keys, that is, invalid values in attribute cityId, represent true facts, could we improve
the aggregate answer set grouped by city.cityId, cityName? Can we get an approximate
answer set of the true real values?

Example 4.2. Based on the database integrity constraints, the functional dependency:
sales.cityId → sales.regionId, should hold. Suppose the information from Y is more
reliable than information from X. A query getting total sales by region and total
overall sales is shown in Figure 4.4. In this case, a summarizable consistent answer
set is obtained joining with the foreign key regionId, in contrast to the inconsistency
mentioned above in Example 4.1. If we know the functional dependency sales.cityId
→ sales.regionId holds, could we obtain an improved answer set when grouping by
city.cityId, cityName in the presence of invalid foreign key values? This will be a goal
of our approach.

4.2 Aggregations

In this Section we will present our proposal. First we will provide some preliminary def-
initions. Based on these de�nitions we present our extended aggregations in databases
with referential integrity errors.

4.2.1 Preliminary De�nitions

For the following de�nitions, consider a relaxed database where the referential integrity
constraint Ri(K) → Rj(K) could be violated. As stated in Section 1.3, we will denote as
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Rj[K] the set of values in πK(Rj) and may or may not include the null value depending
on if η is considered a valid value or not.

The following de�nition is in the spirit of the de�nition of partial probability in [47].
A partial probability is a vector which associates a probability with each possible value
of a partial value. This last value corresponds to a subset of elements of the domain
of an attribute, and one and only one of the elements of the subset is the true value of
the partial value.

De�nition 4.1. Referential partial probability (RPP) The RPP is a vector of
probabilities that corresponds to a foreign key, say Ri.K, where its probabilities are as-
sociated to each value of the referenced primary key, say Rj.K. Each value corresponds
to the probability that an invalid foreign key in Ri.K is actually the associated correct
reference in Rj.K. Let k ∈ Rj[K], we say that Rj.K is complete under the RPP if

∑

k∈Rj [K]

p(k) = 1 (4.1)

The idea behind the RPPs is to associate to each primary key value a probability.
Each probability corresponds to the probability that the associated value be the correct
reference in a tuple with an invalid value in the corresponding foreign key. Notice that
for each referenced key, a set of RPPs may be de�ned, one or more for each foreign key
that references it. Users with good database knowledge may assign these probabilities.
Depending on the probabilities the user assigns to the valid foreign key values, di�erent
RPPs that satisfy completeness (Equation 4.1) can be de�ned. If the probability values
are associated to a discrete probability distribution we can have a uniform or Zipf or
geometric or, in general, any probability distribution function RPPs. For example, if
all the valid foreign key values were equally probable, a uniform RPP would be de�ned.
Another special case could be a skewed probability distribution function where the user
may want to assign probability one to a speci�c valid reference and zero to all others.
Nevertheless, a feasible way to assign these probabilities when computing our proposed
aggregate functions is following the intuition that a high probability will correspond to
a high frequency in the foreign key and a low probability corresponds to a low frequency.

De�nition 4.2. Frequency weighted RPP Let k ∈ Rj[K] and
n = | { ri ∈ Ri | ri[K] ∈ Rj[K] } |, the number of tuples with a valid reference in ri[K].
We de�ne p(k) as

p(k) =






|σK=k(Ri)|

n
if n 6= 0

1

|Rj |
otherwise

We are assuming a uniform probability distribution function if there are only invalid
values in Ri.K, since we do not have more information. Thus de�ned then Rj.K is
complete under the Frequency weighted RPP.
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Example 4.3. Consider the relaxed database of Figure 4.1. The Frequency weighted
RPP that corresponds to sales.cityId considering the values of the referenced primary
key city.cityId, 〈LAX,MEX,ROM,MAD,LON 〉, is

〈
2

6
,
1

6
,
2

6
,
1

6
, 0〉

Here, we are assuming η is an invalid value. If this were not the case, the Frequency
weighted RPP that would correspond to the correct values taking η as valid, that is,
for 〈LAX,MEX,ROM,MAD,LON, η 〉 the Frequency weighted RPP would be

〈
2

7
,
1

7
,
2

7
,
1

7
, 0,

1

7
〉

Other feasible ways to assign the probabilities of the RPP achieving completeness
can be designed such as a uniform or a constant RPP following the ideas presented
above. The former one consists in associating to each correct reference an equal prob-
ability meaning that an invalid reference has an equal probability of being in fact any
potentially valid reference. For this case, the value of each probability is 1/|Rj| or,
if η is considered valid, 1/(|Rj| + 1). The constant RPP consists in assigning to one
potentially valid reference probability 1, meaning that all the invalid references are, in
fact, the corresponding correct reference.

We can design RPPs that fail to meet completeness. Two special RPPs where
completeness may not be satis�ed are the following:

De�nition 4.3. Full RPP We de�ne p(k) as p(k) = 1.

De�nition 4.4. Restricted RPP We de�ne p(k) as p(k) = 0.

With the Full RPP we associate to each correct reference probability 1, meaning
that every invalid value of the foreign key is in fact the associated valid value. On the
other hand, with the Restricted RPP we associate probability 0 instead.

De�nition 4.5. Referentiality (REF) Let ri ∈ Ri and k ∈ Rj[K], we de�ne the
referentiality of a foreign key value ri[K] with respect to k, REF (ri[K], k), as follows:

REF (ri[K], k) =






1 if ri[K] = k

0 if ri[K] 6= k and ri[K] ∈ Rj[K]

p(k) if ri[K] /∈ Rj[K]

where the probability p(k) corresponds to a given RPP.

Intuitively, REF(ri[K],k) is the degree to which a foreign key value ri[K] in a tuple
ri ∈ Ri refers to a correct reference k ∈ Rj[K].
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Table 4.1: Extended aggregates according to di�erent RPPs.

Name abrev. pre�x RPP

Weighted referential WR w_ any RPP that
satis�es completeness

Frequency weighted referential FWR fw_ Frequency weighted
Full referential FR f_ Full
Restricted referential RR r_ Restricted

4.2.2 Extended Aggregate Function De�nitions

For the following de�nitions, consider a relaxed database where the referential integrity
constraint Ri(K) → Rj(K) could be violated. Let ri ∈ Ri and k ∈ Rj[K]. Our ex-
tendend aggregate functions computed over relaxed databases with referential integrity
errors will be de�ned under a given RPP as follows:

x_count(Ri.PK, ri [K] = k) =
∑

ri∈Ri

REF (ri [K] , k) (4.2)

x_count(Ri.A, ri [K] = k) =
∑

ri∈Ri

REF (ri [K] , k) (4.3)

x_sum(Ri.A, ri [K] = k) =
∑

ri∈Ri

ri [A] ∗ REF (ri [K] , k) (4.4)

In Equations 4.3 and 4.4, we are assuming the tuples with η in ri[A] are ignored.
For the x_sum() aggregates, we are assuming also, as in many OLAP scenarios (e.g.
Example 4.1), that the ri[A] values, when di�erent from zero, are always positive or
negative. The speci�c name and meaning of the extended aggregate is obtained by
changing pre�x x_ and using the corresponding RPP, according to Table 4.1. Being
PK the primary key in Ri, Equation 4.2 corresponds to count(*). When η is assumed to
be an invalid reference, the RR extended aggregates correspond to the standard SQL
aggregations computed over a joined relation on foreign key-primary key attributes,
with potential referential integrity violations.

Example 4.4. Consider the relaxed database of Figure 4.1. Let s ∈ sales. The
referentiality of the values in sales.cityId that corresponds to each of the valid tuples is
shown in Table 4.2.

The referentiality of the same foreign key that corresponds to the invalid tuples
using di�erent RPPs is shown in Table 4.3.

Next we show how to compute the di�erent extended aggregates that correspond to
the aggregate sum() using the corresponding RPP shown in Table 4.3.
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Table 4.2: Referentialities of foreign key sales.cityId values in valid tuples

REF (s [cityId] , k) LAX LON MAD MEX ROM
< 1,LAX,. . . , 54,. . .> 1 0 0 0 0
< 2,LAX,. . . , 64,. . .> 1 0 0 0 0
< 3,MEX,. . . , 48,. . .> 0 0 0 1 0
< 6,ROM,. . . , 53,. . .> 0 0 0 0 1
< 7,ROM,. . . , 58,. . .> 0 0 0 0 1
< 8,MAD,. . . , 39,. . .> 0 0 1 0 0

Table 4.3: Referentialities of foreign key sales.cityId values in invalid tuples with dif-
ferent RPPs
.

REF (s [cityId] , k) LAX LON MAD MEX ROM
Frequency weighted RPP
< 4,NXX,. . . , 33,. . .> 2/6 0 1/6 1/6 2/6
< 5, η ,. . . , 65,. . .> 2/6 0 1/6 1/6 2/6

Full RPP
< 4,NXX,. . . , 33,. . .> 1 1 1 1 1
< 5, η ,. . . , 65,. . .> 1 1 1 1 1

Restricted RPP
< 4,NXX,. . . , 33,. . .> 0 0 0 0 0
< 5, η ,. . . , 65,. . .> 0 0 0 0 0

Uniform RPP
< 4,NXX,. . . , 33,. . .> 1/5 1/5 1/5 1/5 1/5
< 5, η ,. . . , 65,. . .> 1/5 1/5 1/5 1/5 1/5
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Frequency weighted referential:

fw_sum(sales.amt, s [cityId] = LAX) =

1 × 54 + 1 × 64 + 0 × 48 + 2/6 × 33 + 2/6 × 65 + 0 × 53 + 0 × 58 + 0 × 39 = 150.66

Full referential: f_sum(sales.amt, s [cityId] = LAX) = 216.00
Restricted referential: r_sum(sales.amt, s [cityId] = LAX) = 118.00
Weighted referential: w_sum(sales.amt, s [cityId] = LAX) = 137.60

The last expression computed with the uniform RPP.

Aggregates for max() and min() can also be de�ned also under our framework. The
FR and RR variants are de�ned as follows

x_max(Ri.A, ri [K] = k)

= MAX({ri [A] ∗ REF (ri [K] , k) | ri ∈ Ri})
(4.5)

x_min(Ri.A, ri [K] = k)

= MIN({ri [A] ∗ REF (ri [K] , k) | ri ∈ Ri})
(4.6)

In order to compute the WR and, speci�cally, the FWR variants, we need to compute
the average of the maximum/minimum of the ri [A] values in all Ri of each of the
possible ways the valid reference k may be present in the set of invalid tuples. The
value that better �ts our assumptions as the number of possible ways a given valid
foreign key k may be present in the set of invalid tuples is

(
n
′

m

)
, where n′ = | { ri ∈

Ri | ri[K] /∈ Rj[K] } | and m = ⌈p(k) ∗ n′
⌉, assuming there are invalid tuples. The

referentialities of the invalid references are used here to determine the average a correct
reference will be present in the invalid tuples. To determine the ways the ri[A] values
of the invalid tuples may be present in this average and obtain the average of the
maximum/minimum of ri[A] of all the Ri instances, we procede as follows. Let (an′)
be the sequence of all the ri[A] values of the tuples in {ri ∈ Ri | ri[K] /∈ Rj[K]}
and, in the case of the w_max() functions, the items of (an′) ordered in descending
order. In this sequence, the ri[A] values that meet the condition ri[A] < amax, where
amax = MAX({ri[A] | ri ∈ Ri ∧ ri[K] ∈ Rj[K]}), are then substituted by amax.
Notice that this sequence may have repeated values.

With these de�nitions we have

w_max(Ri.A, ri [K] = k) =






MAX({ri[A] | ri ∈ Ri}) if n′ = 0

Pn′
−m+1

i=1 ai∗(n′
−i

m−1)
(n′

m)
otherwise

(4.7)
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Intuitively, (an′) has the the maximum values of ri[A] of all the
(

n
′

m

)
instances of Ri

where a correct reference may be present in the invalid tuples, ordered in descending
order. Thus de�ned, a1 will be the maximum of ri[A] in

(
n
′−1

m−1

)
instances, a2 in

(
n
′−2

m−1

)
,

and so on, up to complete the
(

n
′

m

)
instances.

The w_min() functions are de�ned accordingly, taking sequence (an′) in ascending
order and substituting amin = MIN({ri[A] | ri ∈ Ri ∧ ri[K] ∈ Rj[K]}) instead of
amax when ri[A] > amin.

Example 4.5. Consider the relaxed database of Figure 4.1. Let s ∈ sales. To compute
fw_max(sales.amt, s[cityId] = LAX) we procede as follows. The number of invalid
tuples is n′ = 2. The number of tuples that best �t the average of tuples value LAX

may be present in these invalid tuples is ⌈p(k) ∗ n′
⌉ = ⌈(2/6) ∗ 2⌉ = 1 considering the

frequency weighted RPP. The s[amt] values of the invalid tuples are 65 and 33, and the
maximum value of s[amt] in the valid tuples is 64. Then (an′) = (65, 64). According to
Equation 4.7 we have

fw_max(sales.amt, s[cityId] = LAX) =
65 ∗ 1 + 64 ∗ 1

2
= 64.5

As for the de�nitions of the total aggregates, that is, the value of Fx_agg(), using
the simpli�ed notation de�ned in Section 1.3, we have the following:

x_count(Ri.PK) =
∑

k∈Rj [K]

x_count(Ri.PK, ri [K] = k) (4.8)

x_count(Ri.A) =
∑

k∈Rj [K]

x_count(Ri.A, ri [K] = k) (4.9)

x_sum(Ri.A) =
∑

k∈Rj [K]

x_sum(Ri.A, ri [K] = k) (4.10)

x_max(Ri.A) = MAX({ri[A] | ri ∈ Ri}) (4.11)

x_min(Ri.A) = MIN({ri[A] | ri ∈ Ri}) (4.12)

4.2.3 Function Properties

Our extended aggregate functions must ful�ll certain properties to be considered clean
extensions of their counterpart standard SQL aggregations.

Ascending/Descending, An ascending feature as de�ned in [40] holds for the aggre-
gate functions x_count(*), x_count() and x_max(). That is, in our context, as tuples
are inserted or deleted, the aggregate functions may increase (i.e. ascending) or decrease
(i.e. descending). For x_sum() aggregate functions, there are cases where inserting or
deleting tuples implies an increasing or decreasing aggregate as in many OLAP sce-
narios (e.g. Example 4.1), where the measure attribute, when di�erent from zero, is
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always positive or negative. In these cases the aggregate functions x_sum() ful�ll an
ascending or descending feature. Functions x_min() ful�ll a descending feature. That
is, inserting/deleting tuples may imply a decreasing/increasing aggregate respectively.

Proposition 4.1. The extended aggregates x_count(*), x_count() and x_max() are
ascending aggregates. If ∀ri ∈ Ri, ri[A] ≥ 0 then the x_sum() functions are ascending
aggregates.

Proof. Since by de�nition REF (ri[K], k) ≥ 0, De�nition 4.5, following the de�ni-
tions of the extended aggregates x_count(*), x_count() and x_sum() and the FR and
RR variants of the x_max() aggregate functions, Equations 4.2 to 4.5, we can see that
inserting or deleting a tuple in Ri increases or decreases, respectively, the aggregates,
no matter if the tuple has a valid or an invalid reference in ri[K]. As for the WR
and FWR variants of the x_max(), Equation 4.7, aggregates, by the de�nition of the
sequence (an′), in the case a tuple is inserted, the aggregate will only possibly increase
when the inserted tuple meets the condition ri[A] > amax, no matter if it has a valid
or invalid reference in ri[K]. Deleting a tuple will only possibly decrease the aggregate
since, at most, an item of (an′) could decrease or could be eliminated. �

Equivalently, for x_min() and for x_sum() with negative values in the measure
attribute, we have the following:

Proposition 4.2. The extended aggregates x_min() are descending aggregates. If ∀ri ∈

Ri, ri[A] ≤ 0 then the x_sum() functions are descending aggregates.

Safety. If the referential integrity errors are repaired (in our context the referential
integrity errors are repaired by the substitution of invalid references with correct refer-
ences without varying the number of tuples) or if there are no referential errors, that is,
if the referential integrity constraint holds for all tuples, a safety feature holds for the ex-
tended aggregations, meaning that the answer sets will not be di�erent compared to the
ones from the standard SQL joined aggregations, that is, the SQL grouped attribute
aggregations computed over a joined relation on foreign key-primary key attributes.
Here, we assume η is invalid.

Proposition 4.3. If ∀ri ∈ Ri, ri[K] ∈ Rj[K] then Fx_agg() = Fagg().

Proof. This is easily seen observing that if there are no invalid tuples, ∀ri ∈

Ri, ri[K] ∈ Rj[K], then, by De�nition 4.5 we have REF (ri[K], k) = 1, if ri[K] = k

or 0 otherwise, which, in turn means, by the de�nitions of our extended aggregates,
that the tuples that account for a given extended aggregate are the tuples where
ri[K] = k, k ∈ Rj[K] where, in this context, Rj[K] = πK(Rj) since η is invalid. This
is precisely the semantics of the SQL grouped attribute aggregations computed over a
joined relation on foreign key-primary key attributes [36]. �

Summarizable consistency. For the WR and FWR count(*), count() and sum()
aggregate functions, a summarizable consistency property holds. That is, these dis-
tributive aggregate functions applied to an attribute is equal to a function applied
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to aggregates, that, in turn, are generated by the original aggregate function applied
over the attribute of each partition of the table. This property corresponds to the
summarizability feature described in [43]. That is, a distributive function over a set
should preserve the results over the subsets of its partitions. We will prove summa-
rizable consistency for aggregate w_count(Ri.PK) (w_count(*)). The proof is similar
for the other WR and FWR aggregates and is based on the de�nition of referentiality,
De�nition 4.5, and the completeness property of the RPP of these type of aggregates,
Equation 4.1.

Proposition 4.4. Let ri ∈ Ri and attribute PK its primary key. Then

w_count(Ri.PK) =
∑

k∈Rj [K]

w_count(Ri.PK, ri [K] = k) = | Ri |

Proof. By De�nition 4.2 we have

∑

k∈Rj [K]

w_count(Ri.PK, ri [K] = k) =
∑

k∈Rj [K]

(
∑

ri∈Ri

REF (ri[K], k))

=
∑

k∈Rj [K]

( ∑

{ri|ri[K]∈Rj [K]}

REF (ri[K], k) +
∑

{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

=
∑

k∈Rj [K]

( ∑

{ri|ri[K]∈Rj [K]}

REF (ri[K], k)
)

+
∑

k∈Rj [K]

( ∑

{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using De�nition 4.5 where ri[K] 6= k and ri[K] ∈ Rj[K] we have

=
∑

k∈Rj [K]

( ∑

{ri|ri[K]=k}

REF (ri[K], k)
)

+
∑

k∈Rj [K]

( ∑

{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using De�nition 4.5 where ri[K] = k we have

= |{ri|ri[K] ∈ Rj[K]}| +
∑

k∈Rj [K]

( ∑

{ri|ri[K]/∈Rj [K]}

REF (ri[K], k)
)

Using De�nition 4.5 where ri[K] 6= Rj[K] we have

= |{ri|ri[K] ∈ Rj[K]}| +
∑

k∈Rj [K]

(
p(k) ∗ |{ri|ri[K] /∈ Rj[K]}|

)

Since the RPP of the WR aggregate functions meets the completeness property we have

= |{ri|ri[K] ∈ Rj[K]}| + |{ri|ri[K] /∈ Rj[K]}| = |Ri| (4.13)

�
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Summarizable consistency for w_sum(Ri.A) can be formulated as

w_sum(Ri.A) =
∑

k∈Rj [K]

w_sum(Ri.A, ri [K] = k) =
∑

ri∈Ri

Ri.A

WR and FWR count(*), count(), sum(), max() and min() total aggregates are in-
variant wrt referential integrity repairs. As the referential integrity errors are repaired,
the total aggregate remains invariant wrt referential integrity repairs. That is, the total
aggregate remains constant during this type of repair processes. It is easy to see that,
for example, for the w_count(*) aggregate, by Equation 4.13 in Proposition 4.4, all the
tuples, with or without a valid reference, participate in the total aggregate and since
repairing a tuple is equivalent to transfer a tuple from set {ri|ri[K] /∈ Rj[K]} to set
{ri|ri[K] ∈ Rj[K]}, the total remains invariant. A similar reasoning can be applied
to the other aggregates. This result is also a consequence of the completeness prop-
erty (Equation 4.1) of the RPP of the WR and FWR aggregates. As for the x_max()
and x_min() aggregates, it is easily seen from Equations 4.11 and 4.12, that the total
aggregates do not depend on the validity of the foreign key.

RR and FR extended aggregates are plausible aggregates. A plausibleness property
means that the answer set represents a potential repair of the table. For the FR aggre-
gates, the repair consists in assigning to all the invalid references, the valid reference
we are considering. For the RR aggregates, this repair consists in never updating the
invalid reference with the valid value we are considering.

4.2.4 Assumptions and Probabilistic Interpretation

In order to obtain a valid inference from our extended aggregate functions, it is impor-
tant that the user bears in mind the following assumptions. Notice we are assuming
that Rj[K] is complete. That is, the set of referenced values are all the possible valid
values, possibly with the η value, depending on if it is considered valid or not. On the
other hand, attribute Ri.K is assumed to have potentially invalid references. Alterna-
tive approaches, may consider Ri.K invalid references valid after all, assuming that the
error is due to an incomplete set of references in Rj[K].

Users may assign di�erent RPPs, nevertheless, the Frequency weighted RPP as-
sumes that the probability that a certain foreign key valid value be the actual value
that should stand instead of the invalid value in a foreign key depends on the occurrence,
frequency, of that same valid value in the given foreign key. That is, the occurrence is
not completely random, it depends on the observed valid values. On the other hand,
we are assuming also that the occurrence of an invalid value does not depend on the
invalid values. As for the aggregate functions like sum() where the aggregate function
is applied over an attribute we are assuming that the foreign key and the invalid values
are not related to the attribute in question. That is, the values of the attribute do not
depend on the values of the foreign key.
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Now consider a set of binomial random variables each one of them represented by a
potentially valid reference of a given foreign key Ri.K. Suppose each random variable
has as its initial value the number of tuples where the value it represents is present
in Ri.K. Next, given our assumptions, suppose that each tuple of Ri with an invalid
reference in attribute K is an independent trial of a given random variable, say the one
represented by the potentially valid reference k ∈ Rj[K]. Let the probability of success
of the binomial random variable represented by k be the corresponding probability in
the RPP. A successfull trial, in this context, represents the fact that an invalid reference
is updated with value k.

Notice that if k ∈ πK(Ri) (if η is valid, then it should be considered also) then
|{ri | ri ∈ Ri ∧ ri[K] = k}|, in our context, is the lower bound of the corresponding
binomial random variable. If k /∈ πK(Ri), then the lower bound is 0, that is, no tuples
with the valid reference k in ri[K]. In both scenarios, the lower bound represents the
case where all the trials (tuples with referential integrity errors) were unsuccessful. That
is, the case where the actual value of attribute Ri.K in the invalid tuples is di�erent
from k. This number corresponds to the correct tuples with ri[K] = k. The upper
bound of this binomial random variable represents the case that all the tuples with
referential integrity errors were successful. That is, the case where all the actual values
of the invalid values of foreign key Ri.K are indeed k. We can see then that for the
random variables described above, if k ∈ πK(Ri), the probability is 0 that it takes a
value lower than |{ri | ri ∈ Ri ∧ ri[K] = k}|, once the invalid references are repaired
and the probability is 1 that it has a value lower or equal to |{ri | ri ∈ Ri ∧ ri[K] =
k}|+ |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj[K]}| once the repair process takes place. If k /∈ πK(Ri)
the corresponding values are 0 and |{ri | ri ∈ Ri ∧ ri[K] /∈ Rj[K]}| respectively.
Now observe we can compute the expected value of the binomial random variable by
adding to its initial value the product between the number of independent trials (invalid
tuples) and its corresponding probability in the RPP. This value represents the expected
number of tuples in Ri that will eventually end with value k in attribute K.

Following these ideas, we can see that the RR and FR variants of aggregates
x_count(*), x_count() and x_sum() are the lower and upper bounds, respectively, of
the value the corresponding standard aggregate may take when the referential integrity
errors are repaired. The WR and FWR are the expected value, again, of the corre-
sponding standard aggregates and its result depends on which RPP is considered. This
happens to be true also for the extended aggregates x_max() and x_min(), where the
RR and FR variants are the lower and upper bound in the case of aggregates x_max()
and vice versa in the case of x_min(). As for the WR and FWR variants, assuming(

n
′

m

)
, (Section 4.2.2), is the total of all the possible ways a valid reference k may be

present in the set of invalid tuples, where n′ = | { ri ∈ Ri | ri[K] /∈ Rj[K] } | and
m = ⌈p(k) ∗ n′

⌉, assuming there are invalid tuples, then, the meaning of Equation 4.7
in this context is also, as the other WR and FWR aggregates, the expected value of
the corresponding standard aggregate.
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4.2.5 Discussion

In order to evaluate the usefulness of the answer sets delivered by the WR and the
FR aggregations the following important aspect has to be discussed: How hard is to
compute all the plausible answer sets of the aggregate functions, how many are there
and does a repair process will eventually give the answer set delivered by the weighted
referential aggregations?

Let eRi.K
be the number of tuples in Ri with a referential integrity error in attribute

K, that is, eRi.K
= |{ri|ri ∈ Ri ∧ ri[K] /∈ Rj[K]}|. Also let a referential integrity

repair of attribute Ri.K be a new instance of Ri, with the same number of tuples, but
with the invalid values of attribute K replaced with valid values taken from the set
of values of Rj[K]. The number of potential referential integrity repairs of attribute
Ri.K is (| Rj[K] |)eRi.K . For our example in Figure 4.1 there are 25 potential referential
integrity repairs of attribute sales.cityId which is a big number considering there are
only 2 referential integrity errors. As for the number of plausible values of a given group
once a repair process of a given foreign key have taken place, given the interpretation
just discussed we can see that for the aggregate function count() there are eRi.K

+ 1 or
less plausible answers and 2(eRi.K) at most for the aggregate function sum(). For our
example in Figure 4.1 take the group represented by the value LAX. The plausible
answers for the aggregate function count() for the group represented by value LAX are
{2, 3, 4} since there are 2 invalid references. The aggregation fw_count() gives us 2.6
for value LAX since there are 2 valid tuples with this value, the total number of errors
is 2 and, as we saw in Example 4.3, the probability of value LAX in the corresponding
RPP is 2/6, considering η as an invalid reference. If we compute the probabilities
of each of the plausible answers considering the RPP of the same example we have
{(2, 0.44), (3, 0.44), (4, 0.11)}, where the �rst number of each pair is the plausible answer
and the second its probability. The cumulative probability of the plausible answer 3 is
0.88 with the plausible answers sorted in ascending order, meaning that the probability
is 0.88 that the answer be 3 or less once a repair process of foreign key sales.cityId takes
place.

In the same way, for the aggregate function sum() the plausible answers for value
LAX and their corresponding probabilities considering the same RPP as above, are
{(118, 0.44), (151, 0.22), (183, 0.22), (216, 0.11))}. The cumulative probability of the
plausible answer 151 is 0.66 with the plausible answers sorted on ascending order. As
we can see from Example 4.4 the corresponding value of the fw_sum() for value LAX,
Los Angeles, is 150.66.

We can see then that the proposed aggregations are a very e�cient way to com-
pute the estimated answer sets and the upper and lower bounds of the corresponding
aggregate functions, although we do not pretend to give an exact result of a repair
process.
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1: /* SQL query calling extended aggregation */
2: SELECT city.cityId, cityName, sum(amt), fw_sum(amt)

3: FROM city JOIN sales

4: ON sales.cityId = city.cityId

5: GROUP BY city.cityId, cityName;

6: /* SQL statements evaluating extended aggregation */
7: CREATE TABLE fw_temp AS

8: SELECT city.cityId AS K, cityName AS C,

9: count(*) AS rfreq,

10: count(sales.cityId) AS freq,

11: sum(sales.amt) AS sumagg

12: FROM city RIGHT OUTER JOIN sales

13: ON sales.cityId = city.cityId

14: GROUP BY K, C;

15: SELECT K as cityId, C AS cityName,sumagg AS sum,

16: /* sum(Ri.A, ri [K] = k) */

17: (sumagg + (

18: /* sum(Ri.A, ri [K] /∈ Rj[K]) */

19: COALESCE ((SELECT sumagg FROM fw_temp WHERE K IS NULL),0)*

20: /* p(k) */

21: (rfreq/

22: (SELECT sum(rfreq) FROM fw_temp

23: WHERE K IS NOT NULL )))

24: ) AS fw_sum

25: FROM fw_temp

26: WHERE K IS NOT NULL;

Figure 4.5: Query calling fw_sum() and SQL statements evaluating the extended ag-
gregation.
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4.3 Extended Aggregations Implementation

In Figure 4.5 we show a query in SQL calling sum() and fw_sum() grouped by city.cityId,
cityName, lines 2 to 5, and the equivalent SQL expressions obtaining the same answer
set, assuming there exists at least one valid reference in foreign key cityId, lines 7 to 26.
We �rst compute a temporal table named fw_temp, lines 7 to 14, with �ve attributes:

� the values of the attribute cityName, renamed as C, from the referenced relation
that correspond to the primary key city.cityId values referenced by the foreign
key sales.cityId;

� the foreign key sales.cityId valid values taken from city.cityId, renamed as K;

� the number of tuples with a given value in the foreign key sales.cityId, rfreq;

� the number of rows that have a value di�erent from null in a given attribute, to
compute aggregate function count(), is computed from the tuples with a value
di�erent from null in sales.cityId, freq;

� �nally, the sum() of attribute sales.amt for each group, as sumagg.

For this implementation we use an alternative way to express fw_sum(Ri.A, ri[K] = k).
By Equation 4.4 and De�nition 4.5 we have:

fw_sum(Ri.A, ri[K] = k)

= sum(Ri.A, ri[K] = k) + sum(Ri.A, ri[K] /∈ Rj[K]) ∗ p(k)

It is easy to see that both fw_count() variants, Equations 4.2 and 4.3, have similar
alternative expressions. To simplify exposition, η is considered an invalid reference. By
computing a RIGHT OUTER JOIN and a GROUP BY in lines 12 and 14 respectively,
if there are referential integrity errors, a row with a null value in attributes K and C

will be generated holding in attributes rfreq and sumagg the number of rows with
referential errors and the sum() of attribute sales.amt of these rows respectively. In
this same row, attribute freq will hold the number of invalid values di�erent from null.
Notice that the cardinality of table fw_temp is the number of valid referenced values,
plus one in case there are referential integrity errors. The SELECT clause that follows,
line 15, computes the sum() and fw_sum() for each value in the element list. We show
in lines 16, 18 and 20 the place where each element of the FWR aggregate is computed.
In line 17, for each tuple in the answer set, one for each valid reference, sumagg holds
the sum() of attribute sales.amt of all the tuples of the corresponding valid reference.
Each one of these values is added to the sum() of attribute sales.amt of all the tuples
with an invalid reference, or zero if there are no tuples with invalid values (COALESCE
clause in line 19), multiplied by the corresponding value in the frequency weighted
RPP (dynamically computed in lines 21 to 23). The additional overhead due to the
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1: /* SQL statement to get unreferenced keys */
2: CREATE TABLE w_temp AS

3: SELECT * FROM

4: fw_temp FULL OUTER JOIN

5: (SELECT Kpp, pp, city.cityName AS cc

6: FROM refpp JOIN city ON city.cityId = refpp.Kpp

7: WHERE refpp.pp > 0) AS foo

8: ON fw_temp.K = foo.Kpp;

9: /* SQL statement to compute weighted referential aggregate */
10: SELECT COALESCE(K,Kpp) AS cityId, COALESCE(C,CC) AS cityName,

11: (COALESCE (sumagg,0) +

12: (COALESCE ((SELECT sumagg FROM w_temp

13: WHERE K IS NULL AND Kpp IS NULL),0)*

14: (COALESCE(pp,0)))) AS wsum

15: FROM w_temp

16: WHERE K IS NOT NULL OR Kpp IS NOT NULL;

Figure 4.6: SQL implementation of w_sum() with a RPP in table refpp.

computation of the FWR aggregates comes from the sequential scan of table fw_temp.
To compute aggregate functions fw_count(*) or fw_count() we only need to substitute
attribute sumagg with attributes rfreq or freq respectively in the appropriate places.

We were able to design a clean function invocation for the SQL implementation of
the FWR aggregates since the frequency weighted RPP is computed dynamically. For
the other WR aggregates, the user is required to provide the corresponding RPP. In
Figure 4.6 we show an SQL implementation using table fw_temp which was computed
in the past SQL example and a RPP, refpp, with referenced and unreferenced foreign
key valid values associated to a probability in the RPP. An additional overhead linear
in the number of valid foreign key values should be considered due to the statement in
lines 2 to 8. Table refpp has two �elds: Kpp holds the referenced and unreferenced
values and pp holds their corresponding probability. The user has to be aware that for
the WR aggregates, the corresponding RPP has to satisfy completeness (Equation 4.1).
The SELECT statement in lines 10 to 16 covers the di�erent cases in order to give a
complete, summarizable consistent answer set. In a related work, in [54] we studied
the performance of several techniques to compute by means of SQL clauses referential
quality metrics. The SQL implementation presented above may be optimized with
one of the techniques studied namely the early foreign key grouping technique. This
technique evaluates a 'group-by' clause by foreign keys before executing, in our context,
the RIGHT OUTER JOIN. The rationale behind this optimization is reducing the size
of the referencing table before joining with the referenced table. In Figure 4.5, to
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SELECT city.cityId AS K, cityName AS C,

sum(rfreq) AS rfreq, sum(freq) AS freq,

sum(sumagg) AS sumagg

FROM city RIGHT OUTER JOIN

( SELECT cityId AS K,

count(*) AS rfreq, count(sales.cityId) AS freq,

sum(sales.amt) as sumagg

FROM sales

GROUP BY cityId ) as foo

ON foo.K = city.cityId

GROUP BY cityName, city.cityId;

Figure 4.7: Implementation of early foreign key grouping technique

implement the mentioned technique, the code in lines 8 to 14, may be changed to the
one presented in Figure 4.7. In Chapter 5 we present several experiments concerning
this optimization.

4.4 Method to Improve FWR Aggregations

We can improve the estimated answer sets of the FWR aggregations if we have another
foreign key or another attribute with values of higher quality in the same relation (i.e.
an attribute with less referential errors or zero errors). This scenario is possible when
two or more databases are integrated and there are relations that share a common pri-
mary key. A functional dependency must be de�ned between the two attributes and
the dependency may be in either direction. Although the database may not be in 3NF,
remember we are supposing a relaxed database and our goal now is to keep all data,
instead of repairing it. Suppose we have in a relaxed database two foreign keys Ri.Ka

referencing Rja
.Ka and Ri.Kb referencing Rjb

.Kb, where Rja
and Rjb

are two referenced
tables, and an attribute Ri.A over which an aggregate function is computed. In our
running example city may stand for Rja

and region for table Rjb
, the corresponding for-

eign keys are sales.cityId and sales.regionId respectively. Also suppose the following
functional dependency should hold between both attributes: Ri.Ka → Ri.Kb. We can
imagine this situation as if a set of elements represented by values in attribute Ri.Ka,
e.g. cities, should be contained in an element represented by a value of Ri.Kb, e.g. a
region.

First, consider the case where the user knows that the data quality of foreign key
Ri.Kb is higher than the quality of Ri.Ka. As discussed above, the invalid references
of foreign key Ri.Ka are considered as imprecise values, but now we know these values
represent elements that should be contained in an element represented by a value, say
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kb, of foreign key Ri.Kb. That is, a subset of the correct references of Ri.Ka, more
precisely the following values

{ri[Ka] | ri ∈ Ri ∧ ri[Ka] ∈ Rja
[Ka] ∧ ri[Kb] = kb}

This fact reduces the set of values that the imprecise reference could stand for.
Foreign key Ri.Kb de�nes a partition of the values of Ri.Ka.

Example 4.6. Look at the example of the relaxed database in Figure 4.1. Observe the
tuple with value 5 in sales.storeId. As discussed before, the frequency weighted RPP
may be used to compute how much a value that corresponds to an invalid reference
accounts for in the corresponding value of each valid reference. In this case, the value
of attribute sales.amt that corresponds to the invalid reference η in sales.cityId should
participate in each valid reference according to the frequency weighted RPP. So far,
this is our best estimate. Now, since the user trusts the foreign key sales.regionId, the
invalid reference mentioned above has a high probability that its `real' value be a city
in the Americas region. So the value of attribute sales.amt 65 should participate only
in each valid reference of the Americas region.

Let us analyze the case when the user trusts the foreign key Ri.Ka. To �x a correct
reference value instead of an invalid reference in Ri.Kb, we only need to know the func-
tionally dependent value. In both cases we have to consider a relaxed database. That
is, we expect referential errors even in the `trusted' foreign key. Also, the functional
dependency constraint may be violated. A feasible approach towards getting better
answer sets in the line of the aggregate functions proposed so far is the following.

Consider foreign keys Ri.Ka and Ri.Kb and attribute Ri.A, and the functional de-
pendency Ri.Ka → Ri.Kb. We divide our exposition in two parts. First, we assume
we know the value correspondence in the functional dependency. From the pairs of
values that de�ne the functional dependency we can derive a partition of a set of cor-
rect references of Ri.Ka. The set of valid references in Ri.Kb de�nes a partition of the
corresponding set of correct references in Ri.Ka. Next, a set of tuples in Ri may be as-
sociated to each correct reference, say kb in Ri.Kb. Observe that these tuples may have
invalid references in foreign key Ri.Ka. The values of attribute Ri.A that correspond
to these invalid tuples or the number of these tuples, in case we are dealing with the
count() aggregations, will participate in each valid reference of the group of values in
Ri.Ka de�ned by kb in Ri.Kb. This can be done by computing the frequency weighted
RPP considering {ri | ri ∈ Ri ∧ ri[Kb] = kb} as the referencing relation.

Example 4.7. Again, take for instance the relaxed database in Figure 4.1. Due to the
functional dependency cityId → regionId, the valid references of foreign key regionId
({AM, EU}) de�ne the following partition of valid references for foreign key cityId in
table sales:

{{LAX, MEX} , {ROM, MAD}}
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Table 4.4: Cases for foreign key to improve the FWR aggregations - Ri.Ka → Ri.Kb,
ri ∈ Ri

Ri.A values or tuples

Ri.Ka Ri.Kb grouped by

1 ka ∈ {ri[Ka] | ri[Ka] ∈ Rja
[Ka]} kb ∈ {ri[Kb] | ri[Kb] ∈ Rjb

[Kb]} ka

ka is valid kb is valid
2 ka ∈ {ri[Ka] | ri[Ka] /∈ kb ∈ {ri[Kb] | ri[Kb] ∈ Rjb

[Kb]} k ∈ {ri[Ka] | ri[Ka] ∈

Rja
[Ka] ∧ ri[Kb] = kb} Rja

[Ka] ∧ ri[Kb] = kb}

∃k ∈ {ri[Ka] | ri[Ka] ∈

Rja
[Ka] ∧ ri[Kb] = kb}

ka is invalid kb is valid.
∃ valid ref. in subset by kb

3 ka ∈ {ri[Ka] | ri[Ka] /∈ kb ∈ {ri[Kb] | ri[Kb] ∈ Rjb
[Kb]} k ∈ {ri[Ka] | ri[Ka] ∈

Rja
[Ka] ∧ ri[Kb] = kb} Rja

[Ka]}

∄k ∈ {ri[Ka] | ri[Ka] ∈

Rja
[Ka] ∧ ri[Kb] = kb}

ka is invalid kb is valid.
∄ valid ref. in subset by kb

4 ka ∈ {ri[Ka] | ri[Ka] ∈ Rja
[Ka]} kb ∈ {ri[Kb] | ri[Kb] /∈ ka

Rjb
[Kb]}

ka is valid kb is invalid
5 ka ∈ {ri[Ka] | ri[Ka] /∈ kb ∈ {ri[Kb] | ri[Kb] /∈ k ∈ {ri[Ka] | ri[Ka] ∈

Rja
[Ka] ∧ ri[Kb] = kb} Rjb

[Kb]} Rja
[Ka]}

ka is invalid kb is invalid

We can de�ne two frequency weighted RPPs, considering the two relations, each one
of them with the tuples that have the values of each of the above subsets in foreign key
cityId. Taking relation sales in Figure 4.1 the corresponding vectors are:

〈
2

3
,
1

3
〉 〈

2

3
,
1

3
〉

Contrast these two vectors with the vector shown in Example 4.3.

Table 4.4 shows the cases that should be considered depending on the values of
Ri.Ka and Ri.Kb in each tuple and how should a Ri.A value or tuple participate in
an aggregate function in order to improve the estimated aggregate answer sets preserv-
ing the summarizable consistency, ascending/descending and safety properties in the
aggregate functions where these properties apply.

So far we have assumed we know the correspondence between the values of Ri.Ka

and Ri.Kb according to the functional dependency Ri.Ka → Ri.Kb. But this is not a
realistic assumption since we are dealing with a relaxed database. Assume there are
violations to the functional dependency. In order to reconstruct feasibly the functional
dependency so we can apply the strategy explained above, we can follow the intuition
that a dependency violation appears with a much less frequency than a correct func-
tional dependency. On the other hand, a pair of values of Ri.Ka and Ri.Kb that appear
frequently associated in a number of tuples may be considered as a correct pair of val-
ues according to the functional dependency constraint. With these ideas in mind, we
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Table 4.5: Referential aggregate sum(), FWR and FWR improved with trusted foreign
key regionId. Both frequency weighted RPP are shown.

cityId cityName sum(amt) fw_sum(amt) fw_sum(amt) Freq. w. RPP Freq. w. RPP
improved improved

LAX Los Angeles 118 150.6 183.3 0.33 0.66

MAD Madrid 39 55.3 39.0 0.17 -
MEX Mexico 48 64.3 80.6 0.17 0.33

ROM Rome 111 143.6 111.0 0.33 -
-TOTAL - 316 414.0 414.0 1.0 1.0

can reconstruct the functional dependency by choosing for each correct reference ka in
Ri.Ka the correct reference kb in Ri.Kb to which ka is associated the most. Ties are
solved simply choosing one value. According to Table 4.4, if there is not a correct ref-
erence kb in Ri.Kb for ka, then the tuples with a ka reference in Ri.Ka belong to case 4.
If there are tuples with a ka in Ri.Ka associated to a correct reference kb in Ri.Kb, but
this pair of values was not the maximum pair of values for value ka then these tuples
will be treated as belonging to cases 2 or 3 since the user trusts foreign key Ri.Kb so
we assume ka is an error. Take the database in Figure 4.1. We show in Table 4.5 how
the aggregation fw_sum() may be improved by means of the foreign key regionId.

Now, if the trusted foreign key is Ri.Ka, we proceed in a similar fashion. A correct
reference of foreign key Ka determines only one value of Kb. If a pair of correct values
ka, kb have not the maximum frequency, reference in attribute Kb will be considered an
invalid value.

4.5 Summary

We improved SQL aggregations to return enhanced answers sets in the presence of
referential integrity errors. Referential integrity errors are treated as imprecise values
that stand for precise values, determined by a foreign key. We proposed two families of
extended aggregate functions: weighted referential (WR) aggregations and full referen-
tial (FR) aggregations. The de�nition of these extended aggregate functions is based
on a new concept named referentiality. Intuitively, referentiality is the degree to which
a foreign key value in a tuple that belongs to the referencing table, refers to a correct
reference in the referenced table. Extended aggregations represent a complement to
standard SQL aggregations and they are studied under a common probabilistic frame-
work. WR aggregations are based on referential partial probability vectors (RPPs)
associated with the foreign key. A particular family of the WR aggregations is the
frequency weighted referential aggregations (FWR) whose RPP is based on a dynami-
cally evaluated RPP computed from the frequency of tuples with a given reference in



Estimating and Bounding Aggregations 53

the referencing table. Full referential aggregations present an extreme repair scenario
where each aggregated group receives all the values corresponding to existing referen-
tial integrity errors. Full referential aggregations are helpful when the user needs to
include for each group all tuples with invalid references. Our extended aggregations
exhibit important properties, which are essential to consider them as correct extensions
of standard SQL aggregations. A WR aggregation for row counts is summarizable con-
sistent, ascending and safe. A WR sum aggregation is safe and summarizable consistent
and when it behaves as an increasing or decreasing function, then it is ascending or de-
scending, respectively. All of the mentioned aggregates, together with WR and FR max
and min aggregates, their total aggregate share the invariant with respect to referential
integrity repairs property. The max extended aggregates are ascending and min aggre-
gates, descending. Both ful�ll the safe property. On the other hand, FR aggregations
are safe and plausible. The latter property means the answer set represents a potential
repair for each group, that consists in assigning to all invalid references, the reference
that represents each group with a valid key. Equivalent SQL expressions are given to
compute our extended aggregates. Our proposal also includes a method to improve
answer sets taking advantage of other related attributes via a functional dependency.
Speci�cally, we analyze the case when such attributes are also foreign keys.



CHAPTER 5

Experimental Evaluation

We present an extensive experimental evaluation of our referential integrity local QMs
and of our extended aggregates with real and synthetic databases. We used �ve real
databases and one synthetic database, generated with the TPC-H DBGEN program.
All times are reported in seconds, unless stated otherwise.

We used multiple relational DBMSs, from di�erent software companies. To avoid
discussion on each DBMS speci�c features, performance and SQL compliance, we omit
their real name. This was also a request from end users to protect their privacy,
while allowing us to report our �ndings. We used standard SQL (ANSI) in our QMs
implementation, making it portable in all relational DBMSs.

5.1 Referential Integrity QMs in Real Databases

Real databases were used to assess the usefulness of our approach and the relative im-
portance of QMs. In the experiments presented below we asked several information
technology organizations to give us permission to discover referential integrity prob-
lems in their databases. The real databases came from a university, a government
organization and a retail company. In our discussion we change the actual table and
column names to protect privacy. Organizations did not agree to reveal attribute value
QMs since they revealed speci�c information about their operation. In general, query
running times are given in seconds.

Educational Institution

We now present interesting results on a database from a public higher educational
institution. Since this was a production environment, other database processes were
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Table 5.1: Educational institution: attribute level QMs.

Ri K rcom time
student studentId 19.0% 707

Table 5.2: Educational institution: attribute QM statistics.

Ri K min µ max σ

student studentId 1 3 9 1.52

running concurrently with our program, but the workload was similar in all cases; we
report the average running time. Due to security restrictions we could only explore one
important historic table containing important student information, including student
name, year, semester, course names, course grades, credits and grade point average.
We were not allowed to explore value level QMs, showing speci�c referential errors for
speci�c students. The experiment goal was to validate that student identi�cations were
actually valid, according to a reference table containing biographic and demographic in-
formation for all students ever registered at the institution. Results were discussed with
the Information Technology manager, two database developers and a system adminis-
trator. Results are presented in Table 5.1. The IT manager was aware there existed
some referential integrity issues. Database developers were surprised there was such a
high fraction of missing foreign keys for student identi�cation numbers. The system ad-
ministrator stated the historic table was constantly updated with new semester course
grades, but he said this table had a few changes in its de�nition in the past. Table 5.2
gives statistical information about the probabilistic distribution of invalid references.
It is noteworthy that there exists a value that contributes signi�cantly to acom() with
9 invalid references. The coe�cient of variation σ/µ states there is not much variation
around µ: most values contribute equally to acom().

Government Organization

Applying our approach on a di�erent database, we now present QMs on a driver's li-
cense database from a state in Mexico (state name omitted due to privacy restrictions).
This database contained driver's license information and vehicle registration informa-
tion for people living in certain counties. The database had historic tables containing
historic personal information, driving records, tra�c �nes and payments. There were
additional reference tables containing personal identi�ers issued by government, sim-
ilar to the US Social Security Number. These results were obtained during an early
stage of our project, where we did not compute all QMs. Results were discussed with
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Table 5.3: Government database; database level QMs.

R N rcom rcon

GovtDB 23 0.43% 0.01%

Table 5.4: Government database; relation level QMs.

Ri ki ni acom rcom

docum 3 4779940 2081465 14.52%
genId 3 2493855 15198 0.14%

the IT manager, a database applications developer and a database administrator. The
database level QMs are shown on Table 5.3, where we can see there are minor referen-
tial integrity problems. Incompleteness of foreign keys is clearly more important than
consistency, even though the database is denormalized. This was good news for the IT
manager, who did not anticipate having any important referential issues. Going down
one level, Table 5.4 shows a couple of relation level QMs. Users became aware referential
problems were prevalent speci�cally in relation docum which was the most important
relation being continuously updated. To a lesser extent, there were both completeness
and consistency problems in relation genId. Then going to a more granular storage
level, attribute level metrics are shown in Table 5.5. QMs a() and r() are signi�cantly
high for the county attribute. On the other hand, our prototype uncovered inconsis-
tency problems in attributes brName and model. Before computing our QMs, users had
told us there could be referential violations. Nevertheless, they had not imagined there
were serious problems in many cases.

Table 5.5: Government database; attribute level QMs.

Ri Aij com or con a() r()
docum county com 2076530 43.443%
docum citizen com 4935 0.103%
docum paymts com 0 0.000%
genId brName con 5628 0.226%
genId model con 4562 0.183%
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Table 5.6: Retail database; attribute-level QMs.

Attribute com or con a() r()
storeId com 9468 7.56%
format con 9672 7.72%
region con 15036 12.01%

Table 5.7: Retail database; a() error correlation.

ρ acom(storeId) acon(format) acon(region)
acom(storeId) 1.000
acon(format) 0.988 1.000
acon(region) 0.774 0.764 1.000

Retail Company

We present error correlation results with a database from a retail company. We focused
on a summary fact table, having ni = 125, 208 rows, used to perform store-level data
mining analysis and to build monthly and annual OLAP reports. This fact table had
been built from a database containing 6 billion transactions. From an analytical per-
spective this was one of the most important tables to perform OLAP and data mining
analysis for this company. We ran our QMs and they took just 10 seconds; the cor-
relation matrix was derived in 2 seconds. Table 5.6 shows attribute-level QMs only
for those attributes with non-zero error. Clearly, completeness is a major issue since
more than 7% of rows have an invalid FK for storeId. Looking at foreign attributes
we can see acon(format) is close to acom(storeId) which indicates we cannot tell if
format is consistent or not with the value in the referenced relation; given our conser-
vative de�nition we assume it is incorrect. On the other hand, acon(region) is far from
acom(storeId), which reveals a serious consistency problem. In fact, 15036-9468=5568
values are inconsistent despite the fact that the FK storeId exists. Table 5.7 shows a
high correlation between storeId and format, which is a consequence of the functional
dependency. However, region shows a lower correlation to either attribute, which tells us
that this attribute shows inconsistency in an independent manner. In practical terms,
this means repairing referential errors in storeId will take care of format, but region will
require a separate (independent) repair action.
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Users Feedback Summary

In general, users expected their databases to be clean and they asked us to keep their
speci�c organization names and speci�c record information con�dential. In some cases,
they also requested to keep the DBMS brand con�dential as well. We requested get-
ting access to critical databases that were updated and refreshed continuously. It did
not matter if such databases were denormalized since our program was prepared to
handle them. In particular, we focused on analyzing large historic tables whenever
possible since those tables are used in a wide variety of queries and reports. Under
the IT manager supervision we were allowed to compute our QMs with automatically
generated SQL queries. When the referential integrity prototype had generated results,
these results were discussed with the IT managers, database developers and database
administrators. We presented results hierarchically going from the database level QMs
down to attribute level QMs. Based on �ndings, users requested to browse a sample
of records with referential errors. Some users were intrigued by results and asked us to
explain how our QMs were computed with SQL queries.

We asked the IT managers the following questions. Are you surprised QMs in-
deed uncovered some referential problems?, what level of granularity of QMs would you
compute on a frequent basis?, which is a more critical dimension in your database: com-
pleteness or consistency?, for which tables is it critical to maintain referential integrity?
We asked database developers and database administrators the following questions.
Why do you think table X has referential errors?, when table X is denormalized, how
is it computed?, how frequently is database X updated?, is table X updated in batch
or continuously, inserting one record at a time?, is there an explanation for attribute Y
to have high levels of referential errors, compared to other attributes?

In general, users feedback about our tool was positive. Users stated that QMs helped
them to discover unexpected referential integrity problems and to ensure data quality
policies and procedures were working properly. Since most tables were normalized, QMs
on foreign keys were more interesting. Database level QMs were not particularly useful
on the three real databases because relative error was high. Attribute level QMs on for-
eign keys (completeness) were particularly useful in OLTP systems or isolated databases
in which referential integrity was routinely enforced. That is, completeness was more
important for databases where records were inserted by transactions. Attribute level
QMs on foreign attributes (consistency) were valuable to identify stale records in large
fact tables and to detect inconsistent attributes in denormalized tables used for data
mining purposes. That is, consistency was more important for a data warehouse where
there exists a large fact table with historic information and where there are denormalized
tables computing aggregations from the fact table. Database and relation level QMs
helped detecting unforeseen referential integrity issues. Attribute and value level QMs
helped diagnosing (explaining) referential errors and preparing a repair plan. Users
feedback is summarized in Table 5.8.

We now present a more detailed discussion of users comments. A system manager
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Table 5.8: Users feedback.

QM level usefulness application user
database low detection IT manager
relation medium detection IT manager/DBA
attribute high diagnosis DBA/developer
value high diagnosis/repair DBA/developer

stated that QMs revealed problems he was not aware of, and another IT manager
stated that QMs helped him obtain a clear idea about data quality. A DBA for a data
warehouse stated that QMs could enrich metadata to test data loading scripts in order
to detect problems while tables are being refreshed. An IT manager said QMs could
justify a plan to improve data quality when integrating databases into a central data
warehouse. QMs provided varied usefulness depending on each type of user. QMs at
the relation and database levels were more useful for IT managers since they give a high
level referential integrity quality assessment. QMs at the attribute and value level were
more useful for database application developers, who suggested integrating QMs with
testing database application code. FK value level QMs (invalid FK frequencies) were
interesting to all users (e.g. a FK appearing in many relations) because they provided
evidence about problems, but users stated they preferred to run the prototype on their
own. An IT manager and a DBA stated that QMs should be collected over a long period
of time (e.g. every week), especially for large historic tables containing transaction data,
to track data quality and prevent future data quality problems.

5.2 Extended Aggregations in Real Database

We present the use of our extended aggregations in two real databases.

Government Organization

We present our extended aggregates on a database from a government organization
responsible of supervising education services in a state in Mexico (state name omitted
due to privacy restrictions). It includes records of 1.7 M enrolled students in 16,000
public and private schools. Evaluation of extended aggregations was carried out on the
DBMS Oracle 9i.

The government organization supervises the preschool, elementary and middle school
systems. It veri�es that certain minimum services are provided such as student evalu-
ations every two months, scholarships, scholastic breakfasts and others.

Every annual cycle each school sends information to a centralized database about
its enrolled student population, and every two months sends information about its
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active student population. Nevertheless, more than 30% of the registered schools are
not connected to the database. These schools represent about 10% of all the student
population, but are the schools with the lowest budget. It has been detected that the
records that come from these schools have a high incidence of referential integrity errors
mostly due to typo errors in the �elds of studentId and schoolId, that is, the foreign keys
that reference the tables of the enrolled student population and the registered schools,
respectively. Before using extended aggregates, the government organization discarded
entirely the tuples with referential errors loosing valuable data.

Several assumptions about the database were discussed and were validated by the
user in order to obtain valid inferences from the extended aggregates:

� the number of erroneous tuples was proportional to the number of records sent
by a given school

� a tuple with an erroneous foreign key in the schoolId �eld came from a school that
was not connected to the database

� a referential integrity error did not depend on the particular type of entity that
the corresponding tuple came from

� when computing aggregate functions where an attribute is aggregated (e.g. sum()),
this attribute did not depend on the foreign key (e.g. the amount received per
student did not depend on the studentId since all students receive monthly the
same amount)

Our extended aggregations have been used to answer queries related to information
about how many services and of what type a student or a school have received. By
identifying the schools that potentially can send data with referential integrity errors,
our method to improve our FWR aggregations, refere to Section 4.4, is being used to
obtain better estimations in this set of schools. When the number of referential integrity
errors is low, the FR aggregates are used to estimate upper bounds in sums and counts.
Users have told us that the computed estimates are useful. Also they have validated
the accuracy of the estimates, since the invalid tuples are �xed during a parallel data
cleaning e�ort. This experience also shows how our techniques can be combined with
other strategies.

Retail Company

An important retail company in Mexico listing at the stock market since more than
25 years ago, tried our extended aggregates in one of its applications to assess the
usefulness of our approach. Our aggregates were used in a reward program applied to
agents. The agents are advisers working in specialized departments that participate in
sales and they earn commissions based on sales depending on the number of sales and
the total amount sold of their corresponding products. In every point of sale, a seller
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Table 5.9: Transaction detail in a given point of sale (p. of s.).

date store p. of s. transId clientId agentId productId amt sellerId
02/23/07 2.. 5 1276 44...547 14545779 147409814 $22, 347.83 73...03

5 1277 44...547 147409821 $16, 086.96 73...03

5 1278 15...577 12017425 145215677 $1, 477.39 73...03

5 1279 21...430 12017378 145215684 $2, 826.09 73...03

5 1280 21...430 145577225 $773.91 73...03

5 1281 43...940 145577218 $513.04 73...03

5 1282 23...948 145573784 $4, 513.04 73...03

Table 5.10: Total commission per agent and bonus computed using fw_sum()

concept amt
Total sales amt. $1

′
654, 404

Total sales amt. $110, 001

without agent
Commission paid $154, 440

Bonus paid $11, 000

date agentId amt. comm. sales bonus
02/23/07 14545779 $282, 231 $28, 223 12 $1, 760

02/23/07 12017425 $438, 111 $43, 811 13 $1, 906

02/23/07 12017378 $138, 168 $138, 16 9 $1, 320

03/14/07 15084536 $333, 949 $33, 394 17 $2, 493

03/14/07 15213754 $171, 440 $17, 144 14 $2, 053

03/14/07 12017033 $180, 504 $18, 050 10 $1, 466

registers the information related to a sale including the agent's code, but in several
occasions this code is omitted or is erroneous, since this particular data is manually
inputted. The company has separated �le systems in several stores nationwide and
the information is daily concentrated in a central Oracle database. In this centralized
database, about 7% of the total number of sales that should appear with an agent's
code, have an invalid value in this �eld. Table 5.9 shows several registers of how the
information is received, some of them with no information in the agent's code �eld,
agentId.

The commission is paid after a given time to avoid paying an agent when a product is
returned. A bonus is added to compensate the sales that were inputted without a valid
value in agentId. This bonus is computed using the fw_sum() aggregate considering the
total amount of sales without an agent code and taking into account the total number
of sales where an agent took part. Table 5.10 shows the amount of sales per agent, the
commission earned and the bonus computed using fw_sum().
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Table 5.11: PDFs used to insert invalid values.

PDF Probability function Parameters

Uniform 1

h
h = |Rj|

Zipf 1/k
s

HM,s
M = |Rj|

s = 1
Geometric (1 − p)n−1p p = 1/2

Normal 1√
2πσ2

exp
(
−

(x−µ)
2

2σ2

)
µ = 3000
σ2 = 1000

5.3 Synthetic Databases

We conducted our experiments on a database server with one Intel Xeon CPU at 1 GHz
with 256 MB of main memory and 108 GB on disk. The relational DBMS we used was
Postgres Version 8.0.1.

Our synthetic databases were generated by the TPC-H DBGEN program, [64], with
scaling factors 1 and 2. We did not de�ne any referential integrity constraint to allow
referential errors. We inserted referential integrity errors in the referencing fact table
(lineitem) with di�erent relative errors (0.1%, 0.2%,. . . , 1%, 2%,. . . , 10%). The invalid
values were inserted following several di�erent probability distribution functions (pdfs)
including geometric, uniform, zipf and normal, and in three foreign keys (l_orderkey,
l_partkey and l_suppkey).

The results we present in this section, unless stated otherwise, use a default scale
factor 1. The referencing table, lineitem and the referenced tables, orders, part and
supplier have the following sizes: 6M, 1.5M, 200k and 10k tuples, respectively. Invalid
FK values were randomly inserted according to four di�erent pdfs, as shown in Table
5.11. Elapsed times are indicated in seconds.

Query Optimizations to Evaluate QMs

First, we evaluated the left outer join optimization on foreign keys, summarized in
Table 5.12. Performance degrades signi�cantly for the set containment query, as the
cardinality of the referencing relation increases. On the other hand, it is noteworthy
time grows more slowly for the left outer join query. To explain why set containment
queries are slower than left outer join queries, we obtained the query plans for both
types of queries on two DBMSs. We found that the query optimizer in DBMS X
�rst produced a sequential scan for the nested subquery and then a nested loop join
to determine the negated set containment. The optimizer from DBMS Y produced a
nested loop join for the same query, which was more e�cient. On the other hand, the
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Table 5.12: Query optimization: left outer join and set containment

ni Left outer join Set containment
10,000 25 60
20,000 25 240
30,000 29 600
50,000 35 1560
100,000 37 6120

Table 5.13: Query optimization: early vs. late foreign key grouping.

ni Late Early FK grouping

FK group Size 4 Size 5
1'200,000 54 67 56
2'500,000 91 136 85
5'000,000 165 172 134

left outer join was generally computed with a merge sort or hash join. These results
supported using a left outer join by default.

We compared the performance between the late and the early foreign key grouping
optimization for small groups of invalid foreign key values. If the number of distinct
values in the foreign key was similar to the relation cardinality (i.e. large) applying
early foreign key grouping was counterproductive. But if the number of distinct values
on foreign keys was smaller, then this optimization produced a signi�cant speedup. In
Table 5.13 we present performance for di�erent cardinalities, considering foreign key
groups of size 4 and 5 (meaning each invalid value appeared in 4 or 5 tuples on average).
Times become better for group size 5. Small referenced relations or large referencing
relations having few distinct FK values make early foreign key grouping an essential
optimization, since it signi�cantly reduces the size of the relation to be joined with all
its referenced relations.

Figure 5.1 analyzes the impact of referential errors on time performance with two
representative pdfs. We can see a() has a marginal impact on performance as it in-
creases. The impact is more important for the zipf distribution. Summarizing, the size
of a relation is far more important than the number of invalid values.

Statistics on QMs

Table 5.14 shows a summary of statistics of QMs with a �xed r() = 1% for the lineItem
table and the partId column. Observe that for the geometric pdf one invalid value pro-
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Figure 5.1: Early FK grouping variant with two pdfs.

Table 5.14: Univariate statistics with di�erent pdfs.

pdf min µ max σ

Uniform 1 10 22 3
Zipf 1 7 6002 82
Geometric 1 3505 29873 7825
Normal 1 120 372 121
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Figure 5.2: Accuracy of the fw_sum() aggregate function.

duces many referential errors. On the other hand, for the uniform pdf all invalid values
contribute evenly to referential errors. The geometric pdf has the highest standard
deviation, meaning there are values far from the mean, that signi�cantly contribute to
error.

Approximation Accuracy of Extended Aggregations

In order to evaluate the approximation accuracy for the WR aggregations, we conducted
the following experiments. We inserted referential integrity errors in the foreign key
l_suppkey of referencing table lineitem with a 10% error rate. The erroneous values
were generated so that they follow the uniform, Zipf and Geometric pdfs introduced
above and were inserted randomly in order to simulate a scenario where the errors
occurred in an independent manner. Before doing so, we stored the valid references on
another table in order to �repair" the invalid references when needed. We simulated a
process of gradually repairing the database and within this process we also computed our
proposed aggregate functions. Remember that in our framework, we are not interested
in how repairs are done, but in getting an approximation of a complete answer set. We
then evaluated the FWR aggregations and their corresponding standard SQL joined
aggregations. Next, we repaired a 2% random subset of the original invalid references;
our FWR aggregations and standard SQL joined aggregations were computed again.
We repeated this process until the table was totally repaired. In each iteration we kept
the aggregate values for each di�erent group in order to compare such values with the
�correct" ones on the �nal repaired table.

Figure 5.2 shows the accuracy of fw_sum() with attribute l_extendedprice in table
lineitem. The coe�cient of variation (σ/µ) of attribute l_extendedprice for the invalid
tuples was 0.609 meaning that the value of this attribute in the invalid tuples had a
low variance. Each plot, one for each pdf, shows the maximum and minimum correct
aggregate values eventually reaching their corresponding values where the error rate is
0%. As we can see, the lines that correspond to the fw_sum() values are almost constant



Experimental Evaluation 66

Table 5.15: Value correspondence between w_sum(l_extendedprice) computed with
di�erent pdfs assuming 10% errors in foreign key l_suppkey and several statistics.
Figures sorted in descending order to show similarities.

PDF hp/lp
∗ w_sum() statistic

∗∗
statistic value

Constant hp 22, 972, 499, 088 hp sum() +sum() inv. tup. 22, 972, 499, 088

Geom. (p = 0.8) hp 18, 381, 997, 908

Zipf. (M = 10k, s = 1) hp 2, 366, 677, 292

Uniform (h = 10k) ∗∗∗
25, 197, 285 sum() + avg() inv. tup. 22, 361, 380

Uniform (h = 10k) ∗∗∗
18, 076, 153 sum() + avg() inv. tup. 15, 204, 441

Zipf. (M = 10k, s = 1) lp 15, 166, 175 lp sum() 15, 166, 175

Geom. (p = 0.8) lp 15, 166, 175

Constant lp 15, 166, 175

∗ hp - valid reference with highest probability, lp - valid reference with lowest probability
∗∗ inv. tup. - invalid tuples
∗∗∗ For Uniform pdf, valid references that correspond to max(w_sum()) and min(w_sum())

(horizontal line), meaning that the estimated values become increasingly similar to the
�nal real aggregate value. The function fw_sum() converges to the standard SQL joined
aggregation sum(). When the error rate is 0% the plotted value on the right side in each
plot, corresponds to the totally repaired table. For all the groups with invalid tuples,
we computed the average of the absolute di�erence between the fw_sum() with a rate
of 10% of referential integrity errors and the correct sum() and this average was never
above 1.46% the value of the average of the corresponding correct element of sum().

In the next experiment we evaluated the approximation accuracy for the WR aggre-
gations, but with di�erent RPP. We simulated the probability that a referential error
was in fact a given value following certain pdf. We obtained the aggregate values of
w_sum(l_extendedprice) that corresponded to the valid foreign key value with the
highest and lowest probability, hp and lp respectively, with di�erent RPPs assuming
10% errors in foreign key l_suppkey. The Constant pdf consists in assigning to one
potentially valid reference a probability of one meaning that all the invalid references
are, in fact, the corresponding correct reference and, obviously, the rest values have
probability zero. Depending on the distribution, the values were di�erent. We com-
puted the sum() and the avg() of attribute l_extendedprice taking into account only
the invalid tuples (i.e. with an invalid reference in attribute l_suppkey; inv. tup. in
Table 5.15), and we also obtained the sum() of attribute l_extendedprice of the tuples
belonging to the valid reference with the highest and lowest probability. In Table 5.15,
we present the di�erent w_sum() values sorted on descending order. We can see a cor-
respondence between the obtained w_sum() values and the statistics. By pairing the
aggregate values and the statistics we can see a consistency with the behavior of each
of the probability distribution functions. Observe the best estimate for the distribution
of the invalid values is the Uniform pdf, which is precisely the pdf used by TPC-H.



Experimental Evaluation 67

Figure 5.3: Comparing time performance of aggregations.

Time Performance of Extended Aggregations

The queries used to compute the WR, FWR and FR aggregations �rst compute an
auxiliary table, fw_temp in Figures 4.5 and 4.6. In SQL, this table is computed with a
RIGHT OUTER JOIN between the referenced table and the referencing table with sev-
eral aggregations depending on the function answer set that is needed. For example, for
the fw_sum() extended aggregation it computes both count() and sum() for each group
and the corresponding values for the invalid references. It also computes the aggregate
values of the invalid references, taken such references as a single group. The tuples in
this group can be identi�ed because the attribute that corresponds to the referenced
primary key is η. Therefore, this group of invalid references can be constructed. These
computations are done over the auxiliary table. The size of this table is the number of
distinct values that are in the foreign key.

We study the time performance of extended aggregations in Figure 5.3 for the aggre-
gate functions fw_sum() and fr_sum(). Our experimental results evaluate performance
of extended aggregation against standard SQL joined aggregations with foreign keys
l_orderkey and l_suppkey of relation lineitem, with di�erent rates of errors inserted
as described before. In general, time performance is good, slightly slower than SQL.

As we can see, there are even instances where our proposed aggregations perform
better than the standard SQL joined aggregations. This is because: (1) an early ag-
gregation grouping is computed before executing the join operation (push �group by"
before join) and the remaining computations are done on the auxiliary table described
earlier. For the sum() aggregations, performance depends on the size of the referenced
table, as can be seen in Figure 5.3. For the WR aggregates, the additional computations
are done over the auxiliary table. This overhead is linear in the size of the referenced
table.

Since obtaining the auxiliary table prove to be the most demanding computation
while computing our extended aggregates, we isolated its calculation and measure its
performance in several scenarios. In Table 5.16 we can see the time it took to compute
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Table 5.16: Time performance computing auxiliary table with several referenced tables
of di�erent sizes and using lineitem as referencing table, time in seconds.

Referenced tables
Computation technique supplier part orders

10k 200k 1.5M
Early `group by' optim. 73 83 176
No optimization 239 266 286

the auxiliary table with lineitem as referencing table, and as referenced tables supplier,
part and orders. The computations were measured with and without the early foreign
key grouping optimization technique. As we can see the size of the referenced table
plays an important role while measuring time performance.

Summarizing, the performance of our extended aggregations computation depends
on the size of the referencing table, the number of invalid values and the number
of distinct values in the foreign key attribute. Using the early foreign key grouping
optimization technique should be incorporated in an implementation of the extended
aggregates.



CHAPTER 6

Related Work

There is extensive work on maintaining referential integrity. For instance, [46, 51] iden-
tify conditions to avoid referential problems during data manipulation. Reference [35]
presents a model for referential integrity maintenance during run-time execution. There
is a proposal to check deferred referential integrity using a metadata network [15], where
inclusion dependencies are considered and each foreign key value is veri�ed to have a
corresponding matching key value. No analysis is done on measuring inconsistency, nor
on algorithm performance. Implementation of update and delete referential actions,
full and partial types, reference types, are features that have not been fully completed
in commercial DBMSs [65].

The SQL language has supported referential integrity by de�ning foreign keys and
referential actions. A survey on SQL query optimization is given in [16], explaining
when to perform a �group-by" operation before a join operation (early or eager), instead
of joining tables �rst and then performing the �group-by" operation (late or lazy).
This optimization is applicable when the number of result groups is small and when
a di�erent evaluation order does not change result correctness. Our early foreign key
grouping is a particular case of this optimization, but we also consider null key values
and we generalize it to build a cube of foreign keys. SQL aggregations are extended
to return approximately consistent answer sets when there exist invalid FKs [53]; this
approach dynamically detects referential errors and improves answer sets in two ways:
(1) by distributing aggregated values in a measure attribute from invalid FK values
among valid FK values; (2) by exploiting valid FK values in another attribute to make
distribution more accurate.
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Referential Integrity QMs

To our knowledge, data quality metrics have not been proposed with respect to refer-
ential integrity. A proposal of simple metrics for data quality in relational databases
is given in [50], where completeness and soundness metrics are introduced. These met-
rics compare the state of the database to the data from the real world such database
is supposed to represent. Our proposed QMs measure the completeness of references
among relations and to some extent QMs on foreign attributes measure soundness. We
do not deal with the problem of measuring if a valid reference is indeed valid. Con-
cerning this aspect, [66] introduces an attribute-based model that incorporates data
quality indicators and focuses on two dimensions: interpretability and believability. In
[62] the authors introduce an algebra to measure completeness in several data quality
dimensions, considering basic relational set operations, null values and the open/closed
world assumptions, but ignoring referential integrity.

A model linking data quality assessment to user requirements is proposed in [27].
In [59] a classi�cation of objective quality measures is presented. In particular, their
simple ratio function measures the ratio of desired outcomes to total outcomes. The
authors suggest that consistency could be measured by these means. This is related
to our referential integrity error de�nitions. In [45] the authors investigate the correct
integration of relationship instances integrated from di�erent source databases, focusing
in detecting semantic con�icts and reconciling them. This proposal can be used as
pre-processing to get QMs, since semantic con�icts must be solved before quantifying
referential integrity errors. Referential integrity metrics have been studied considering
the model design point of view. Reference [12] introduces two metrics to aid model
designers make better decisions by analyzing referential paths and the number of foreign
keys in a schema. The authors do not consider invalid keys or denormalized relations.
In contrast, our approach is applicable after the database logical data model has evolved
from its original design or for database integration. Authors in [63] introduce metrics to
evaluate the e�ectiveness of conceptual models for a data warehouse, which complement
logical and physical design tools.

We now explain our approach from a broader perspective. Data quality problems
related to referential integrity are described in [37]. The authors distinguish between
operational and diagnostic data quality metrics. In this work referential violations
between two tables are called poor join paths. Our metrics at the database and relation
levels are diagnostic and frequencies of invalid foreign key values are operational since
they provide insight into how to �x referential errors.

Healthcare data warehouses represent a prominent example, where data quality
(missing information, inconsistency), data integration from diverse sources (structured
and semistructured) and privacy (con�dentiality of patient records) make database
management di�cult [6]; several of such issues are related to referential integrity main-
tenance among tables coming from di�erent sources. On a closely related topic, [5, 26]
study data quality issues in data warehouses considering the time dimension for aggre-
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gate queries; in our work we simply detect referential integrity errors on the current
state of the database, but we do not track when referential errors were introduced.
Therefore, discovering and explaining referential errors back in time is an interesting
issue for future work.

Discovering database relationships and repairing inconsistent databases are impor-
tant related problems. In [24] the authors propose techniques to automatically identify
PK/FK relationships between tables coming from di�erent databases; in our case we
assume such relationships are manually speci�ed by the user or come from a logical
data model. Therefore, this approach can be applied as a pre-processing phase before
computing referential integrity QMs. In [7] the authors introduce a cost framework to
aid in the restoration of a database with integrity constraints (user-de�ned rather than
referential) violations via value modi�cations. Constraints in an inconsistent database
can be satis�ed by incorporating constraint checks in equivalent rewritten queries to
given queries [29]. Both approaches apply heuristics to repair databases, either stati-
cally (by updating tables) or dynamically (by rewriting queries). In contrast, our work
diagnoses problems and gives detailed information to the user in order to explain and
repair referential errors. Therefore, our proposal can serve as a pre-processing step
before applying any heuristic to repair invalid values.

Our distributed QMs extend quality metrics de�ned on a single database [54]. We
generalized a local database state and studied the problem from a distributed per-
spective. Also, our distributed QMs identi�ed new issues related to distributed query
optimization. Measuring replica consistency in distributed databases is an important
related problem. The replication has been proposed in several ways such as horizontal
or vertical fact replication, complete or partial dimension table replication [22]. It is
common that all these techniques turn the systems complex and di�cult to manage [1].
Replica consistency has received much attention in recent years. In [58] the authors pro-
pose two update propagation strategies that improve freshness, a concept that supposes
that replica consistency in a distributed database can be relaxed. These strategies are
based on immediate propagation, without waiting for the commitment of the update
transaction in Master-Slave con�gurations. In [57] the authors propose a refreshment
algorithm to maintain replica consistency in a lazy master replicated database based
on speci�c properties of the topology of replica distribution across nodes. Both works
propose strategies towards maintaining replica consistency in a database in a Master-
Slave con�guration. Our work supposes an a posteriori scenario where inconsistency is
probably present and with our gcur metric the user wants to measure it. Our work is
oriented towards highlighting the bene�ts to use our methods in a distributed database,
in a Master-Master con�guration. In [8] the authors propose two lazy update protocols
that can be used in a distributed data warehouse, that guarantee serializability but
require that the copy graph be a directed acyclic graph. The authors propose a solu-
tion to prevent the lazy replication inconsistency problems in a particular distributed
con�guration.

In [30] the authors introduced a coherency index to measure replica consistency (co-
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herency). They examine the trade o� between consistency and performance, and show
that in many situations a slight relaxation of coherency can increase performance. In
our work, we focus on measuring the quality of the database with respect to replica and
referential integrity consistency and evaluate how to obtain a fast diagnosis considering
di�erent replica scenarios.

In [69] and [70] the authors proposed several metrics to measure the quality of
replicated services where the access to a replicated database is included. They show a
middleware layer that enforces consistency bounds among replicas allowing applications
to dynamically trade consistency for performance based on the current service, network,
and request characteristics. They measure availability while varying the consistency
level, the protocol used to enforce consistency, and the failure characteristics of the
underlying network. However they measure the quality of the service (access) and not
the quality of, as in our case, the replicated data.

In [42] the authors propose an approach to repair a crashed site in a distributed data
warehouse that uses data replication to tolerate machine failures. Their approach uses
timestamps to determine which tuples need to be copied or updated. Our repair strategy
is an on demand technique, that also queries sites but does not require timestamps. It
is based in the e�cient computation of the symmetrical di�erences among replicas.

Extended Aggregations in Databases with Referential Integrity

Errors

Research on managing and querying incomplete data has received signi�cant attention.
In [17] the authors de�ne a set of extended aggregate operations that can be applied to
an attribute containing partial values. These partial values, which generalize applicable
null values [21], correspond to a �nite set of possible values for an attribute in which
only one of these values is the true one. The authors develop algorithms for several
aggregate functions that deliver sets of partial values. In our extended aggregates, we
explore a similar idea, assuming that an incorrect reference represents imprecise data.
The source of this value is an element of the set of valid references of the foreign key. This
assumption, although strong, happens to be useful when we know the tuple holding the
incorrect reference comes from a speci�c source database. Getting consistent answer
sets from a query on an isolated database, where some integrity constraints are not
satis�ed is studied in [14]; the authors focus on time complexity and identify the set
of inclusion dependencies under which getting a consistent answer set is decidable. In
contrast, in our work we focus on aggregations, where referential integrity constraints
are not satis�ed. In [13] the authors identify two complementary frameworks to de�ne
views over integrated databases and they propose techniques to answer SPJ queries
where there are missing foreign key values; the authors prove the problem of getting
consistent answer sets is signi�cantly di�cult (non-polynomial time). In [3] the authors
study scalar aggregation queries in databases that violate a given set of functional
dependencies. They study the problem of computing the ranges of all possible answer
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sets for aggregation queries, which results in a big search space. This approach has
the bene�t that, although the possible answer sets are incompletely represented by a
range of values, the computations can be done in polynomial time. The authors do
not address the speci�c problem of computing aggregations in the presence of invalid
foreign keys.

There are several approaches that allow to dynamically obtain consistent answers,
that is, answers that do not violate integrity constraints, without modifying the database.
In [29] based on query rewriting, the authors proposed a system named ConQuer that
retrieves data that is consistent wrt key constraints given by the user together with
their queries. A similar strategy is used in [33], but for consistent answering of con-
junctive queries under key and exclusion dependencies. This is done by rewriting the
query in Datalog with negation. In [19] the authors present a framework for computing
consistent query answers. They consider relational algebra queries without projection,
and denial constraints. Since their framework can handle union queries, it can ex-
tract inde�nite disjunctive information from an inconsistent database. All this is done
by producing a Java program which computes the consistent answers. In contrast in
our work, an attempt is done to use in some way the inconsistent tuples to obtain an
improved answer.

From a data modeling perspective, uncertainty and imprecision have also been han-
dled with extended data models that capture more information about the expected
behavior of databases. By de�ning an imprecise probability data model [47], the au-
thors can handle imprecise and uncertain data. They develop a generalized aggregation
operator capable of determining a probability distribution for attributes with imprecise
or uncertain values. They extend their method to cover aggregations involving several
attributes. In our work we consider each invalid reference as a place holder (tag) where
a crisp [47], but uncertain value should be stored. Also, associated to the values of the
referenced primary key with respect to a given foreign key, there is a vector that holds
for each value of the primary key, the probability that this value appears in a given
tuple in the foreign key of the referencing relation. Users can assign these probabili-
ties, but we give a feasible and automated method, exploiting the frequency weighted
RPP, to get such probabilities. Reference [9] presents an extended OLAP data model
to represent both uncertain and imprecise data. The authors introduced aggregation
queries and the requirements that guided their semantics in order to handle ambiguous
data. Certain knowledge about the data is needed to determine the probability that
a fact has a precise value in an underlying possible world. Later, in [10] they enrich
these concepts de�ning extended databases and an extended database model where a
probability may be associated to a set of facts where each one of them may represent
a possible world. Finally, in [11] the authors extended their previous framework to
remove the independence assumption over imprecise facts. We want to stress the fact
that this work does not discuss evaluation issues when referential integrity errors occur.
Such omission is important because in a database integration scenario, where accurate
aggregations are required, tables are likely to have referential integrity errors.
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In a data warehousing environment it is essential to repair referential integrity errors
as early as possible in the ETL process, as it is recommended in [39]. Letting referential
errors go undetected can lead to expensive repair processes and queries producing in-
complete answers. When a data warehouse has many denormalized tables (materialized
views) repairing referential integrity can become prohibitively expensive.

Concerning the properties of the aggregate functions, in [40] the authors de�ne an
ascending aggregate function as a monotonic increasing function. Descending functions
are de�ned accordingly. In contrast, in our work we conceived a new property that has to
do with the repairing process of foreign keys. When an invalid foreign key is repaired,
that is, when its value is changed by a valid value, the total value of the aggregate
function remains invariant, that is, invariant with respect to referential integrity repairs.
Although repairing a foreign key in other contexts may be seen as an insertion of a valid
tuple, in our case, since the value of the foreign key is considered as imprecise, the value
of the aggregated attribute of the tuple with an invalid foreign key always accounts for
an amount of the aggregate total value. Concerning summarizability [43], meaning that
a distributive function over a set preserves the results over the subsets of its partitions,
since an invalid foreign key value is considered as an imprecise value, summarizability
consistency is preserved in almost all cases. A special interesting scenario arises when
for all tuples the foreign key holds invalid values. Since a frequency weighted RPP
cannot be computed using the frequency of the valid foreign key values, we assume all
the referenced values have the same probability.

A closely related research �eld studies probabilistic databases. Concerning query
answering, in [28] the authors present a probabilistic relational algebra where tuples are
assigned a probability (weight) of belonging to a relation. The authors de�ne among
other operations, the natural join operation for probabilistic relational algebra. In [71]
the author uses logic theories based on a probabilistic �rst order language to formalize
probabilistic databases. In [41] the authors assume that the events are not pairwise
independent. Using postulates they are able to de�ne classes of strategies for conjunc-
tion, disjunction and negation meaningful from the viewpoint of probability theory.
Operations such as join must take into account the strategies for combining probabilis-
tic tuples. Also, interval probabilities are considered instead of point probabilities. In
our work we take advantage of functional dependencies to improve our extended ag-
gregates. To use our techniques adequately, the user has to take into consideration the
assumptions behind our extended aggregates. On the other hand, these assumptions
allow e�ciency in the computation of our aggregates. In [23] the authors show that
the data complexity of most SQL queries over probabilistic databases is #P-complete.
This shows clearly the need of alternatives due to the challenge these type of queries
represent.

Speci�cally, concerning aggregate operators in probabilistic databases in [61] the
authors de�ne aggregate operators over probabilistic DBMSs and present linear pro-
gramming based semantics for computing these aggregate operators. Nevertheless, they
prove that in general it is intractable to compute these operators. Also they present
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approximation algorithms that run in polynomial time, but the result may be an ap-
proximation of the correct answer. An important di�erence with our work is that the
aggregate operators in probabilistic databases are de�ned over probability intervals.
The use of a RPP to assign a single probability to each invalid foreign key is a key ele-
ment to the e�ciency of our proposed aggregates. In a recent work done over Trio [67],
a DBMS for uncertain and probabilistic data, in [52] the authors de�ne aggregations
that obtain the answer sets with the lowest, the highest probability and, considering
all the values and the probabilities associated to those values, the expected value of an
aggregation. The authors bound the aggregations with respect to their probability. In
contrast, in our work we bound our aggregates considering the value of the answer set.
Our lower or upper bounds refer to the lower or upper value an answer set can reach.



CHAPTER 7

Conclusions and Future Work

We proposed a comprehensive set of centralized and distributed quality metrics (QMs)
for referential integrity, which can be applied in data warehousing, database integration
and data quality assurance. Our QMs measure completeness in the case of foreign keys
and consistency in the case of foreign attributes in denormalized databases. QMs are
hierarchically de�ned at four granularities: database, relation, attribute and attribute
value. Quality metrics are of two basic types: absolute and relative error. Absolute
error is useful at �ne granularity levels or when there are few referential violations.
Relative error is adequate at coarser granularity levels or when the number of referen-
tial violations is relatively large. We introduced univariate and bivariate statistics on
attribute level QMs to further understand the probability distribution of invalid foreign
key values.

We improved aggregations to return enhanced answers sets in the presence of refer-
ential integrity errors. Referential integrity errors are treated as imprecise values that
stand for precise values, determined by a foreign key. We proposed two families of ex-
tended aggregate functions: weighted referential (WR) aggregations and full referential
(FR) aggregations. The de�nition of these extended aggregate functions is based on
a new concept named referentiality. Intuitively, referentiality is the degree to which a
foreign key value in a tuple that belongs to the referencing table, refers to a correct ref-
erence in the referenced table. Extended aggregations represent a complement to stan-
dard aggregations and they are studied under a common probabilistic framework. WR
aggregations are based on referential partial probability vectors (RPPs) associated with
the foreign key. A particular family of the WR aggregations is the frequency weighted
referential aggregations (FWR) whose RPP is based on a dynamically evaluated RPP
computed from the frequency of tuples with a given reference in the referencing table.
Full referential aggregations present an extreme repair scenario where each aggregated
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group receives all the values corresponding to existing referential integrity errors. Full
referential aggregations are helpful when the user needs to include for each group all
tuples with invalid references. Our extended aggregations exhibit important properties,
which are essential to consider them as correct extensions of standard aggregations. A
WR aggregation for row counts is summarizable consistent, ascending and safe. A WR
sum aggregation is safe and summarizable consistent and when it behaves as an increas-
ing or decreasing function, then it is ascending or descending, respectively. With these
properties, we want to assure that the user receives consistent answer sets. All of the
mentioned aggregates, together with WR and FR max and min aggregates, their total
aggregate share the invariant with respect to referential integrity repairs property. The
max extended aggregates are ascending and min aggregates, descending. Both ful�ll
the safe property. On the other hand, FR aggregations are safe and plausible. The
latter property means the answer set represents a potential repair for each group, that
consists in assigning to all invalid references, the reference that represents each group
with a valid key.

We explained how to e�ciently calculate QMs and extended aggregates with SQL
queries. Speci�cally, we presented two query optimizations. The �rst optimization
favors a left outer join over a set containment to use a hash or merge-sort join algorithm
instead of a nested loop algorithm. The second optimization performs a group-by
operation on foreign keys before a join (pushing aggregation, early group-by) to reduce
the size of the referencing relation. This optimization is e�ective for large relations
with many foreign keys, where the number of distinct values per foreign key is small.
Experiments evaluate referential integrity QMs and extended aggregates with real and
synthetic databases on di�erent DBMSs. We got interesting results on real databases
and end-users opinion was positive. QMs at the database and relation level were more
useful for managers, whereas value and attribute level QMs were more interesting to
DBAs and application programmers. We studied quality metrics for attributes following
four di�erent probability distributions. Attribute values with a high relative error in
skewed distributions can be used to �x critical referential problems. Univariate statistics
and correlations can help understand the probability distribution and co-occurrence
of referential errors. On the time performance side, a left outer join evaluation was
generally more e�cient than a set containment due to fast join evaluation algorithms
in di�erent DBMSs. On the other hand, early foreign key grouping was always more
e�cient than late foreign key grouping. Our experiments with our extended aggregates
show the answer sets returned are consistent approximations and they also show the
overhead due to additional computations is reasonable.

Our work can be extended to repair a database considering the frequency of match-
ing values for foreign keys and foreign attributes. Our statistics on attribute level
metrics can be extended to apply multidimensional data mining techniques, such as
clustering and factor analysis. We want to study how to e�ciently repair a denormal-
ized database to leave it in a strict state, based on a plan derived from quality metrics.
Incremental computation is needed to keep quality metrics up to date in ever-growing
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data warehouses. Finally, we believe our ideas may be applicable in semistructured
data, such as text or XML.

Some of our ideas related to our extended aggregates can be extended to more
general SPJ queries, especially involving multiway joins. We want to improve the
de�nition of WR aggregations to consider correlation among attributes. We would
like to study the alternative scenario where the referenced relation is assumed to be
incomplete. Due to the dynamic nature of extended aggregates we need to improve
them with online aggregation techniques for interactive use.



Bibliography

[1] J. Albrecht and W. Lehner. On-line analytical processing in distributed data
warehouses. In IDEAS '98: Proceedings of the 1998 International Symposium on
Database Engineering & Applications, page 78. IEEE Computer Society, 1998.

[2] M. Arenas, L. Bertossi, and J. Chomicki. Consistent query answers in inconsistent
databases. In PODS '99: Proceedings of the eighteenth ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 68�79. ACM, 1999.

[3] M. Arenas, L. Bertossi, J. Chomicki, X. He, V. Raghavan, and J. Spinrad. Scalar
aggregation in inconsistent databases. Theor. Comput. Sci., 296(3):405�434, 2003.

[4] O. Arieli, M. Denecker, B.V. Nu�elen, and M. Bruynooghe. Database repair by
signed formulae. In FoIKS 2004, LNCS, volume 2942, pages 14�30. Springer, 2004.

[5] D.J. Berndt and J.W. Fisher. Understanding dimension volatility in data ware-
houses. In INFORMS CIST Conference, 2001.

[6] D.J. Berndt, J.W. Fisher, and J. Studnicki A.R. Hevner. Healthcare data ware-
housing and quality assurance. IEEE Computer, 34(12):56�65, 2001.

[7] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi. A cost-based model and e�ec-
tive heuristic for repairing constraints by value modi�cation. In ACM SIGMOD
Conference, pages 143�154, 2005.

[8] Y. Breitbart, R. Komondoor, R. Rastogi, S. Seshadri, and A. Silberschatz. Update
propagation protocols for replicated databates. In SIGMOD '99: Proceedings of
the 1999 ACM SIGMOD international conference on Management of data, pages
97�108, 1999.



BIBLIOGRAPHY 80

[9] D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data. In VLDB
Conference, pages 970�981, 2005.

[10] D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, and
S. Vaithyanathan. OLAP over uncertain and imprecise data. The VLDB
Journal, 16(1):123�144, 2007.

[11] D. Burdick, A. Doan, R. Ramakrishnan, and S. Vaithyanathan. OLAP over im-
precise data with domain constraints. VLDB Conference, pages 39�50, 2007.

[12] C. Calero, M. Piattini, and M. Genero. Empirical validation of referential integrity
metrics. Information & Software Technology, 43(15):949�957, 2001.

[13] A. Calì, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. Inf. Syst., 29(2):147�163, 2004.

[14] A. Calì, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In ACM PODS, pages 260�
271, 2003.

[15] S.J. Cammarata, P. Ramachandra, and D. Shane. Extending a relational database
with deferred referential integrity checking and intelligent joins. In ACM SIGMOD
Conference, pages 88�97, 1989.

[16] S. Chaudhuri. An overview of query optimization in relational systems. In ACM
PODS Conference, pages 84�93, 1998.

[17] A. L. P. Chen, J. S. Chiu, and F. S. C. Tseng. Evaluating aggregate operations
over imprecise data. IEEE TKDE, 8(2):273�284, 1996.

[18] R. Cheng, D.V. Kalashnikov, and S. Prabhakar. Evaluating probabilistic queries
over imprecise data. In ACM SIGMOD Conference, pages 551�562, 2003.

[19] J. Chomicki, J. Marcinkowski, and S. Staworko. Computing consistent query an-
swers using con�ict hypergraphs. In CIKM '04: Proceedings of the thirteenth ACM
international conference on Information and knowledge management, pages 417�
426. ACM, 2004.

[20] E.F. Codd. Extending the database relational model to capture more meaning.
ACM TODS, 4(4):397�434, 1979.

[21] E.F. Codd. The Relational Model for Database Management-Version 2. Addison-
Wesley, 1st edition, 1990.



BIBLIOGRAPHY 81

[22] M. Costa and H. Madeira. Handling big dimensions in distributed data warehouses
using the dws technique. In DOLAP '04: Proceedings of the 7th ACM international
workshop on Data warehousing and OLAP, pages 31�37, 2004.

[23] N. Dalvi and D. Suciu. E�cient query evaluation on probabilistic databases. In
VLDB Conference, pages 864�875, 2004.

[24] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk. Mining database
structure; or, how to build a data quality browser. In ACM SIGMOD Conference,
pages 240�251, 2002.

[25] R. Elmasri and S. B. Navathe. Fundamentals of Database Systems. Addison/Wes-
ley, Redwood City, California, 3rd edition, 2000.

[26] J.W. Fisher and D.J. Berndt. Creating false memories: Temporal reconstruction
errors in data warehouses. In Eleventh Workshop on Technologies and Systems,
New Orleans, 2001.

[27] C. Francalanci and B. Pernici. Data quality assessment from the user's perspective.
In IQIS '04: Proceedings of the 2004 international workshop on Information quality
in information systems, pages 68�73, 2004.

[28] N. Fuhr and T. Rölleke. A probabilistic relational algebra for the integration of
information retrieval and database systems. ACM Trans. Inf. Syst., 15(1):32�66,
1997.

[29] A. Fuxman, E. Fazli, and R.J. Miller. Conquer: e�cient management of inconsis-
tent databases. In ACM SIGMOD Conference, pages 155�166, 2005.

[30] R. Gallersdörfer and M. Nicola. Improving performance in replicated databases
through relaxed coherency. In VLDB '95: Proceedings of the 21th International
Conference on Very Large Data Bases, pages 445�456, 1995.

[31] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data cube: A relational ag-
gregation operator generalizing group-by, cross-tab and sub-total. In ICDE Con-
ference, pages 152�159, 1996.

[32] G. Greco, S. Greco, and E. Zumpano. A logical framework for querying and
repairing inconsistent databases. IEEE TKDE, 15(6):1389�1408, 2003.

[33] L. Grieco, D. Lembo, R. Rosati, and M. Ruzzi. Consistent query answering under
key and exclusion dependencies: algorithms and experiments. In CIKM '05: Pro-
ceedings of the 14th ACM international conference on Information and knowledge
management, pages 792�799. ACM, 2005.

[34] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, San Francisco, 1st edition, 2001.



BIBLIOGRAPHY 82

[35] B.M. Horowitz. A run-time execution model for referential integrity maintenance.
In IEEE ICDE Conference, pages 548�556, 1992.

[36] ISO-ANSI. Database Language SQL-Part2: SQL/Foundation. ANSI, ISO 9075-2
edition, 1999.

[37] T. Johnson, A. Marathe, and T. Dasu. Database exploration and Bellman. IEEE
Data Engineering Bulletin, 26(3):34�39, 2003.

[38] W. Kim. On optimizing an sql-like nested query. ACM Trans. Database Syst.,
7(3):443�469, 1982.

[39] R. Kimball and J. Caserta. The Data Warehouse ETL Toolkit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons,
2004.

[40] A. J. Knobbe, A. Siebes, and B. Marseille. Involving aggregate functions in multi-
relational search. In PKDD02, pages 287�298, 2002.

[41] L.V.S. Lakshmanan, N. Leone, R. Ross, and V.S. Subrahmanian. Probview: a
�exible probabilistic database system. ACM Trans. Database Syst., 22(3):419�469,
1997.

[42] E. Lau and S. Madden. An integrated approach to recovery and high availability
in an updatable, distributed data warehouse. In VLDB '06: Proceedings of the
32nd international conference on Very large data bases, pages 703�714, 2006.

[43] H. J. Lenz and A. Shoshani. Summarizability in OLAP and statistical data bases.
In SSDBM Conference, pages 132�143, 1997.

[44] H. J. Lenz and B. Thalheim. OLAP databases and aggregation functions. In
SSDBM Conference, pages 91�100, 2001.

[45] E.P. Lim and R.H. Chiang. The integration of relationship instances from hetero-
geneous databases. Decis. Support Syst., 29-2(3-4):153�167, 2000.

[46] V.M. Markowitz. Safe referential structures in relational databases. In VLDB,
pages 123�132, 1991.

[47] S. McClean, B. Scotney, and M. Shapcott. Aggregation of imprecise and uncertain
information in databases. IEEE TKDE, 13(6):902�912, 2001.

[48] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly optimal
communication complexity. Technical report, Ithaca, NY, USA, 2000.



BIBLIOGRAPHY 83

[49] Y. Minsky, A. Trachtenberg, and R. Zippel. Set reconciliation with nearly op-
timal communication complexity. IEEE Transactions on Information Theory,
49(9):2213� 2218, Sept. 2003.

[50] A. Motro and I. Rakov. Estimating the quality of data in relational databases. In
IQ, pages 94�10, 1996.

[51] D. Mukhopadhyay and G. Thomas. Practical approaches to maintaining referential
integrity in multidatabase systems. In RIDE-IMS, pages 42�49, July 1993.

[52] R. Murthy and J. Widom. Making aggregation work in uncertain and probabilistic
databases. In Workshop on Management of Uncertain Data, VLDB Conference,
pages 76�90, 2007.

[53] C. Ordonez and J. García-García. Consistent aggregations in databases with ref-
erential integrity errors. In ACM International Workshop on Information Quality
in Information Systems, IQIS, pages 80�89, 2006.

[54] C. Ordonez and J. García-García. Referential integrity quality metrics. Decision
Support Systems Journal, 44(2):495�508, 2008.

[55] C. Ordonez, J. García-García, and Z. Chen. Measuring referential integrity in dis-
tributed databases. In ACM First Workshop on CyberInfrastructure: Information
Management in eScience, CIMS, pages 61�66, 2007.

[56] M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Prentice
Hall, 2nd edition, 1999.

[57] E. Pacitti, P. Minet, and E. Simon. Replica consistency in lazy master replicated
databases. Distrib. Parallel Databases, 9(3):237�267, 2001.

[58] E. Pacitti and E. Simon. Update propagation strategies to improve freshness in
lazy master replicated databases. The VLDB Journal, 8(3-4):305�318, 2000.

[59] L. Pipino, Y.W. Lee, and R.Y. Wang. Data quality assessment. ACM CACM,
45(4):211�218, 2002.

[60] E. Rahm and D. Hong-Hai. Data cleaning: Problems and current approaches.
IEEE Bulletin of the Technical Committee on Data Engineering, 23(4), 2000.

[61] R. Ross, V.S. Subrahmanian, and J. Grant. Aggregate operators in probabilistic
databases. J. ACM, 52(1):54�101, 2005.

[62] M. Scannapieco and C. Batini. Completeness in the relational model: A compre-
hensive framework. In IQ Conference, 2004.



BIBLIOGRAPHY 84

[63] M. Serrano, C. Calero, J. Trujillo, S. Lujan-Mora, and M. Piattini. Empirical
validation of metrics for conceptual models of data warehouses. In CAISE, pages
506�520, 2004.

[64] TPC. TPC-H Benchmark. Transaction Processing Performance Council,
http://www.tpc.org/tpch, 2005.

[65] C. Türker and M. Gertz. Semantic integrity support in SQL: 1999 and commercial
(object-)relational database management systems. VLDBJ, 10(4):241�269, 2001.

[66] R.Y. Wang, M.P. Reddy, and H.B. Kon. Toward quality data: an attribute-based
approach. Decis. Support Syst., 13(3-4):349�372, 1995.

[67] J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. In CIDR, pages 262�276, 2005.

[68] J. Wijsen. Database repairing using updates. ACM Trans. Database Syst.,
30(3):722�768, 2005.

[69] H. Yu and A. Vahdat. Design and evaluation of a continuous consistency model for
replicated services. In OSDI'00: Proceedings of the 4th conference on Symposium
on Operating System Design & Implementation, pages 21�21, 2000.

[70] H. Yu and A. Vahdat. The costs and limits of availability for replicated services.
ACM Trans. Comput. Syst., 24(1):70�113, 2006.

[71] E. Zimányi. Query evaluation in probabilistic relational databases. In Selected
papers from the international workshop on Uncertainty in databases and deductive
systems, pages 179�219. Elsevier Science Publishers B. V., 1997.


	Portada
	Related Publications
	Abtract
	Contents
	Chapter 1. Introduction
	Chapter 2. referential Integrity QMs in a Centralized Database
	Chapter 3. Referential Integrity QMs in a Distrubuted Database
	Chapter 4. Estimating and Bounding Aggregations
	Chapter 5. Experimental Evaluation
	Chapter 6. Related Work
	Chapter 7 Conclusions and Future Work
	Bibliography

