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Resumen

El uso de la recursión en el diseño y análisis de los algoritmos distribuidos ha sido muy es-

caso a pesar de estar relacionado con los modelos iterados de cómputo distribuido; en los que

diferentes procesos corren por rondas invocando distintas instancias de objetos compartidos.

En este trabajo se presenta un estudio sobre la utilización de la recursión como método

para implementar las tareas conocidas como atomic snapshot e immediate atomic snapshot,

analizando las particularidades de un conjunto de algoritmos propuestos que buscan obtener

una implementación óptima. En primer lugar, se caracterizan las vistas de salida que se ob-

tienen al realizar una lectura seguida de un escaneo sobre un arreglo compartido de registros

atómicos de lectura/escritura por parte de un conjunto de procesos aśıncronos, las cuales

representan un bloque constructor fundamental para muchos protocolos sobre el modelo it-

erado de lectura/escritura, y también para los algoritmos presentados aqúı. Dichas vistas se

caracterizan primero con un enfoque conjuntista y después, por medio de una representación

matricial, que está a su vez asociada a las propias ejecuciones.

También presentamos un análisis sobre los algoritmos recursivos que nos lleva a probar

que una implementación para la tarea de snapshot en el modelo iterado de lectura/escritura

no puede ser tan eficiente –en términos de su complejidad en accesos compartidos– como las

implementaciones existentes en la versión no iterada del mismo modelo. La prueba que se

presenta para el caso particular con tres procesos, utiliza un argumento de conectividad sobre

el complejo simplicial del protocolo; herramienta que pudiera ser adecuada para obtener una

futura generalización para cualquier número de procesos.
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Abstract

The use of recursion in the design and analysis of distributed algorithms has been scarce even

though it’s deeply related to the iterated models of distributed computing, where processes

run in rounds accessing different instances of shared object implementations. This work

presents a study on the use of recursion as a method to implement the atomic snapshot and

immediate atomic snapshot tasks, observing particularities on a set of attempts to obtain a

most efficient implementation. We first characterize the output views of a write/scan task

over a shared array of atomic registers invoked by a set of asynchronous processes, which

is a basic constructing block not only in many read/write iterated distributed executions

but also in the recursive algorithms presented here. Such views are first characterized in a

set-wise fashion and later by matrix representations associated to the executions themselves.

We also present an analysis on recursive algorithms leading to a proof that an implemen-

tation of the snapshot task on the read/write iterated model cannot be as efficient in terms of

shared access complexity as the implementations on the non iterated version. The presented

proof is for the particular case with three processes and uses a connectivity argument on the

protocol complex, tool that may be adequate for a future generalization to any number of

processes.
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1 Introduction

1 Introduction

Even though distributed computing has been a recurrent subject of research for many years, in

recent times, the study of distributed systems has reemerged as one of the mainstream theoretical

fields for current and future IT development. The appearance of multiprocessor architectures

has significantly incremented interest in understanding, analyzing and developing distributed

tasks and problems, as well as their possible implementations [2, 4, 17, 26, 36].

In accordance, this study focuses in a set of problems considered fundamental in the area,

adopting in most cases a paradigm which has been mildly used: recursion. This paradigm has

been explored recently by [22]. The main objects of study are the atomic snapshot task [1] and

its refinement, the immediate atomic snapshot task [13, 41], although other common tasks, like

renaming [5] are explored as well.

1.1 Context

In distributed systems, processes communicate through shared objects that comply to a certain

specification, depending of the functionality of the particular object. In the simplest case, the

shared object is an array of multi-reader/single-writer (or MRSW ) registers which a process can

access, either to write a value into its assigned register or to read any of the registers in the array.

Other shared objects can then be implemented by constructing them from MRSW registers or

by the use of more powerful primitives. Any object, however powerful, can be described by

its sequential specification together with its safety and liveness properties. Safety properties

guarantee that potentially dangerous scenarios will not occur and are therefore associated to

the correctness of the implementation, liveness properties specify the way in which invocations
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1.1 Context 1 Introduction

to the object’s operations make progress.

One-shot objects are a particular type of shared objects that receive at most one invocation

by each participating process, these objects can be specified by a task, which is basically an

input/output relation between input vectors and related output vectors. Tasks are defined

precisely in section 2.1. This work is particularly interested in this kind of objects as they

conform much better to recursive implementations. When a set of processes make use of a

one-shot shared object, each process invokes the object with an associated private input, the set

of these inputs is referred to as the input vector, and each process receives in return an output

value that complies to the specification of the particular object, the set of outputs compose the

output vector. As an example, a one-shot object that implements the well known consensus task

[35, 19], receives a different private input value proposed from each invoking process, suppose

that each process proposes its own unique identifier. Then, in order to comply with the task

specification, the object should return the same output value to every invoking process and this

value should be contained in the proposed input vector.

Atomic snapshots The atomic snapshot object was introduced in [1, 3] and has become

an important primitive for shared memory distributed systems as it is deemed fundamental

for the design and verification of wait-free algorithms. A snapshot object is a shared data

structure consisting of various segments, usually atomic MRSW registers, which processors can

access to either update one of these segments or scan the whole structure atomically. The main

contribution of this object is that it allows a process to obtain a trustworthy image of the global

state of an execution by avoiding possible interference from other updating processes.

Many wait-free algorithms implementing the atomic snapshot task using MRSW atomic

registers have been proposed. When taking into account deterministic implementations which

only use MRSW registers as primitives, Anderson [3] presented an algorithm to solve the atomic

snapshot task with exponential complexity of O(2n). In [1], the authors present an elegant

wait-free algorithm with O(n2) complexity that is still used in recent textbooks as introduction

to atomic snapshots [26]. Later, Attiya and Rachman [8] lowered the bound to O(nlogn),

which after applying the transformation by Israeli et al. [29] stays even today as the most

efficient deterministic implementation with MRSW registers. This transformation implements

8



1.1 Context 1 Introduction

the atomic snapshot task with O(n) steps for updates and O(nlogn) for scans by using a general

technique to reduce an implementation using O(f(n)) operations for either a scan or an update

into one that uses O(f(n)) for a scan and O(n) for an update (or viceversa, i.e. O(f(n)) per

update and O(n) per scan). Kirousis, Spirakis and Tsigas [30] present a variation to the problem

which separates processes into scanners and updaters and give an implementation which uses

linear space on the number of processes, O(n) operations for each scan and O(1) operations

for updates. Randomized solutions have also been implemented, starting with the algorithm

in [7] by Attiya, Herlihy and Rachman and the one by Chandra and Dwork [16], both with

a complexity of O(nlog2n). Finally, many implementations have been presented with linear or

even sublinear complexity bounds by using more powerful primitives instead of MRSW registers,

e.g. [7, 40]. Another version of the problem allows each process to write any of the segments,

this are referred as multiple writer snapshot algorithms [1, 3, 18], or take partial snapshots which

only scan a subset of the segments [6, 28]. This works restricts itself to the MRSW version of

the problem.

Immediate atomic snapshot This task is a refinement of the atomic snapshot in which

a scan is scheduled immediately after every update. Similarly to the atomic snapshot object,

the immediate atomic snapshot object has also been subject of intensive study. However, in

this case, much more interest has been shown towards the immediate snapshot memory model

(described in section 2.4) and not so much in the implementations of the task itself. This

refinement of the atomic snapshot reduces the problem of interference even more by offering just

one operation to any invoking process, namely the ImmSnap() operation, which implements the

abstraction that when a process updates a value in the shared memory it also, instantaneously,

obtains a snapshot of the whole array. The task was first proposed simultaneously by Borowsky

and Gafni in [13] as the participating set problem and by Saks and Zaharoglou in [41] as block

executions. In [13], the authors present a protocol to solve the task in O(n2). This protocol

was later adapted by Gafni and Rajsbaum into a recursive setting in [22] leaving the operation’s

complexity unaltered in terms of shared memory accesses. It is clear that, by being a solution

to the restriction of the atomic snapshot task, these implementations are also solutions for this

last, more general task. We are particularly interested in the one-shot setting of the task, which

is a particularization in which each process can access the implementing object only once, i.e.

can only invoke ImmSnap once. The use of this one-shot implementations lead to the Iterated
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Immediate Snapshot Model (IS) of distributed computing which is also described later in more

depth (see section 2.4). The immediate snapshot task has resisted all attempts to obtain an

implementation with a complexity below O(n2) steps.

Recursion In [22], the authors propose recursive reasoning as a mechanism to create dis-

tributed algorithms which can, additionally, be easily analyzed and understood. This methodol-

ogy, recognized and used commonly in sequential computing, has found little or no employment

in the different distributed settings even though the benefits of recursive structuring have been

proposed for a long time [39]. Research in this direction has been encouraged by a number of

papers which also propose different recursive algorithms [20, 42]. Some of the recursive dis-

tributed algorithms include the Byzantine agreement of Lamport, Shostak and Pease [32], the

cloture voting for Byzantine Agreement by Berman, Garay and Perry [11] and, more recently,

implementations for the immediate snapshot, renaming and swap tasks by Gafni and Rajsbaum

[22].

The recursive approach also allows researchers to study the algorithm’s inherent properties

by using topological tools and results, which create a link between distributed algorithms and

topology, enhancing a new focus for analysis [25]. Additionally, iterated task executions have

simple geometrical descriptions when these topological notions are used. If tasks T1 and T2

have topological descriptions as protocol complexes C1 and C2 respectively, then an iterated

execution where processes first invoke task T1 and only afterwards invoke task T2, also has a

simple topological description which can be obtained by replacing the simplices of complex C1

with the complex C2 [25, 22]. A section with a brief description of some of this preliminary

topological notions and their link to distributed computing is offered in section 2.5.

1.2 Contents of this work

This work assumes a standard MRSW register shared memory model in an asynchronous wait-

free setting where any number of processes participating in an execution can fail by crashing. As

we mainly analyze the snapshot and immediate snapshot tasks we, evidently, cannot use objects

which implement these tasks as primitives, therefore we rely on a most basic task denoted

write/scan or WScan. This task abstracts a shared array divided in so many segments as there

10



1.2 Contents of this work 1 Introduction

are processes; when a process pi invokes WScan(v) with v as input, the value v is written into

the i-th segment of the shared array and later pi reads, in an arbitrary order, the contents of

every single segment in the array. To this respect, we present a set-wise characterization of

the views returned to the different processes by such task. This simple abstraction of a shared

array of registers which may be concurrently written and scanned by a number of asynchronous

processes, offers only very general guarantees on the characteristics of the individual views and

the relation between different views is not very clear. The views obtained as a result of a

WScan invocation can be thought of as pre-snapshot views, as there’s no mechanism to avoid

interference between concurrent scanning and updating processes. Some properties over these

sets of views are devised in various theorems in section 3. Accordingly, section 3.3 introduces a

method to generate matrix representations of executions over a WScan object which can also

serve as a characterization for the corresponding views.

Later, in section 4, we present a step by step study of a series of algorithms intended to

reduce the complexity bound on the known implementations of the immediate snapshot task

in a recursive setting. The original atomic snapshot is also studied under the characteristics of

the iterated model using read/write atomic registers, leading to a conjecture that states that

snapshots cannot be taken in the IS model in O(nlogn) complexity. The main result is to prove

a particular case of this conjecture using a connectivity proof over the simplicial complex that

represents the executions for three processes. The contribution of this conjecture to distributed

computing is to show that, although the iterated models and its non iterated versions have been

shown to be equivalent in terms of computability (i.e. a problem solvable in the former model

is also solvable in the latter model, and viceversa), there is an associated tradeoff to the use of

the iterated models: although the iterated versions of the different protocols may be easier to

understand and analyze, its complexity in terms of shared accesses may be higher to that of its

non iterated equivalent. This tradeoff stresses on the importance of the double-collect used in

most of the non iterated implementations of the atomic snapshot, as it is the only section of the

usual implementations that cannot be trivially simulated in an iterated context.

11
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2 Preliminaries

This chapter presents a very general review of the main issues examined throughout this work,

starting from the snapshot objects and tasks up to some introductory topological concepts nec-

essary to understand some of the forthcoming proofs. There are various very good textbooks to

extend an understanding of standard notions of distributed computing, e.g. [10, 26, 33] are some

good sources among many others. As to the topological concepts, some good recommendations

include [31, 34]. Finally, the article by Herlihy and Shavit [25] is a source to understand the

link between topology and distributed computing. The next section extends and formalizes the

description of a task.

2.1 Tasks

We recall from the introduction that shared objects to which processes can only issue a single

invocation are called one-shot objects. The specification of a one-shot object is itself defined

by a task, which is a relation between the set of possible inputs to the object and the set of

related outputs which are returned by the object. Therefore, a task is a triplet composed by a

set I of input vectors, a set O of output vectors and a relation ∆ between both sets1. If there

are n processes that can invoke the object, each with a respective private input, the relation

∆ associates to the input vector, created from the set of private individual inputs, a compliant

output vector. By a compliant output vector we mean the set of output values that the processes

decide, one for each process, and as there may be more than one feasible output vector, we say

that ∆ is a point-to-set relation. In an execution where the set of participating processes is

a subset of the total number of processes, the input vector I includes the input values vi of

1The concept of task was introduced by Biran, Moran and Zaks in [12]
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2.2 Atomic snapshots 2 Preliminaries

every participating process i and a default input value, ⊥, for every non participating process.

Analogously, the output vector O includes a decision value for each participating process and

the default value ⊥ for the non participating processes. In a correct implementation for the task

specified by ∆ we should then have that O ∈ ∆(I). For instance, if a shared one-shot object

is to implement the consensus task between processes p1, p2, and p3, each of which invoke the

object with inputs x, y, and z respectively, then every correctly deciding process would have to

decide on the same value and this must be one of the three proposed ones. So for an execution

in which the three processes correctly decide, the input vector is (x, y, z) and the related output

vectors are (x, x, x), (y, y, y) and (z, z, z). In a given distributed system, there might be several

instances of the same task provided by different shared objects which processes may invoke in a

given order.

2.2 Atomic snapshots

The atomic snapshot, already mentioned in the introduction, is a shared object that provides two

operations, update(v) and scan(). The object abstracts a shared array divided into n segments

with one segment being associated to each different process. A call by a process pi to the first

operation update(v) writes the value v into the segment reserved to process i in the shared array.

The second operation returns an immediate view of the whole shared array as if every segment

had been read simultaneously. Also, the object needs to satisfy a safety property known as

linearizability which states that every operation on the object must look as if it was executed

instantly at some moment between its invocation and return [27], and so, any scan performed

after an update must reflect this event consistently in the returned view. It also needs to satisfy

a progress property known as wait-freedom which was introduced by Herlihy in [24], and states

that any operation by a process which doesn’t crash must eventually return. These safety and

progress properties are standard in this work and are a requirement for every correct algorithm.

The one-shot version of the atomic snapshot object is an implementation of the atomic

snapshot task. This in turn is similar to the usual atomic snapshot abstraction only that it

allows just one update operation followed certain time later by one scan operation. If we assume

that i is the value written by pi as private input value for its update operation, we have that the

set of views obtained by the processes as a result of their scan invocation satisfy two properties

13



2.3 Immediate atomic snapshots 2 Preliminaries

(where we refer to the result of i’s scan result as its view and we denote it by viewi). The first

property, called self-inclusion, states that every process must see itself in its obtained view.2 In

symbols:

i) Self-Inclusion: ∀i, i ∈ viewi

The second property known as containment states that the set of returned views is ordered by

set inclusion:

ii) Containment: ∀i, j, viewi ⊆ viewj ∨ viewj ⊆ viewi

2.3 Immediate atomic snapshots

The immediate atomic snapshot object is a restriction of the preceding atomic snapshot object.

Once again, the object abstracts a shared array with n segments, i.e. one segment for each

process. The difference is that an object that implements this task should only provide a single

operation, the immediate snapshot or ImmSnap(v). The abstraction is that when a process pi

invokes this task with input value v, it is as if the value v gets instantaneously written into

the i-th segment of the shared array and immediately after the write the process pi obtains a

snapshot of the whole shared array. Different invocations should then be linearizable to look as if

an update of a register and a scan of the whole array were both made immediately one after the

other and at some instant between the operation’s invocation and response, and the resulting

view should reflect this linearization coherently. Therefore, if two processes concurrently invoke

the operation, it is as if they concurrently make an update and immediately after they both,

concurrently, perform a scan rendering both processes’ identifiers in both views.

If we restrict ourselves to the one-shot version of the object, we can describe it as the

immediate snapshot task. The abstraction offered by such a task is similar to that of the multi-

shot object with the limitation that each process can invoke the task only once. If we again

assume that i is the input value delivered by process pi and that viewi is its resulting snapshot,

then the set of all the views obtained by the different processes in a single execution must satisfy

the previous properties of self-inclusion and containment together with a new property known

2Throughout this work we say that process pi sees process pj if pj ∈ viewi
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2.4 Models 2 Preliminaries

as immediacy, which states that if a process has seen another process included in its view, then

the whole view of the contained process must be itself totally included in the containing process’

view. In symbols:

iii) Immediacy: ∀i, j, i ∈ viewj =⇒ viewi ⊆ viewj

A useful equivalent restatement of this last property asserts that if two processes see each other

in their respective views, then their views must necessarily be identical:

iii’) ∀i, j, ( i ∈ viewj ∧ j ∈ viewi ) =⇒ viewi = viewj

2.4 Models

We work on top of the base read/write asynchronous shared memory model of distributed

computing, in which a set of sequential and deterministic processes can make use of any number

of MRSW atomic registers3 in a shared memory to communicate with other processes, in addition

to their local computations. We denote the set of processes in the model as Π = {p1, p2, . . . , pn}

where every process is uniquely identified by its subindex. The processes are asynchronous

which means that there is no bound in the relative processing speed and, given an execution,

any number of processes can fail by crashing. We assume that a process that crashes executes

its algorithm correctly up to the crashing point and doesn’t take more steps after it.

In the snapshot model [1] the processes can invoke operations update(v) and scan() on a

∞-shot4 snapshot object abstracting the idea that they share a MRSW register array on which

they can update their respective registers and take immediate snapshots of the whole array as

described earlier. As snapshot objects can be constructed from MRSW atomic registers, this

model delivers the exact same computational power as the base model does. However, by hiding

the implementation details which take care of the interference generated by concurrency in an

asynchronous setting, it provides a useful higher abstraction for solving other problems over

3The atomic property of such registers refers to the fact that every read or write operation on them appears

to take effect instantaneously and sequentially in between the operation’s invocation and response.
4On an ∞-shot snapshot there is no bound on the number of update and scan operations that a process can

invoke.
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2.5 Topological preliminaries 2 Preliminaries

the same base model. We then consider an iterated version of this model denoted the iterated

snapshot model (IS) [15], in which processes can update or scan a snapshot object only once.

Therefore executions are organized in a round by round basis, in which processes invoke different

one-shot snapshot objects in an orderly manner, by iteration number. Therefore, a process will

invoke an update and a scan operations on the i-th one-shot atomic snapshot object, i ≥ 1, before

issuing invocations to the (i+1)-th one-shot snapshot object. It is clear that any problem solvable

in IS model is readily solvable in the snapshot model, and the equivalence of both models in

terms of wait-free problem solvability was proven by exposing simulations from the snapshot

model to the IS model, such simulations are described by Borowski and Gafni in [15] and by

Gafni and Rajsbaum in [23]. The benefits of using this model as an abstraction for the design

and analysis of distributed algorithms are well studied and thoroughly applied [14, 21, 37, 38]

We refer to a particular execution as a full-information execution if the value given as input for

the first update is a private value but all subsequent update invocations use the result of the

previous snapshot operation as input.

The immediate snapshot model [1] and the iterated immediate snapshot model (IIS) [15]

are similar to the snapshot models with the modification obtained by exchanging the snap-

shot objects for immediate snapshot objects. Therefore, in the IIS model, there is a sequence of

immediate snapshot shared objects IS1, IS2, . . . which can receive at most a single ImmSnap in-

vocation by each participating process in the order given by the iteration number. So once again,

no process invokes it’s operation on the i-th immediate snapshot object ISi if it hasn’t returned

from it’s invocation to all previous snapshot objects ISj , j < i. Full-information executions are

also defined on these models as executions in which the first input to an ImmSnap operation is

a private value but every successive invocations uses the previously obtained snapshot as input.

2.5 Topological preliminaries

This section presents a minimal set of definitions from algebraic topology necessary to under-

stand some proofs in later chapters. For a much more extensive and profound treatment of this

area and its applications in distributed computing, refer to [9, 25, 31]. A simplex is a finite set

σ of n + 1 affinely independent vertices. Its dimension is given by one less than the number

of vertices and is denoted as dim(σ) = n or directly as a superscript as in σn. Any simplex
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that can be formed from a subset of the vertices in σ is called a face of σ, and a face that is

formed by a proper subset of vertices is denoted as a proper face. A simplicial complex is a

set of simplices closed under containment and intersection, the dimension of which is the same

as that of its contained simplex with higher dimension. Figure 1 shows a simplicial complex

of dimension 2 which is formed by the set of simplices {x, y, z}, {y, z, w}, {u,w} and {u, v, r}.

In particular the simplex {x, y, z} has dimension 2 and has proper subsimplices {x}, {y}, {z} of

dimension 0, {x, y}, {y, z} and {x, z} of dimension 1. Simplices of dimension 2 in figure 1 and

in the remaining of this work are colored in light gray to make clear that the simplex is formed

by the border (the three edges that form the triangle) and the interior (the light gray colored

area). A simplex of dimension 3 is a tetrahedron together with its interior, and so on for higher

dimensions.

x

y

z

w

u

v

r

Figure 1: 2-dimensional simplicial complex.

A complex φ(σ) is a subdivision of a complex σ if every simplex in φ(σ) is contained in

a simplex of σ and every simplex of σ is the union of finitely many simplices of φ(σ). So the

complex of figure 2 can be viewed as a subdivision of the complex defined by the three corners of

the triangle. We denote by V (σ) the set of vertices in σ. A vertex map ψ between two complexes

Γ and Ω is a mapping ψ : V (Γ) → V (Ω), and is additionally called a simplicial map if it maps

simplices of Γ to simplices of Ω. Maps are dimension preserving if the image of a simplex has

its same dimension. A coloring of a complex Γ is a dimension preserving simplicial map from Γ

to σn, where σn is an n-simplex. A complex together with a coloring is denoted as a chromatic

complex, which can be intuitively understood as a complex with labels associated to vertices in

such a way that no two neighboring vertices are labeled with the same label (as the complex in

figure 2).
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We use this topological notions to describe protocols in distributed computing iterated (or

round by round) models. Recalling that a task specification is given by a triplet (I,O,∆) where

I is a set of input vectors, O a set of output vectors and ∆ a relation between the previous two

sets. We can construct an input complex I related to the set I so that every input vector in

I is related to a simplex in I; and an output complex O in which for each element of the set

O there is a simplex in O. Finally, the relation ∆ specifies how simplices in the input complex

are related to the simplices in the output complex in a way that is consistent with the relation

over the sets I and O. It is important to note that the task specification ∆ is not necessarily

simplicial.

1

1

2

1

2

3

3 2 3

3

1

2

A

BC

{1,2,3}

{1}

{3}{2}
{2,3} {2,3}

{1,2}

{1,2}

{1,3}

{1,3}

{1,2,3}

{1,2,3}

Figure 2: Simplicial complex described by the immediate snapshot protocol output views for 3

processes.

Under this premises we can, for instance, represent the set of possible executions where

processes invoke ImmSnap operations on a one-shot immediate snapshot object like a subdivided

simplicial complex. As an example, figure 2 shows the case for 3 processes where each node is

labeled by the related process’ identifier (inside the circle) and by the received output view (in

braces). The figure assumes that each process i uses its own identifier as input to the immediate

snapshot task. The vertex in the top corner of the triangle (labeled A) is by itself a simplex

of the simplicial complex and it represents an execution in which only process 1 participates,

thus obtaining a view that includes only its own identifier {1}. The edge labeled B represents

an execution in which process 2 doesn’t take any steps and processes 1 and 3 invoke the task

concurrently, thus seeing each other in their respective snapshots. Finally, the triangle labeled
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C represents an execution in which process 2 invokes the task first, followed by process 3 and

later by process 1, therefore 2 obtains a view that only includes itself, 3 obtains a view that

includes itself and the previous participants, i.e. {1, 3}, and process 1 gets to see a full view

{1, 2, 3} by invoking the task after everyone else.
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3 Pre-Snapshot views

Snapshot and immediate snapshot objects have shown their vital importance in the design and

verification of distributed algorithms by avoiding interference when a process attempts to obtain

a global “picture” of the distributed state of the system. This interference comes from the fact

that a process that attempts to obtain a picture of the system’s shared variables does so by

executing several partial reads of the shared memory while, in the meantime, other processes

could concurrently modify the data contained in it. This kind of executions can easily render a

view of the system that is inconsistent as the data it contains was never allocated in the shared

memory at the same instant, thus, it isn’t a representation of an actual state of the system.

Nevertheless, it’s interesting to observe the inherent properties of the views returned by simple

scans or collects in an asynchronous environment. To this purpose, we recall the simple task

called write/scan or WScan which abstracts a shared array with n registers. Initially, every

register in the array contains a default value ⊥ different to any possible input value that a

process can provide, when a process i calls on this task with input value v, v is written into the

i-th segment and then every register is read sequentially one after the other in an arbitrary order

to produce an output view which is delivered back to i. The output view generated is the set of

values different to ⊥ observed while doing a collect on the shared registers. For the remaining of

this section, let a set of n different processes with identifiers {1, 2, ..., n} communicate through

a shared object that implements WScan, each non faulty process invokes WScan once with its

own identifier as input value and receives an output view in return complying to the WScan

task specification. An execution in which a set of participating processes repeat this procedure

generates a set of different output views, a computed view for each participating process and

an empty view for each non participating process. Below, the fundamental properties that

characterize these sets of views are studied.
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3.1 Set-wise characteristics

This section starts by stating some definitions to simplify the notation and later states and

proves a series of theorems that provide insight into the characteristics of the sets of views re-

turned by WScan.

Definition 3.1. Let Π = {p1, p2, . . . , pn} denote the set of all processes and define by partici-

pating set P ⊆ Π the set of processes that eventually invoke the WScan task.

Definition 3.2. Each process pi is uniquely identified and is interchangeably referenced as i or

pi. Its corresponding computed view is denoted by vi.

As we assume that every process that invokes the WScan task provides its own identifier as

input, this implies that every returned view is a subset of P.

Definition 3.3. Define vk = ∅ if the process pk never invokes the WScan task, so vk =

∅,∀pk ∈ Π \ P. The set of returned views is then the set of views vi such that vi 6= ∅, i ∈ P.

The following theorem states that the set of views that are positively computed in any exe-

cution share a nonempty subset of processes.

Theorem 3.4. Let V1 = {v1, v2, . . . , vm} be the set of computed views generated by an execution,

then:

A1 =
⋂

1≤i≤m
vi 6= ∅

Proof. Suppose that
⋂
vi = ∅ and let pk be the first process to write its value to the shared

memory by invoking the task. As the collect starts only after the input value has been written,

the collect by pk must find its own identifier written to the shared memory, and as every other

process writes afterwards, any process obtaining a view will necessarily observe pk.

∴ pk ∈
⋂

1≤i≤m
vi

The contradiction completes the proof.
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Let the set A1, like in theorem 3.4, be the nonempty subset of processes shared by all com-

puted views, A1 =
⋂
vi such that vi ∈ V1. We can then define a new set of views,

Definition 3.5. Let V2 be defined as the set of views obtained from V1 by removing all the views

generated by the processes in A1. In other words, V2 = V1 \ {vi|pi ∈ A1}.

The next theorem states that unless the set of processes A1 is equal to the total set of par-

ticipating processes P, then the intersection of the views in the set V2 is also nonempty, even

after removing the set A1 which is evidently included in the intersection.

Theorem 3.6. If A1 6= P then,

A2 =
(⋂

V2

)
\A1 6= ∅

Proof. Let B = P \A1 which is nonempty and let pk ∈ B be the first process from B to write its

identifier to the shared memory. Therefore, as in the previous theorem, every single process in

B must see pk in their corresponding views because pk is already written to the shared memory

when they start their respective collects, this implies that every view in V2 must contain pk,

∴ pk ∈
⋂

vj∈V2

vj \A

This property of the set of views is applicable iteratively as long as there remains a nonempty

subset of views Vi, obtained from V(i−1) by removing the views generated by any process which

has been contained in any of the previous intersections, this is, if P 6=
⋃
Aj such that j < i.

Using this property we can now define the following sets.

Definition 3.7. Given a set of views V obtained from a valid execution on a WScan object, we

define sets S1, S2, ... iteratively in the following manner and as long as Sk remains nonempty:

S1 =
⋂
{vi | vi ∈ V }

Sn =
⋂
{vi | pi /∈ Sj} \ Sj , ∀j < n
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The collection of sets {Si} conform a sequence of disjoint sets whose union is the total of

participating processes P. Intuitively, this family of sets preserves an order in terms of concur-

rent writes, so if two processes belong to the same set Si it is because there is no possible way to

distinguish which of the two processes wrote earlier, we can therefore think of the related write

events as concurrent. In contrast, the write by a process that belongs to a set Sj occurred earlier

in time than that of a process that belongs to a set Sk with j < k. Even more, this sequence of

sets lets us define another family of sets, also in an iterative manner.

Definition 3.8. Given the family of sets {Si}, we define their related sets P1, P2, ... iteratively

as follows:

P1 = {i | S1 ⊆ vi}

Pn = {i |
⋃

1≤j≤n
Sj ⊆ vi}

So P1 is the set of processes whose views contain all the processes in S1. P2 is the set of processes

whose views contain all the processes in S1 and in S2, and so on. The family {Pi} defines a

sequence of sets ordered by containment, this is:

P1 ⊇ P2 ⊇ · · · ⊇ Pr ⊇ . . .

Theorem 3.9. p ∈ Pk ⇒ p ∈ Pm, ∀m ≤ k.

Proof. The proof is clear from the containments.

Definition 3.10. Given a process p, define order(p) as the maximum integer for which p ∈ Pk

is true.

From the definitions, it is clear that if order(p) = k then p ∈ Pk and p /∈ Pk+1, or in other

words, we have
⋃

1≤i≤k Si ⊆ vp but Sk+1 6⊆ vp.
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Theorem 3.11. p ∈ Sk ⇒ Sk ⊆ vp.

Proof. By the way of contradiction, suppose there is a process q in Sk that is not contained in

vp. This is, ∃ q ∈ Sk such that q 6∈ vp. As p ∈ Sk, then it is not in any Sj with j < k because

the family {Si} is disjoint. Therefore p’s view is intersected with others to generate the set Sk,

but if q isn’t contained in vp, then it’s not contained in the intersection:

q 6∈ vp ⇒ q 6∈
⋂
{vi | pi /∈ Sj} \ Sj , ∀j < n

⇒ q 6∈ Sk

Theorem 3.12. p ∈ Sk ⇒ Sj ⊆ vp,∀j < k

Proof. Suppose that Sj 6⊆ vp for some j < k

⇒ ∃ q ∈ Sj such that q 6∈ vp

But as p ∈ Sk ⇒ p 6∈ Si for any i < k se the sets are disjoint. Then as before:

q 6∈ vp ⇒ q 6∈
⋂
{vi | pi /∈ Sj} \ Sj , ∀j < n

⇒ q 6∈ Sk

Corollary 3.13. The next result is direct from the previous theorems:

p ∈ Sk ⇒ p ∈ Pr, r ≤ k

or in other words:

p ∈ Sk ⇒
⋃

1≤i≤k
Si ⊆ vp

Theorem 3.14. If order(p) = k then p ∈ Sj for some j ≤ k.
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Proof. We show that if order(p) = k then p 6∈ Sj with j > k, which, by the characteristics of

the family of sets {Si} of being disjoint and having the total set as union, proves the theorem,

since p will necessarily have to be an element of some Sr with r < k.

Suppose p ∈ Sj , j > k, then:

⇒
⋃

1≤i≤j
Si ⊆ vp ⇒ p ∈ Pj con j > k ⇒ orden(p) ≥ j > k

Contradicting that order(p) = k.

3.2 Discussion

The preceding notions establish some properties that the views obtained in an execution must

satisfy simply by the way in which the WScan proceeds. This are not, however, sufficient

conditions to describe any set of views generated by an execution. Take as an example the

following sets of identifiers which intend to be a set of valid views5 in an execution with three

participating processes, namely processes 1, 2 and 3. Associate process 1 to the set v1 = {1, 2, 3}

–which would imply that the scan by process 1 saw a full view– process 2 to the set v2 = {1, 2}

and process 3 to the set v3 = {2, 3}. It is easy to observe that the family of sets {Si} can be

obtained from these sets without violating any required property. We assume for this example

that the scanning of the segments is done in the natural order defined by the processes’ indexes,

this is, the first register to be read is the one to which process 1 writes, then the register assigned

to process 2 and finally the one of process 3. The order in which scans are executed is not relevant

as a counterexample one ordering is easily translatable to any other permutation of the indexes.

The sets {Si} are then as follows:

S1 = v1 ∩ v2 ∩ v3 = {2}
5Where by valid we refer to a set of views that can really be generated in an execution, or in other words, an

element of the set of output vectors O which is related to the particular input vector by the specification of the

task
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S2 = {v1 ∩ v3} \ S1 = {3}

S3 = {v1} \ {S1 ∪ S2} = {1}

So none of the sets are empty, they are disjoint and their union is the total. However this

sets cannot be the result of a valid execution. The sets Si imply that process 2 is the first one

to write, followed by process 3 and finally by process 1. But if this is so, after writing, process 2

starts its collect, it starts by reading the first location, as its associated set v2 includes the value

1 it must be that process 1 has already written when process 2 reads the register. But then

process 2 should have read the value 3 as well, due to the fact that it was supposedly written

before value 1 and that its register is read later.

The problem exposed by the previous counterexample arises from the observation that the

previous properties are only concerned with the order in which the write events are executed.

However, in order to fully grasp the characteristics proper to any set of views generated by an

execution, the order in which read events occur must also be taken into account. Let the order in

which the registers are read during a scan be specified by the permutation Per : P → {1 . . . n},

so the register for which Per(px) = 1 is the first to be read, followed by the register for which

Per(py) = 2, and so on. The next theorem states that every time that a process reads the

identifier of a process that is written later than a process whose register is still to be read, then

the scanning process view must also contain the latter process’ identifier. The proof is direct

from the order in which the read events are ordered.

Theorem 3.15. Let p ∈ Sk, q ∈ Sr, k < r and Per(q) < Per(p). Then q ∈ vk =⇒ p ∈ vk, ∀k

It has already been shown that any set of valid views necessarily complies to the properties

implied by the previous theorems. This leads to the following set-wise characterization of valid

views.

Set-wise characterization of valid views: Let P be a set of processes and V = {vi|i ∈ P}

be a set of views with vi ⊆ P,∀i. Then V is a valid set of output views from a WScan task if

and only if V satisfies the following two properties:

• The sets {Si} defined by V are non empty, disjoint and their union is the total of partici-

pating processes.
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• p ∈ Sk, q ∈ Sr, k < r and Per(q) < Per(p). Then q ∈ vk =⇒ p ∈ vk, ∀k , where Per is

a permutation that defines the order in which the segments are read.

3.3 WScan execution representations

We now present a characterization for executions over a WScan task and for the views that

these generate. Consider any (n + 1) × n matrix A with unique elements ai,j from the set

{i | 1 ≤ i ≤ n(n+ 1)} which satisfies the following two properties6:

Property 1: an+1,i < ai,j , ∀i, j

Property 2: ai,j < ai,j+1, ∀i ≤ n, ∀j

The first property states that the i-th element from the last row (i.e. last row, i-th column) is

smaller than every element in the i-th row. Intuitively, the elements in the matrix are timestamps

of the different events occurring over the shared registers, the last row represents the writing

events and the rest of the rows represent the reads. So this captures the idea that the write

event of a certain process comes before any of its read events, as the i-th element in the last row

holds the timestamp for the write event of process i and the elements of the i-th row represent

its read events. The second property captures the orderly manner in which the read events

occur, because the different segments are read sequentially, so process i reads segment j before

it reads segment j + 1 regardless of the time it takes it to do so.

Any execution of a WScan task can be represented as a matrix holding the two properties.

The converse is also true, any matrix that satisfies the properties has an associated execution

which is very easy to simulate as one only needs to follow the events on the shared array as the

timestamps in the matrix indicate.

Given a matrix representation of an execution, the set of views is efficiently computed by

the next simple rule:

6The matrix elements are standard with usual matrix notation, so the element indexed as ai,j represents the

matrix entry in the i-th row and j-th column.
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Rule 3.16. j ∈ vi ⇔ ai,j > an+1,j

So a process j is in a process i’s view if j wrote its identifier before i read the corresponding

register, which makes perfect sense. With this in mind, it is clear that a particular set of views

V can be considered valid if and only if one can construct a matrix that satisfies properties 1

and 2 from which the proposed set of views V can be obtained by following the previous rule.

As an example, lets construct a matrix from a particular execution of the WScan task with

3 processes which renders a set of view which do not comply with the snapshot specification.

First process p1 invokes WScan and its identifier 1 gets written (event is numbered 1 in the first

matrix), it then starts its scan by reading the first and second segment (numbered 2 and 3 in

the second matrix). Then it stops executing steps while process p2 invokes the task, gets written

and proceeds to read the whole array (events numbered 4(write event), 5, 6 and 7 (sequential

read events) all shown in the third matrix).



p1 p2 p3

p1 . . .

p2 . . .

p3 . . .

w 1 . .





p1 p2 p3

p1 2 3 .

p2 . . .

p3 . . .

w 1 . .





p1 p2 p3

p1 2 3 .

p2 5 6 7

p3 . . .

w 1 4 .


Later, process p3 invokes the task and its write event occurs with timestamp 8, afterwards p1

continues making progress and finishes its last read event (labeled 9 in the penultimate matrix).

At the end, p3 finishes its invocation by executing its 3 read events (numbered 10, 11 and 12 in

the last matrix).



p1 p2 p3

p1 2 3 .

p2 5 6 7

p3 . . .

w 1 4 8





p1 p2 p3

p1 2 3 9

p2 5 6 7

p3 . . .

w 1 4 8





p1 p2 p3

p1 2 3 9

p2 5 6 7

p3 10 11 12

w 1 4 8


Analyzing this last matrix we see that v1 = {1, 3} because 2 = a1,1 > a4,1 = 1 and because

9 = a1,3 > a4,3 = 8, however {2} 6∈ v1 because 3 = a1,2 6> a4,2 = 4. Analogue observations
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render the views v2 = {1, 2} and v3 = {1, 2, 3}. It should be noted that this is an example of

a set of views which wouldn’t be obtained from a snapshot object because v1 and v2 cannot be

ordered by containment.

Finally, we present a last matrix which renders a different execution but which is not distin-

guishable to any of the processes because every view is identical to the views from the previous

example:



p1 p2 p3

p1 2 3 11

p2 5 6 7

p3 9 10 12

w 1 4 8



We denote any representation of this kind as an execution matrix. The following theorem

states sufficient and necessary conditions for a set of views to be considered as valid. The proof

is direct from the observed relation between the execution and the matrixes, it is clear that

there is a matrix representation for every possible execution of a WScan task and that every

possible well constructed matrix represents a particular execution. We note again that a same

set of views can be obtainable from a number of different executions.

Theorem 3.17. Let P be a set of n processes and V = {v1, v2, . . . , vn} be a set of views with

vi ⊆ P, ∀i. Then V is a valid set of output views from a WScan task if and only if there is an

execution matrix M from which this set of views is obtainable by following rule 3.16.
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4 Recursive Snapshots

This section presents a series of algorithms which explore different recursive structures aiming

to obtain implementations for the snapshot and immediate snapshot tasks. The first of this is

the classic implementation of the participating set protocol in its recursive version.

4.1 Recursive participating set protocol

The participating set protocol presented in [13] is a wait-free algorithm that solves the Immediate

Snapshot task using only single-writer/multi-reader atomic registers. Gafni and Rajsbaum adopt

this algorithm in [22] and propose a recursive version of it in which different instances of a same

task are invoked by the different participating processes in order to obtain a view which complies

with the specifications of the problem. Both algorithms have an upper bound complexity of

O(n2) although it is proven in [22] that the creation of a view of size s takes Θ(n(n − s + 1))

steps in total. This recursive algorithm, ImmSnap, serves as motivation to the present study

and is shown next as Algorithm 1.

Algorithm 1

ImmSnapn(i) (code for pi)

1: write i to Ri

2: view ← scan{R1, . . . , Rn}

3: if |view| = n then

4: return view

5: else

6: ImmSnapn−1(i)

In this and all following algorithms the convention is used that variables in uppercase are
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shared in that instance and variables in lowercase are local to the executing process. In the

algorithm, registers R1 up to Rn compose the shared memory of each particular instance of

the immediate snapshot task. These registers are all single-writer/multi-reader atomic registers

which means that only the i-th process can write values into register Ri and that every single

process can read the contents of every single register. Each independent instance of the task7

has an independent set of n shared registers known internally as R1, . . . , Rn which are private to

that particular instance; this can be seen as every instance of the task having its own clean copy

of the register array. Initially every single register in every single instance is set to a default

value ⊥ which cannot be written by any process. When the algorithm is invoked by process

i, it starts by writing i’s identifier into register Ri in the shared memory of ImmSnapn. This

announces i’s participation in the protocol to any subsequent process that executes the same

instance of the task, and so, any process that starts execution of line 2 after the write event by i,

and later returns at this same instance, should include i’s identifier in its view. After writing its

identifier, i computes its own view by sequentially reading every register in the shared memory

and creating a vector view that contains every value different to ⊥ read by i. Afterwards, the

cardinality of the computed view is calculated, i.e. the number of different identifiers it contains,

and if this number is equal to the subindex of the particular instance then i can return with

view as output; otherwise, a recursive invocation is made to a different instance of the algorithm

with a subindex one less than the current instance. The algorithm works as each instance of

the task admits a number of participants smaller or equal to what is indicated by its subindex.

Proofs of correctness and termination are given in [22].

The recursive algorithm ImmSnap to solve Immediate Snapshot is simple, concise and can

be easily understood and analyzed. Even more, the fact that it is recursive and uses clean copies

of the shared array in each instance give the algorithm the desirable property of belonging to

an iterated model of computation, which allows analyzing it from a topological viewpoint by

describing the set of possible outputs as a subdivision of a simplicial complex [25]. Nevertheless,

the complexity of the algorithm might be considered too high as to be considered a viable

solution for real life applications.

Next, we present a series of attempts to modify the previous algorithm with the goal of

7Different instances of the task are recognized by their subindex, so ImmSnapk and ImmSnapl are different

instances of the ImmSnap task if k 6= l
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lowering the complexity in order to obtain a recursive implementation for the snapshot task

which approaches the trivial minimum bound of O(n), obtained from the fact that a process

running by itself cannot obtain a snapshot if it doesn’t read at least once each of the other

processes’ registers.

4.2 Reversed invocations (1 through n)

The first noticeable aspect of analyzing algorithm ImmSnap for the worst case, is that this

occurs when a process i executes the protocol in a solo execution, this is, no other process takes

steps until the referenced process returns. In this scenario, every instance of the Immediate

Snapshot task will obtain a view that only contains i’s own identifier, leading i to execute the

task recursively with a lesser subindex until reaching the bottom of the recursion at the instance

ImmSnap1(i), where it will return the view {i} that only contains its own identifier. Therefore,

the process executes n recursions making one write and n reads in each, thus leading to the

mentioned complexity of O(n2) steps on the shared memory.

A first approach to try to improve the complexity of this algorithm is presented next as

algorithm 2 or algorithm Reverse. This version is very similar to the previous algorithm but

attempts to avoid the preceding worst case scenario simply by reversing the execution order on

which different instances are invoked. To do this, the first invocation is done upon the instance

referred to as Reverse1 and recursive invocations by a task instance Reversek point to the

instance Reversek+1. This new protocol succeeds in reducing the complexity of the preceding

worst case scenario, because when a process i invokes Reverse1(i) and executes solo, it will

return in line 3 after a single write and n reads from shared memory.

However, a quick glimpse at algorithm Reverse is all it takes to find counterexamples that

breach the minimal required termination property for any algorithm, this is, that a process

should finish its execution of the algorithm in finitely many steps. As an example of such an

execution, think of that in which the full set of n processes (where n > 1) invoke the algorithm

concurrently, thus writing concurrently to the shared registers, this will render the same full view

to every process and as |view| = n > 1 = k every process will eventually invoke the algorithm
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Algorithm 2

Reversek(i) (code for pi)

1: write i to Ri

2: view ← scan{R1, . . . , Rn}

3: if |view| = k then

4: return view

5: else

6: Reversek+1(i)

recursively with the next tag k = 2. Lets think that this style of concurrent invocations continues

in the same manner throughout the different instances, with every process obtaining a full view

each time, up to the bottom of the recursion. When the n participating processes finally invoke

the instance with subindex tag n, one process p crashes before writing it’s identifier on this

last instance’s shared registers, while every other process continues to execute normally. Every

single process besides p will obtain a view, however as non of these views includes p, they will

all have views with cardinality lower than n. This will render the conditional on line 3 false and

so, will lead the processes to recursively invoke Reversen+1, point after which, it is clear that

the recursion will go on infinitely deep, as the conditional escape clause of line 3 will never be

met by any of the subsequent views. Any process captured in a scenario similar to this will not

terminate its execution regardless of the number of steps it executes. Even more, it is clear that

if we restrict ourselves to executions that do finish correctly, the complexity of such executions

is also quadratic in the worst case, although it’s evident by now that these restricted executions

are not the worst case. Therefore, algorithm Reverse is definitely not an improvement to the

previous implementation of the immediate snapshot task, as it doesn’t even effectively solve the

task. In certain settings it could be arguable that it isn’t even a proper algorithm as it doesn’t

satisfy the termination property.

4.3 Knowledge accumulation

A different approach to obtain a more efficient protocol to solve the atomic immediate snapshot

task comes from the idea of knowledge accumulation which is borrowed from [8]. This concept

is equivalent in this case to that of a full information execution in the sense that processes take

their computed views from a certain instance of the protocol as inputs for the next instance.
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The algorithm, named Knowledge is shown next.

Algorithm 3

Knowledgek(Ii) (code for pi)

1: write Ii to Ri

2: scan R1, . . . , Rn

3: view ← ∪{R1, . . . , Rn}

4: if |view| = k then

5: return view

6: else

7: Knowledgek+1(view)

Any process that invokes algorithm Knowledge, initially does so by invoking the instance

with subindex tag k = 1 and with its own identifier as the only element of its input view Ii.

The process then writes its input view to the shared registers of that particular instance and

then performs a scan on the whole array. A new view is generated by calculating the union8

of the views already written to the shared memory which the process was able to read. If the

cardinality of the computed view equals the subindex tag of the instance being executed, the

process exits with such view. In other case, it recursively invokes the next instance proposing

the computed view as its new input. The only difference between algorithms Knowledge

and Reverse is therefore the accumulation of knowledge, as tags are incremental in both. If

a certain process p obtains information of other process’ participation (by reading the latter’s

identifier q in any of the instances’ shared arrays), it never loses this information in the remaining

of the execution. This is due to the fact that, after reading q’s identifier, p creates a view which

contains this identifier and then uses this view as input to the next instance, where p itself

will write q’s identifier into the shared array as part of its own input, and later read it again

during the posterior scan. This has some advantages over the previous algorithm. First, this

works somewhat as a helping mechanism because a process can learn of some other process’

participation in an indirect manner by taking the information from a third process. In other

words, even if a process p never reads any information written in the shared memory by a process

q, it can obtain evidence of q’s participation by reading q’s identifier in another process k’s input

8This union refers to the classic notion of set union, we note that as views are simply sets of process identifiers

this operation is well defined.
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view. Secondly, as information is never lost, a view calculated in a posterior instance can never

be smaller than a view obtained in a previous instance, avoiding the problem which led to the

described counterexample for algorithm Reverse. This implies that an invocation to algorithm

Knowledge from a correct process always terminates after executing a finite amount of steps.

Next, we show that this last algorithm is an implementation for the atomic snapshot task.

Theorem 4.1. Algorithm Knowledge solves the atomic snapshot task.

Proof. It is clear that the algorithm satisfies the self-inclusion property, as each process’s own

identifier works as input for the first instance and this knowledge is never lost throughout the

recursion, leading the executing process’s identifier to be necessarily contained in the final view,

so i ∈ vi, ∀i. To show that the final views are order by containment, we first show that two

final views of equal size must necessarily be the same view. Suppose that two processes i andj

finish their respective executions with views viewi and viewj , such that |viewi| = |viewj | = k;

we prove that viewi = viewj . In order for i and j to return with a view of size k, both processes

need to exit the recursion at the k-th level, which at the same time implies that in the instance

with tag k− 1, both processes obtained a view with a cardinality larger than k− 1. Even more,

the view obtained at level k − 1 must necessarily be of size k as in another case (view larger

than k) this same view would become a subset of the view computed at level k, leading once

again to a view with a cardinality larger than k and contradicting the fact that both processes

obtain a final view of size k. Without loss of generality, assume that i is the first of the two

processes to write its input view to the shared registers which are private to the k-th instance

of the algorithm, then it must necessarily read its own input view while performing the scan of

line 2 and as we know it will not obtain any more knowledge, its computed view must be exactly

the same as the one it wrote as input, this again is clear because more knowledge would render

a larger view which would in turn contradict the premises. The same is true for j, after writing

its own k-sized input view, it will perform its scan, reading its own input view as well as i’s

input together with possibly other views. However, just as it happened with i, it cannot obtain

more knowledge than it already had in its input view, not even from i’s input. This implies that

i’s and j’s input views were identical, and as none of them acquires any new knowledge, so are

their final views. In the case where |viewi| = k1 y |viewj | = k2 with k1 < k2. We need to show

that viewi ⊆ viewj if the order by containment is to be preserved. Again, think of the level

k1−1, in which both processes obtained their respective partial views view′i and view′j of size at
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least k1. From the argument used above, we also know that viewi = view′i, as in another case

i wouldn’t have returned in level k1. There are two possible cases on instance Knowledgek1

depending on whether j reads i’s input view or not when performing the scan at that instance.

If j does read the view viewi written by i to the shared array then j’s final view will necessarily

contain i’s view as knowledge is not lost throughout the recursion and we know that i will have

viewi as its final view, so in this case viewi ⊆ viewj . In the other case, if j doesn’t read the

view written by i it means that j necessarily performed its write before i. Therefore i will

consequently read the input view view′j written by j when performing its scan on level k1. i

also reads its own input view, which we know is viewi. If it were true that viewi 6= view′j

then i would obtain more knowledge in level k1 and, accordingly, a view of size larger than k1

contradicting the fact that i returns from the algorithm with view viewi. Therefore, it must be

true that viewi = view′j and it is clear that view′j ⊆ viewj as knowledge is not lost throughout

the recursion and k1 = |viewi| = |view′j | < |viewj |.

It has been shown that all final views are ordered by containment and are self-inclusive,

proving that algorithm Knowledge is an implementation for the atomic snapshot task.

Nevertheless, if this algorithm was to be proposed as an implementation to the atomic

immediate snapshot task, a deeper examination will prove it faulty. As it has been proved that

the algorithm satisfies the self-inclusion and containment properties, any counterexample must

rise from a generated set of views that fails to embrace the last desired property: immediacy.

We give an counterexample to the immediacy property using an execution with a set of three

participating processes. Let i and j be two processes which concurrently invoke the algorithm

in such a way that while performing their scan in the first instance they both read each other’s

identifier resulting in views {i, j} for both processes. Later, a third process v invokes the

algorithm obtaining {i, j, v} as its view for the first instance. As the three processes obtain

views of size larger than 1, they all recursively invoke the next instance of the task with tag

k = 2. In this instance, let i run solo first, writing its view {i, j} and then performing its scan.

While performing the scan i should only find its own input in the memory and the default value

⊥ in everybody else’s register, thus computing its same view {i, j} of size 2 as output, which

by rendering the conditional in line 4 true, also lets i exit and return with that precise view.

Then let v run solo. It will run up to a third recursive call after seeing three identifiers in the

second iteration’s register array, namely {i, j, v}. In the third recursive instance, with tag k = 3,
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process v will again see the whole participating set of size 3 and will return with view {i, j, v}.

Finally, let j run again. After writing its input view in the registers of the instance with tag

k = 2 it will perform its scan and read v’s input view obtaining thus a complete view of the

three participating process. Therefore, just as process v, it will end up in a third instance with

the same exit view as process v. The exit views produced by processes i and j, {i, j} and {i, j, v}

respectively, don’t satisfy the immediacy property as we see that j ∈ viewi but viewj 6⊆ viewi.

As was mentioned before, even though algorithm Knowledge doesn’t satisfy the immediacy

property to correctly implement immediate snapshots, it is nevertheless a correct implementation

for the more general atomic snapshot. Be that as it may, it is still quadratic in complexity so

it doesn’t provide a better implementation to the task than previous solutions. The quadratic

scenario happens when a process has to recursively invoke n different instances of the algorithm

as it always sees a larger view than what is specified by the instance’s subindex tag, for example in

an execution where all n processes invoke algorithm Knowledge concurrently. In this execution

processes will get all the way to the bottom of the recursion invoking the instance with subindex

tag n and as there are no larger views possible than a complete view, i.e. one that includes

every process, they will all return with that exact view. Even though all n processes compute

a complete view since the first instance, they nonetheless have to traverse the whole recursion

before exiting with the exact same view that they all had calculated at the first instance. There

is no real gain by adding a conditional clause that lets a process return when in possession of

a full view, as a very similar problem which also renders quadratic complexity would happen if

n− 1 processes executed concurrently.

4.4 “Jumping” recursion

The use of linear recursion seems to present an impassable problem if complexity is to be reduced;

for it isn’t clear how to reduce the worst case complexity if there are processes that need to

invoke n instances of the algorithm, regardless of the algorithm being a correct implementation.

A new probable solution comes into mind, where we allow processes to jump recursion levels by

recursively calling new instances that depend on the number of processes included in the partial

views. The following pseudocode, called Jumps and labeled algorithm 4, is an implementation

for this approximation. We recall that the input view for the first invocation is the process’
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identifier.

Algorithm 4

Jumpsk(Ii) (code for pi)

1: write Ii to Ri

2: scan R1, . . . , Rn

3: view ← ∪{R1, . . . , Rn}

4: if |view| = k then

5: return view

6: else

7: Jumps|view|(view)

We note that this algorithm also uses knowledge accumulation by providing previously calculated

views as inputs to subsequent invocations. The self-inclusion property for this algorithm is

proven in the same way as it was done for the previous algorithm Knowledge, simply by

observing the fact that knowledge is never lost and that a process’s own identifier is the first

piece of knowledge it acquires by issuing it as its private input. On the other hand, by analyzing

the possible partial views that different participating processes can calculate, it is easy to see

that the containment guarantees that were offered by algorithm Knowledge are lost when we

allow process to jump recursion levels. This creates executions which work as counterexamples

even to the containment property for atomic snapshots, not to mention the immediacy property

to satisfy immediate snapshots. Next, a counterexample in which the final resulting views aren’t

order by containment is displayed. First, we note that in the first instance of the algorithm with

tag k = 1, lines 1, 2 and 3 are exactly equivalent to an invocation on a WScan object with the

process’ identifier as input. We can therefore use the matrix representation presented in section

3.3 to represent the partial execution over the first instance of the task in our counterexample.

The following matrix represents an execution with 4 participating processes:



p1 p2 p3 p4

p1 2 3 4 20

p2 7 9 11 13

p3 8 10 12 14

p4 16 17 18 19

w 1 5 6 15


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In the execution, p1 is the first to write its identifier and later scans the first three registers

before stopping. Then processes p2 and p3 execute concurrently writing and scanning the array

completely. Later, a fourth process p4 writes and scans, finally p1 finishes its scan by reading

p4’s identifier in the last register. The views obtained are then v1 = {1, 4}, v2 = v3 = {1, 2, 3}

and v4 = {1, 2, 3, 4} with respective cardinalities of 2, 3, 3 and 4 elements, all larger than one.

The computed views then make process p1 invoke recursively the instance with k = 2, p2 and

p3 invoke the instance with k = 3 and p4 the one with tag k = 4. In these recursively invoked

instances, the four processes will find themselves computing right-sized views that will allow

them to return, but these views are the same that were obtained in the first instance. We have

that p1 ∈ v2, and v1 6⊆ v2 ∧ v2 6⊆ v1
9, proving that neither the containment property nor the

immediacy property are satisfied by algorithm Jumps.

4.5 Branching recursion and related observations

The last counterexample shows that the proposed “jumping” recursion isn’t the solution either.

We can then think of a branching recursive structure in which recursion invocations look like a

general tree. An example would be a double recursion in which some processes invoke recursively

a “left” instance while others invoke a “right” one, thus the recursive structure would look as a

binary tree. This kind of recursive structure is used in algorithms such as Gafni and Rajsbaum’s

recursive implementation of the renaming task proposed in [22]. The main idea would be to

have a structure like the one shown in figure 3. The figure shows a structure in which each node

of the binary tree is an instance of some task T with O(n) complexity, like WScan to give an

example, referenced by its subindex, and the tree’s height is logn.

If such a structure was able to solve the immediate snapshot task then its complexity would

be only O(nlogn). However, the tricky aspect is that each instance of the base algorithm,

represented in the figure as the tree’s nodes has to be able to split the processes that invoke

it so that some invoke the left successor in their next recursive call while others invoke the

remaining right successor, otherwise we could find executions in which every process traverses

the same recursion path, which would mean that a linear recursion solution is available in

O(nlogn) complexity. Even if we assume that each node of the binary tree can satisfy this

9analogously p1 ∈ v3 and v1 6⊆ v3 ∧ v3 6⊆ v1
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Tn/2

Tn/4

Tn/8

...

T1 T2

...

T3n/8

...
...

T3n/4

T5n/8
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T7n/8
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Tn−3 Tn−1· · ·

Figure 3: Branching recursion tree in which the different instances are referenced by subindex tags,

each tag specifies the instances’ position in the tree when labeled by an in-order search.

division property there are still many complications to the implementation. For instance, if

the protocol doesn’t rely on full information executions and process carry only their private

information to a new node/instance, then two processes that end up at different leaves in the

recursion tree will have trouble returning views that satisfy containment, as they will not know

what the other process’ view is like. Even more, as the protocol must be wait-free, a process in

a leave must decide whether to include or not in its view a process that is still in the tree’s inner

nodes, a problem that brings up many complications even if the deciding process knows what

that other process’ current view is like. Extensive analysis on this regard has shown that the

containment property seems impossible to satisfy in a recursive manner and thus the obtention

of an O(nlogn) implementation. This however, implies not only that immediate snapshots task

cannot be implemented in such a complexity in an iterated model, but it implies an equivalent

sentence on plain atomic snapshots as well. This gives rise to the main result of this work which

is explored in the next section.
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5 Snapshot impossibility in O(nlogn) over the iterated

model

This section starts by resuming the main observations obtained after analyzing the previous

recursive algorithms in section 5.1. Later we state a conjecture in section 5.2 that defies the

equivalence between the iterated read/write model and its non iterated version in terms of shared

access complexity. We then provide analysis on the base cases for this conjecture and an elegant

proof by connectivity for the case with three processors in section 5.3 and 5.4, respectively.

5.1 Initial observations

The previous section explored a series of recursive algorithms which differed on the structural

recursive approach or in the way that knowledge was administered by the invoking processes.

The goal was to find new recursive implementations for the snapshot and immediate snapshot

tasks and with the goal in mind of trying to reduce the least known complexity bound of

O(n2) steps on the shared memory for both tasks in an iterated setting, particularly in an

attempt to bring the bound down to O(nlogn) steps. Although a different implementation for

the snapshot task was certainly devised, it didn’t improve on the known complexity bound.

The question of whether it is possible to obtain an algorithm with smaller complexity is not

easily solvable. In the usual write/read non iterated model, where a unique shared array is used

and processes can access it over and over again to read or write the different MRSW registers,

there are implementations for the atomic snapshot task in O(nlogn) [8]. The iterated model,

although having been proved equivalent to its non iterated version, has no implementation of

the snapshot task in any complexity below O(n2) where n is the total number of processes.

Therefore algorithms ImmSnap and Knowledge are both as good an implementation as there
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is in the iterated write/read model for the snapshot task, even though the snapshot task is a

weakening of the immediate snapshot task which algorithm ImmSnap also solves.

5.2 Postulation

The truly interesting result of the different implementations in the previous section was a set of

observations which seemed to imply that the atomic snapshot task in not solvable in O(nlogn)

steps in the iterated setting. This final section conjectures this fact and establishes the basis for

a generalized proof in this respect. We start by properly formulating the conjecture.

Conjecture: There is no possible implementation for the atomic snapshot task in a read/write

iterated model of distributed computing with a low bound complexity of O(nlogn) for any number

n of invoking processes.

As has been usual in this text, in the remaining of this section we assume a read/write iterated

setting even when it’s not explicitly stated. Also, on each round, processes make one invocation

to a WScan task in order to announce their participation in that instance and obtain a scan of

the shared memory. When trying to comply to the snapshot specification, a process that obtains

a certain view vi from the WScan can then decide on any subset of vi as its final view, evidently

attempting to comply with the self-inclusion and containment properties.

5.3 Base cases

The minimal distributed scenario occurs with two processes, so lets begin by analyzing the case

with two processes and one iteration or round. In this setup, the atomic snapshot task is easily

solvable. It is clear that when two processes, p1 and p2, participate and invoke a WScan task,

there are only three possible output vectors. One in which both processes see both identifiers,

one in which p1 sees only itself while p2 sees both, and the converse of this last output. It is easy

to prove that there is no way in which both processes see only themselves, by observing the first

process to execute its write event, and noting that both processes will necessarily observe this

write. It is clear that the three possible output vectors satisfy the self-inclusion and containment

properties, so a trivial implementation of the snapshot task lets each process return its computed
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view regardless of what the other process’ view contains.

Recall the protocol complex for the immediate snapshots task with 3 processes represented

graphically in figure 2 in section 2.5. Here we present the complex for the WScan, also for three

processes, as figure 4. It should be noted that both complexes are very similar, there are only

three more simplices on the WScan complex than on the immediate snapshot complex. The

previous paragraph implied that for 2 processes the complexes are identical, while the figures

show that for three processes there are three possible sets of views which do not comply with

the snapshot specifications. The number of simplices in the WScan complex that do not comply

to the snapshot specifications grow exponentially to the dimension of the complex which is

determined by the number of participating processes.

Think next on a scenario with three processes and two rounds, devising an implementation

for the atomic snapshot task is also simple in this scenario. We can see from figure 4 that any

execution where the three processes participate (i.e. a triangle) has at least one of its vertexes

in the central simplex, which represents the obtention of a full view {1, 2, 3} by the different

processes. This implies that in any execution where all processes participate, at least one of

them will compute a full view10. This allows us to give a simple implementation for atomic

snapshots for three processes and two rounds. If a process in the first round sees a full view, it

returns with that view. A process that doesn’t see a full view in the first round invokes a second

instance, in this second round a process returns whatever view it obtains. The proof proceeds by

noting that not all three processes can invoke the second instance as is if this was the case, then

all processes participated but none of them obtained a full view. We know this is impossible.

Therefore at most two processes proceed to a second round and the problem is thus reduced to

the case of two processes and 1 round that was earlier solved trivially by returning whichever

view was computed. The proof ends by noting that the views from the second round are ordered

by containment (as it was shown earlier) and that the full view, obtained by any process that

doesn’t proceed to the second round, trivially contains any of the partial views computed in the

second round.

10This fact becomes clear if one thinks of the last process to invoke WScan, when this process performs its scan

the other processes have already written their identifiers to their corresponding registers.
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Figure 4: Simplicial complex representing all the possible write/scan views for 3 processes.

5.4 Proof for n = 3

The next case, involving three processes but just one round, is much more interesting and seems

to set a precedent towards the generalized proof of the conjecture. The following theorem states

that no algorithm in the write/read iterated model can solve snapshot for three processes in

only one round.

Theorem 5.1. Three processes cannot solve snapshot in 1 round in the read/write iterated

model.

Proof.

The proof makes use of the fact that the views returned by the WScan() task in the iterated

model do not avoid interference during a scan from other updating processes. The figure that

represent all the possible sets of views as a simplicial complex is reproduced in figure 4. Assume

there is an implementation Ψ that solves the atomic snapshot task in the iterated read/write

model for three processes in one round. Let p1, p2 and p3 be three processes and consider the

following executions. Execution e1, blue-colored simplex in figure 5, is that in which process

p1 start solo, writes to the shared memory first and scans, thus seeing only itself, therefore it

must return {1} as its view to satisfy self-inclusion; later, process p2 writes and scans, obtaining

the view {1, 2} which must be precisely the view it returns in order to satisfy the properties
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Figure 5: Path (in red) proving the impossibility to solve snapshot by the iterated read/write model

with three processes and one round.

of the snapshot task, returning any other subset, in presence of p1’s view, would breach one of

the snapshot properties; finally p3 reads and scans obtaining view {1, 2, 3}. Execution e2, pink

simplex in figure 5, is similar to e1 but replacing letting process p2 run first, followed by p3 and

finally p1; therefore, p3 sees only itself and must return {3} as its view, while p1 will see {1, 3}

and must return this same view in order to satisfy containment. Finally consider the following

execution e3, green simplex in the figure, in which p1 is the first to write and then starts its scan,

stopping after reading p2’s register but before reading p3’s register. Up to that point, p1 has

only seen itself written to memory. Then p2 writes to memory and finishes its scan, obtaining

the view {1, 2}. Later p3 writes into memory and p1 continues its scan, reading p3’s register and

obtaining {1, 3} as a view. The executions are represented next by their matrix representations:

e1:



p1 p2 p3

p1 2 3 4

p2 6 7 8

p3 10 11 12

w 1 5 9

 e2:



p1 p2 p3

p1 6 7 8

p2 10 11 12

p3 2 3 4

w 5 9 1

 e3:



p1 p2 p3

p1 2 3 9

p2 5 6 7

p3 10 11 12

w 1 4 8


By execution e1, process p2 is forced to return {1, 2} as its final view when obtaining this

same view from the WScan. Similarly, by execution e2, process p1 is forced to return {1, 3}

as its final view when obtaining this same view from the WScan. Returning any other subset
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would render non-compliance to some snapshot property in those executions. So when running

protocol Ψ these two decisions are forced. The crux of the proof comes from the fact that

process p2 cannot distinguish execution e1 from execution e3 and process p1 cannot distinguish

between executions e2 and e3. This happens because the processes obtain the same views from

the WScan in each pair of undistinguishable scenarios. Therefore, when running protocol Ψ, p2

must necessarily decide {1, 2} upon observing {1, 2} to avoid a counterexample in execution e1,

and analogously, p1 must return {1, 3} upon obtaining the view {1, 3} from the WScan. These

forced decisions can be connected by execution e3, thus rendering incompatible views which

cannot be ordered by containment. In this execution, p1 must decide v1 = {1, 3} as it cannot

distinguish from execution e2, while p2 must decide v2 = {1, 2} as it cannot distinguish from

execution e1. We note that (v1 6⊆ v2) ∧ (v2 6⊆ v1). This breach on the containment property of

the atomic snapshot task is represented below as a chain of forced decisions and as a red path

on figure 5.

< 1, {1} > e1←→< 2, {1, 2} > e3←→< 1, {1, 3} > e2←→< 3, {3} >
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Recursion offers a very useful tool for the devise and analysis of distributed algorithms. Models

which use a round by round iterative perspective have proved themselves fundamental in many

impossibility and lower bound results. Many algorithms over these models can be though of

recursively to simplify their analysis, leading to generally simple inductive proofs over the number

of recursive instances of the particular task.

We have worked over a standard MRSW register shared memory model of distributed com-

puting in an asynchronous wait-free setting and have based our results on constructions over a

most basic task of iterated models, the write-scan or WScan task. We have characterized the

set of possible output views deliverable by a WScan object, first in a set-wise formulation which

specifies the necessary interactions that an arbitrary set of vectors needs to satisfy in order to

be obtainable as output of a WScan execution. Next, we presented a second characterization of

WScan views based in matrix representations which is easier to comprehend and use. This is

due to the fact that the matrix representation that corresponds to a given set of views is deeply

linked to the execution that renders such output views. This kind of representation also allows

any feasible execution over a shared memory abstracted by a WScan task, as concurrent as can

be, to be thought of in a sequential order of isolated read and write shared memory events.

Iterated models and their non iterated versions have been proved equivalent in a wide spec-

trum of circumstances. For instance, the usual snapshot model and its iterated version have

been shown to be equivalent in terms of wait-free solvability by the means of several proposed

simulations. This work attempts to shed some light on the question of whether iterated models

and their non iterated versions are equivalent in terms of complexity. A conjecture is presented

to this respect by stating that the complexity to solve the atomic snapshot task in an iterated
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model is strictly higher than the complexity required to solve the same task in the non iterated

setting. Some particular cases are analyzed and a proof is offered for the case of three processors

and one round. We believe that this proof for a particular case may lay the foundations for a

future generalized proof, by observing the connectivity of certain simplices in the associated

WScan protocol complex.
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