UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO

1 VANVERSDAD NacoNaL |

‘ AVFNMA DE |
Moucpo

POSGRADD EN CIENCIA E INGENIFRIA DE LA COMPUTACION

“A PARALLEL BIOINSPIRED WATERMARKING
ALGORITHM ON AGPU™

T HE S 1 S

ASAFULFILMENT OF THE REQUIREMENT
FOR THE DEGREE OF:

MASTER IN SCIENCES
(COMPUTER)

B Y:

EDGAR EDUARDO GARCIA CANO CASTILLO

ADVISOR:

DEA KATYARODRIGUEEZVAZQUEL

Mexico, D.F. 2012,

e e

Universidad Nacional - J ~ Biblioteca Central
Auténoma de México -

Direccion General de Bibliotecas de la UNAM
Swmie 1 Bpg L IR

UNAM - Direccion General de Bibliotecas
Tesis Digitales
Restricciones de uso

DERECHOS RESERVADQOS ©
PROHIBIDA SU REPRODUCCION TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imagenes, fragmentos de videos, y demas material que sea
objeto de proteccion de los derechos de autor, serd exclusivamente para
fines educativos e informativos y debera citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproduccion, edicion o modificacion, sera perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

UNIVERSIDAD NACIONAL AUTONOMA DE

MEXICO
" e POSGEADD EN CIENCIA FINGENIERIA DE LA COMPTUTACION
VNIVERSBAD MNacyoNal,
ANVNFNT1a DE
MEXCD

“ALGORITAO DE MARCA DE AGUA BIOINSPTIRADA
EN PARALFL.O EN UNA GPU™

TES 1 S

QUE PAERA OBTENER EL GEADO DE:

MAESTRO EN CIENCIAS
(COMPUTACION)

P R E S E N T A:

EDGAR EDUARDO GARCIA CANO CASTILLO

DIRECTORDE TESIS:

DREA KATYARODRIGUEEVAZQUEE

Afevics, D.F. 012

Este trabajo fue realizado gracias a los apoyos recibidos por parte del Consejo Nacional de
Ciencia y Tecnologia (CONACYT), con la beca de posgrado nacional numer

ABSTRACT

Abstract

In this thesis, I'm presenting a research about the usability, advantages and disadvantages of using
CUDA architecture to implement algorithms based on populations, specifically Parti- cle Swarm
Optimization (PSO). Nowadays it is not necessary to invest in clusters, since it is enough to have
a video card -as the ones from NVIDIA- that has a lot of cores in just one GPU, and takes
advantage of this parallelism.

In order to test the performance of the algorithm, a hide watermark image application is
implemented, and the PSO is used to optimize the positions where the watermark has to be
inserted. This application uses the insertion/extraction algorithm proposed by Shieh et al. The
whole algorithm was implemented for both sequential and CUDA architectures. The CUDA
version of the watermarking-PSO algorithm takes advantage of the parallelism, where the fitness
function is the union of two objectives: fidelity and robustness. The measurement of fidelity and
robustness is computed by using Mean Squared Error (MSE) and Normalized Correlation (NC)
respectively; these functions are evaluated using Pareto dominance.

The first chapter introduces watermarks, what they are and explains the two types of wa-
termarks: visible and invisible. It also includes a perspective about what CUDA architecture is,
how it was born and what it is used for nowadays. Later it gives an introduction about what
Evolutionary and Bioinspired Algorithms are.

The second chapter gives an overview of Discrete Cosine Transform (DCT) applied to insert
the watermark images. In addition to this method, are explained two watermarking metrics:
watermarking fidelity and watermarking robustness. The fidelity represents the sim- ilarity of the
watermarked image with the original image and the robustness represents the resistance of the
watermark against manipulations applied on the watermarked image. The third chapter -related
with the second one- explains the different types or watermark attacks. The attacks are applied to
test the robustness of the watermarked image.

The fourth chapter explains the main CUDA features such as the architecture, how to or-
ganize the data in the GPU, how to do the thread assignment to take advantage of parallelism,
beside the different memory types such as: global, constant, registers and shared.

The fifth chapter gives in detail the steps that are involved in the Shieh algorithm, which
is used to insert and extract the watermark image. In few words, this algorithm makes use of the
DCT domain by splitting the original image in blocks of 8x8, then a ratio matrix between DC and
AC coefficients is calculated. The next step is to compute the relation between the image content
and the frequency bands where the watermark will be inserted; finally Inverse Discrete Cosine
Transform (IDCT) is performed to get the watermarked image.

The sixth chapter introduces the theory about Particle Swarm Optimization (PSO), which is
based on particles that fly through the problem space trying to find a solution each time step. To
do this the particle moves are based in velocity and position vectors that change with time. To
know if a particle is near to a solution, a fitness value must be calculated. In the case of this
work, the fitness value is composed of two objectives: fidelity and robustness. These aims are
evaluated using Pareto dominance whose theory is explained in chapter seven.

The chapter eighth finally links the whole theory seen in previous chapters to give life to the
optimization algorithm applied in the watermark insertion. The algorithm is based on the Shieh
and the PSO algorithms.

Finally, test, results and conclusions are exposed in chapters nine and ten.

DERIVED WORKS

Derived works

¢ A research paper submitted to the 3erd Intemational Supercomputing Conference in
Mexico (ISUM) to be hold in March 2012.

Contents

1 Introduction 1
1.1 Motivation
3
1.2 Contributions
3
1.30utline 3
2 Transform Methods for Watermarking 5
2ADCTTheory o e
62.2 Watermarking Metrics
..................... 7
221 Watermark Fidelity oL
72.2.2 Watermark Robustness
................... 72.2.3
Watermark Capacity 8
2.3 Functionsused inthisthesis 8
3 Watermarking Attacks 9
3.1 Examples of Attacks 10
3.11JPEG Compression 10
3.1.2LowPassFiltering 10
3.1.3 Median Filtering. 10
3.2 Attack used inthisthesis. oL 11
4 CUDA Architecture 13
4.1 Thread Assigment 15
4.2 Thread Scheduling and Latency Tolerance 16
4.3 CUDA Device Memories 17
4.3.1 Global Memory 17
4.3.2ConstantMemory 17
433Registers............. L 18
4.3.4 Shared Memory L 18
44 CUDAEvents e 18
45CUDABestPractices L 18
5 Shieh algorithm 21
5.1 The extraction algorithm 28
CONTENTS
6 Particle Swarm Optimization (PSO))

PSO ... 31
7 Multiobjetive optimization 3
71 ParetoTheory L 3
711 Paretodominance 33
71.2Paretooptimal L 3
713 Paretooptimalset oL A
7.1.4 Paretofrontier. A
7.1.5 Pareto Dominance used inthisthesis. A
8 The optimization algorithm 39
9 Tests and Results 43
9.1ServerFeatures 43
92 Inputdata........... 44
9.30utcomes e 45
9.3.1 Shieh implementaton 45
9.3.2PSO implementation., 48
10 Conclusions and future work 51
10.1 Conclusions 51 10.2 Future
WOPK . o 54
Appendices '9)
A Analysis, Design and Implementation of Shieh Algorithm 57
A.1Shieh Operations 58
A.11RatioOperation. 58
A.1.2 Polarities Operation &0
A.1.3 Watermark Embedding Operation 61
A.1.4 Quantization. a2
A.1.5 Watermark Extraction Operation. 63
B Analysis, Design and Implementation of PSO Algorithm 65
B.0.6 Random number generation. 6§
B.0.7PSQOoperations 67
B.0.7.1Velocity 67
B.0.7.2Position, 68
BO73MSE................. ... 5]
BO74ANC.................. . 70

CONTENTS

C Utilities
C.A Timerh.......
C.2 ShiehUtilities.h . . .
C.3 ImageParamLoader.h
C.4 BmpUtilLh

Bibliography

List of Figures

21

41
42
43
44

51

52

53

54
95

6.1
741

72
73

81

82

91
92

Original Lena image (left) and transform coefficients of Lena image obtained

by DCT. . . 5
A multidimensional example of CUDA grid organizations [13]... 14
Thread block assigment to streaming multiprocessors (SMs)[13]. 15
Blocks partitioned into warps for threading scheduling. 16
CUDA device memory model [13]. 17

The matrix of the zigzag ordered DCT coefficients. Each Y mn(#) is a fre-
quency band where the watermark bits could be inserted.22
The image shows the zig-zag order of four 8x8 blocks of the original image.

The R(1) value is the sum of the division of the element (0) between element (1)

on each block of the wholeimage.23
Embedding the watermark bits within the image. Each bit is inserted using
theequation5.6.25 .
Generic Block Diagram for Watermarking. The 27
block diagram for watermark extraction. 28
PSOUML Classdiagram. 32

The boxed points represent feasible choices, and smaller values are preferred to
larger ones. Point C is not on the Pareto Frontier because it is dominated by both
point A and point B. Points A and B are not strictly dominated by

any other, and hence do lie on the frontier. 34
Image blocks organization. 36 Pareto
dominancechart. 37

This figure shows how the solutions are generated taking from particles P1 and
P2 -from the different swarms- the frequency bands B1, B2, B3 and B4,

generating the corresponding solution. 40
The optimization algorithm. 41
Inputdata. 44
Runtime for functions involved in the insertion/extraction algorithm running
onthe Geogpus server. 45

LIST OF FIGURES

93 Runtime for functions involved in the insertion/extraction algorithm running

onthe Uxdeaserver., Runtime of . 46
94 the insertion and the MSE, and the extraction and the NC opera- tions on
GeogpuUS. i Runtime of the . 46

95 insertion and the MSE, and the extraction and the NC opera- tions on Uxdea.
................................ Runtime for PSO on . 47 .

96 Geogpus.t Runtime for PSO on Uxdea. . 48
97 49
A.1 Flow Diagram of Shieh Algorithm. 57 A.2 Flow
Diagram for Watermarking Extraction. 58

B.1 Flow Diagram of watermarking algorithm (Shieh + PSO). 65 B.2
Threads management for the reduction operation. 69

C.A Timer struct. 73 C.2
ShiehUtilities struct. o L o 75 C.3
ImageParamLoaderclass. 79

List of Tables

71 EXClUSIVe Or. 3572 Pareto
dominance. 37

91 CPUs Serverfeatures. 43 92 GPUs
Serverfeatures. 43

vii

Chapter 1

Introduction

The goal of the present work is to research and analyze bioinspired algorithms applied to a
watermarking insertion algorithm, using the parallel paradigm on Graphics Processing Units
(GPUs), specifically based on Compute Unified Device Architecture (CUDA). The first part
concerns with the implementation of the watermarking algorithm; this was carried out in a

research stay at the Ecole de Technologie Sup’
’ erieure (ETS), Universit” du Qu”
e ebecin Canada,

under Professor Robert Sabourin's and PhD student Bassem Guendy's supervision. The sec- ond part
considers the bioinspired algorithm implementation and the integration with the wa- termarking
algorithm. The second part was under the supervision of Dra. Katya Rodriguez

V' azquez.

Digital watermarking came to be in great demand when sharing information on the In-
temet became a usual practice. When sharing files online, you never know if someone uses them
without your consent.

A digital watermark is a pattern of bits inserted into a digital file such as an image, an audio
or a video. Such patterns usually carry copyright information of the file. Digital water- marking
takes its name from the faintly visible watermarks imprinted on paper to identify a manufacturer,
an enterprise, a school, etc. In digital watermarking the objective is to provide copyright protection
in digital files.

When speaking of digital image watermarking, we can divide watermarks into two main
groups: visible and invisible watermarks.

A visible watermark is a visible semi-transparent text or image overlaid on the original
image. It allows the original image to be viewed, but it still provides copyright protection by
marking the image as its property. Visible watermarks are more robust against image trans-
formation (especially if you use a semi-transparent watermark placed over the whole image). Thus
they are preferable for strong copyright protection of intellectual property in digital for- mat

CHAPTER 1. INTRODUCTION

An imisible watermark is an embedded image which cannot be perceived with human
eyes. Only electronic devices (or specialized software) can extract the hidden information to
identify the copyright owner. Invisible watermarks are used to mark a specialized digital content
(text, images or even audio content) to prove its authenticity [2].

A GPU is a processor dedicated to graphics processing, to lighten the workload of the
central processor in applications such as video games and interactive 3D applications. On this
way, while much of the load related to the graphics processing is executed on the GPU, the CPU
can focus on other calculations.

Using GPUs is possible to perform tasks more efficiently, which are optimized for floating point
calculations. Therefore, a good strategy is to use brute force on the GPUs to complete more
calculations at the same time.

In order to program the GPU, several languages can be used, among them C using
CUDA extension, OpenCL, Fortran, Java, etc. CUDA is a parallel computing architecture of
NVIDIA that allows a significant increase in performance of the calculations thanks to the power of
the GPU.

With thousands of GPUs, software developers, scientists and researchers are finding op-
portunities to use CUDA, for example in image and video processing, biology and compu-
tational chemistry, simulation of fluid dynamics , the reconstruction of tomographic images,
seismic analysis, evolutionary computation and more.

Currently, evolutionary computation makes use of models based on the natural evolution
process, designing and implementing algorithms for solving problems. There are a large
variety of proposals and studies on these models, which are called with the generic name of
Evolutionary Algorithms. These have common features such as the inspiration in the
simulation of the evolution of populations of individuals through processes of selection and
reproduction.

Another set of proposals inspired by biological models, such as optimization algorithms
based on Ant Colony and Swarm-based algorithms are classified into what has been called
biocinspired algorithms, a new way to solve problems based on the behavior of animals or
systems that take centuries to evolution.

1.1. MOTIVATION

11 Motivation

Due to the impossibility to control the information that goes through Internet, there is a need to
protect our information from unauthorized copying or to legitimate our ownership over it, and the
invisible watermarking comes out as an option that -combined with an optimization mechanism
such as the bioinspired algorithm PSO-, provides a highly suitable tool for this purpose.

In recent years, new and cheaper technologies such as CUDA architecture have emerged with
the concept of massive parallelism. Due to this new paradigm, it is not necessary to in- vest in
expensive clusters, since it is enough to have a video card -like the ones from Nvidia- that have a
lot of cores in just one GPU, and take advantage of its massive parallelism.

The combination of the bioinspired and the watermarking algorithms using the new mas- sive
parallelism paradigm on GPUs to accelerate the process came out as a curiosity for me and
became the motivation of the research in this work.

12 Contributions

The contributions of this thesis are:

® A proposal on how to implement a watermark optimization using Particle Swarm Op-
timization (PSO) on GPUs. In this proposal each block generated in Discrete Cosine
Transform (DCT) is taken as a swarm. For each swarm, N particles are created, and
these particles have part of the total solution. The particles fithess is measured by using mean
squared emror (MSE) and normalized correlation (NC); these are the two objetives that are
evaluated using Pareto dominance.

¢ Two implementations of the optimization algorithm, one sequential and other that uses
CUDA architecture. Those implementations help to compare the efficiency and speed up of
the two different architectures, and to know which of them is more convenient to be used in
algorithms based in populations.

13 Outline

The main theory for watermarking using the Shieh algorithm combined with PSO and the
CUDA architecture is presented in the following chapters of this thesis.

¢ Chapter 2 presents the DCT theory as one of the main elements to embed a watermark,
besides the metrics used to evaluate it.

CHAPTER 1. INTRODUCTION

® Chapter 3 decribes the watermarking attacks and the one used in the optimization
algorithm.

¢ Chapter 4 explains the main features of the CUDA architecture, thread assigment,
thread scheduling, device memory and some of the best practices to develop software with
CUDA.

® Chapter 5 presents the details for the implementation of the algorithm proposed by
Shieh ¢z a/[6].

® Chapter 6 describes the foundations of the PSO algorithm.

® Chapter 7 explains the foundations of the multiobjetive optimization.

® Chapter 8 explains how the whole algorithm (watermarking + PSO) was implemented.
® Chapter 9 presents the tests and results of the thesis.

® Chapter 10 draws the conclusions of this research work.

Chapter 2

Transform Methods for Watermarking

There are different types of transformations used in image watermarking such as Discrete
Cosine Transform (DCT), Discrete Wavelet Transform (D17 T'), and Discrete Multiwavelet
Transform (DM T).

DCT is commonly used in MPEG and JPEG as an orthogonal transform. In the DCT
domain, the energy could be concentrated in the low frequency regions around the upper-left
comer (see figure 2.1), but depending of the convention the energy could be concentrated in the
center or in the other comners.

Figure 2.1: Original Lena image (left) and transform coefficients of Lena image obtained by DCT.

DWT decomposes the image into different frequency bands and still retains its spatial
information. In wavelet watermarking techniques, since the DWT of an image gives mul-
tiresolution sampling, the watermark ends up being robust to downsampling operations.

DMT is relatively a new type of signal transform that is commonly used in image com-
pression. The main motivation of using multiwavelet is that it is possible to construct mul-
tiwavelets that simultaneously possess desirable properties such as orthogonality, symmetry and
compact support with a given approximation order [16].

At the EST -where | made a research stay-, Professor Robert Sabourin and his collabora- tors
were working on a project to apply the watermark process in financial banking document

5

CHAPTER 2. TRANSFORM METHODS FOR WATERMARKING

like checks, invoices and bills. The process to digitized the physical document is made using as
equipment a scanner. The digital files are acquired by the scanner in grey scale, that is why the work
focuses in the use of grey scale images. The client, Banctec needs to have digitized and
watermarked tens of millions of documents per day, and that is why they need a rapid method to
watermark a huge quantity of documents.

In addition, Professor Sabourin's team decided to apply DCT because small changes in some
frequency bands are visually imperceptible. Moreover, JPEG and MPEG compression are based
on DCT and with such method the watermark ends up being resistant against com- pression.

21 DCT Theory

The Discrete Cosine Transform is a Fourier-like transform, which was first proposed by
Ahmed e al. (1974). While the Fourier Transform represents a signal as the mixture of
sines and cosines, the Cosine Transform performs only the cosine-series expansion. The pur- pose
of DCT is to perform the decorrelation of the input signal and to present the output in the frequency
domain. The DCT is known for its high "energy compaction" property, meaning

that the transformed signal can be easily analyzed using few low-frequency components.

This fact made it widely used in digital signal processing.The most popular DCT is the two-
dimensional symmetric variation of the transform that operates on 8x8 blocks and its in- verse.
The two-dimensional input signal is divided into the set of nonoverlapping 8x8 blocks and each
block is independently processed. This makes it possible to perform the block-wise transform in
parallel.

The formal definition for DCT of two-dimensional for a sample of size N - N is defined
as follows:

N-1N-1

f(x, y) cos M2x N 1)ucos A2y N 1)v
C, v) = oAm)oAv) =00 —2F —2F 1)

The inverse of two-dimensional DCT for a sample of size N - Nis:

N-1N-1

S, v) =
o)), v) cos 2x N Dyrrcos 742y iN 1)y
#=0 =0 2+ 2+ (22)

where »,»=0, 1, .., N—1,alsoxy=0,1,.,N—-1,and

6

2.2. WATERMARKING METRICS

if x=0;
if »=0.

Zwo 17|
—
N
w
N

o=

As it can be seen from 2.3, if »= 0 then C(0) =, x=0' f(x). By convention,
1 _

this value is called the DC coefficient of the transform and the other ;re referred to as AC
coefficients[11].

22 Watermarking Metrics

In the digital framework, watermarking algorithms that make use of information hiding tech-
niques have been developed and hiding capacity has naturally been used as a metric in eval-
uating their power to hide information (the maximal amount of information that a certain
algorithm can "hide" keeping the data within allowable distortion bounds).

221 Watermark Fidelity

The fidelity represents the similarity of the watermarked image with the original image. Peak

Signal to Noise Ratio (P SN R) is commonly used to evaluate image degradation or recon-
struction fidelity. It is defined for two images I and K of size M - N as:

1 2% 24
P SN R(I, =101o .
(L K) g0 M SE(, K) (24)

Where I is the original image, K is a reconstructed or noisy approximation, 2552 is the
maximum pixel value in image 7 and M SE is a mean square error between I and K.

T T MAINA
11 1G, j) —KG) ? (25)
MSE(I,K)=MN ~0/~0
PSNR is expressed in decibel scale. In image reconstruction typical values for PSNR
vary within the range [30, 50]. A PSNR value of 50 and higher calculated from two images that
were processed on diverse devices with the same algorithm indicates that the results are
practically identical.

222 Watermark Robustness

The robustness represents the resistance of the watermark against attacks -compression, ro-

CHAPTER 2. TRANSFORM METHODS FOR WATERMARKING

image. The Normalized Correlation (IN €) is used to measure the robustness between the
original watermark and the extracted watermark. When different attacks have been applied to a
watermarked image, the N C is calculated between the embedded watermark 17 (;) and the
extracted watermark from the attacked image 17 (;) , where both watermarks have the

same dimensions M, - N,

My Ny . A N
_ =1 1 [W(Z:/)W(Z;j)]
NC B My Ny

WGP

26)

223 Watermark Capacity

Determining the capacity of a watermark in an image is to find how much information can be
hidden in a digital image without perceptible distortion while maintaining its robustness [20].

Image watermarking capacity is a complex problem that may be influenced by many
factors. The content of the image has as much influence in the capacity as the watermark
strength. But higher strength in a watermark not always means higher watermark capacity. For
example if we add ten units instead of one unit to the gray level value for each pixel in order
to insert one bit of watermark, the strength becomes much higher, but the capacity remains the
same [17].

23 Functions used in this thesis

Generally, the watermark is measured and characterized using three aspects, i.e. fidelity,
robustness and capacity. There is a need to fix the capacity and to maximize both fidelity and
robustness to reach a better watermarking characteristics system. Professor Sabourin's team
decided to start working with fidelity and robustness as a first version of the application.

Chapter 3
Watermarking Attacks

Digital image watermarking has become a popular technique for authentication and copyright
protection. In order to verify the security and robustness of watermarking algorithms, spe- cific
attacks have to be applied to test them. A list of most common attacks is given as follows.

I. JPEG Compression - JPEG is currently one of the most widely used compression
algorithms for images.

Il. Geometric transformations

1) Flip - The image looks, as if it has been reflected along the central horizontal or
vertical axis of the layer.

2) Rotation - It is used to move in some angle the image, it is used to straighten an
image once it was scanned.

3) Cropping - It refers to an unwanted part of the image that is removed, to focus in
a particular object.

4) Scaling -When a image is resized, sometimes the image is enlarged or reduced to
fit in an specific place. The scaling could be applied in horizontal, vertical or both
directions.

lIl. Enhancement techniques

1) Low pass filtering - The simplest operation to calculate it, is the average of a
pixel and all of its eight immediate neighbors. The result replaces the original
value of the pixel. Every pixel repeat the same process. This effect is also called
blurring or smoothing.

2) Histogram modifications - This includes histogram stretching or equalisation
which are sometimes used to compensate poor lightening conditions.[15]

3) Sharpening - It is used to increase the contrast between each pixel and its neigh-
bors. The image must be blurring as first step, then the original and the blurred

9

CHAPTER 3. WATERMARKING ATTACKS

version image are compare pixel by pixel. If a pixel is brighter than the blurred
version it is lightened further; if a pixel is darker than the blurred version, it is
darkened.

4) Gamma correction - Gamma correction is used to control the overall brightness
of an image. This effect is used when the image is too dark.

5) Restoration - Sometimes it is necessary to reduce an specific degradation process
(blur, noise, camera misfocus, etc.) in the image, this technique is used to reduce
("compensate for" or "undo") the effects of that degradation.

31 Examples of Attacks

This section explains some attacks considered by the Shieh algorithm for robustness [6].

311 JPEG Compression

The name "JPEG" stands for Joint Photographic Experts Group, the name of the committee

that created the JPEG standard and also other standards. The JPEG compression algorithm is
used with photographs and paintings of realistic scenes with smooth variations of tone and color.
For web usage, where the amount of data used for an image is important, JPEG is very popular.

JPEG is based on a lossy compression method, which somewhat reduces the image fi- delity.
This method discards (loses) some data in order to achieve its goal, with the result that
decompressing the data yields content that is different from the original, though similar enough to
be useful in some way.

312 Low Pass Filtering

Applying a low pass filter on 2D image in the frequency domain means zeroing all frequency
components above a cutoff frequency. The result is transformed back into the spatial domain.

313 Median Filtering

The median filter is a nonlinear digital filtering technique, often used to remove noise. The

main idea of the median filter is to run through the signal entry by entry, replacing each entry with
the median of neighboring entries. The pattern of neighbors is called the "window", which slides,
one entry at a time, over the entire signal.

10

3.2. ATTACK USED IN THIS THESIS

32 Attack used in this thesis

In the present work, "quantization” is used as a watermarking attack. This attack was applied
because, since it is already part of the CUDA libraries, it was not necessary to program it, and
also because of its ease of use. Quantization is a method that can be added to the inser-
tion/extraction algorithm although it is not intrinsic to it.

Just one attack was used to test the optimization algorithm (see chapter 8) considering that
only one type of attack was sufficient to determine its performance. Nevertheless, other attacks
might be implemented to test the algorithm further, which is a proposal for future updates of
this application.

Quantization is applied to reduce the number of colors utilized in images; this technique is
implemented on devices that support a limited number of colors and for efficient compres- sion, it
makes possible to reduce the file size.

In quantization, the compression rate depends on the number of coefficients that are non- zero

after quantization has been performed. If a compression rate of 75 percent (of the initial size) is
required, 25 percent of least valuable coefficients should be zero after the quantization step.

11

Chapter 4

CUDA Architecture

In november 2006, NVIDIA introduced CUDA, a new general purpose parallel computing
architecture with a new programming model and an instruction set architecture, a tool to de-
velop scientific programs oriented to massively parallel computation. It is actually sufficient to
install a compatible GPU and the CUDA SDK, even in a low end computer to develop a parallel
program using a high level language as C.

CUDA's programming model requires that the programmer splits the problem under con-
sideration into many independent subtasks which can be solved in parallel. Each subproblem may
be further divided into many tasks, which can be solved cooperatively in parallel too. In CUDA
terms, each subproblem becomes a thread block, each thread block being com- posed of a
certain number of threads which cooperate to solve the subproblems in parallel. The software
element that describes the instructions to be executed by each thread is called kemel. When a
program running on the CPU invokes a kernel, the number of corresponding thread blocks and
the number of threads per thread block must be specified. The abstraction on which CUDA is
based allows a programmer to define a two dimensional grid of thread blocks; each block is
assigned a unique pair of indixes that act as its coordinates within the grid. The same
mechanism is available within each block: the threads that compose a block can be organized as
a two or three dimensional grid. Again, a unique set of indixes is pro- vided to assign each
thread a 'position" within the block. This indexing mechanism allows each thread to personalize its
access to data structures and, in the end, achieve effective prob- lem decomposition [7].

13

CHAPTER 4. CUDA ARCHITECTURE

Figure 4.1: A multidimensional example of CUDA grid organizations [13].

A Graphics Processing Unit (GPU) is a processor dedicated to graphics processing in or- der to
lighten the workload of the central processor in applications such as video games and interactive
3D applications. On this way, while much of the related to the graphics processing is executed on
the GPU, the CPU can focus on other calculations.

The expertise of GPUs can perform tasks more efficiently, which are optimized for float- ing
point calculations. Therefore, a good strategy is to use brute force on the GPUs to com- plete
more calculations at the same time. To program the GPU we can use several languages, such as C
using CUDA extension, OpenCL, Fortran, Java, etc.

With thousands of GPUs, software developers, scientists and researchers are finding op-
portunities to use CUDA. For example in image and video processing, biology and compu-
tational chemistry, simulation of fluid dynamics, the reconstruction of tomographic images,
sismic analysis, evolutionary computation and more.

14

4.1. THREAD ASSIGMENT

41 Thread Assigment

The GPU is made up of a scalable array of multithreaded Streaming Multiprocessors (SMs), each
of which is able to execute several thread blocks at the same time. When the CPU orders the GPU
to run a kemnel, thread blocks are distributed to free SMs and all the threads of a scheduled
block are executed concurrently.

One key aspect about SMs is their ability to manage hundreds of threads running different code
segments: in order to do so they employ an architecture called SIMT (Single Instruc- tion,
Multiple Thread) which creates, manages, schedules, and executes groups (warps) of 32 parallel
threads [7].

The runtime system maintains a list of blocks that needs to be executed and assigns new
blocks to SMs as they complete the execution of blocks previously assigned to them.

Figure 4.2 shows an example in which three thread blocks are assigned to each SM. One of the
SM resource limitations is the number of threads that can be simultaneously tracked and
scheduled. Hardware resources are required for SMs to maintain the thread, block IDs, and track
their execution status [13].

aM0

wn x| I
|-
14

Figure 4.2: Thread block assigment to streaming multiprocessors (SMs) [13].

15

CHAPTER 4. CUDA ARCHITECTURE

42 Thread Scheduling and Latency Tolerance

Once a block is assigned to a streaming multiprocessor, it is further divided into 32-thread units
called warps. The size of the warps is implementation specific. In fact, warps are not part of
the CUDA specification; however, knowledge of warps can be helpful in under- standing and
optimizing the performance of CUDA applications on particular generations of CUDA devices.
The warp is the unit of thread scheduling in SMs.

Each warp consists of 32 threads of consecutive threadldx values: Threads 0 through 31 form
the first warp, threads 32 through 63 the second warp, and so on. When an instruction executed
by the threads in a warp must wait for the result of a previously initiated long- latency
operation, the warp is not selected for execution. Another resident warp that is no longer
waiting for results is selected for execution. If more than one warp is ready for execu- tion, a
priority mechanism is used to select one for execution. This mechanism of filing the latency of
expensive operations with work from other threads is often referred to as latency hiding.

. Block 1 Warps e Blingk & Warps = Block 3 Wamns
01 &2 . 181 B e .

Figure 4.3: Blocks partitioned into warps for threading scheduling.

With enough warps around, the hardware will likely find a warp to execute at any point in

16

4.3. CUDA DEVICE MEMORIES

time, thus making full use of the execution hardware in spite of these long-latency operations [13].
The figure 4.3 shows the division of blocks into warps.

43 CUDA Device Memories

CUDA supports several types of memory that can be used by programmers. These types of
memories can be written (W) and read (R) by the host by calling application programming
interface (API) functions. In figure 4.4 we can see the memory model used by CUDA.

* Davice code can: o
- FAW par-thraad ragisiars i “’"“"‘""”“
— W par-ihraad local memary
— B par-thock shansd memany i ; - 1

— FW par-grc gichal memany * * * *
Read only par-ged conslart :

MErmry Threesd (D, 0 | Trrwsd (1, @) Tromed (0, @ || Treasd (1, O

* Host code can

= Transler data sffrom pergric o
giobal ard constant mamosias]

Figure 4.4: CUDA device memory model [13].

431 Global Memory

The global memory is implemented with dynamic access memory (DRAM), it has long ac- cess
latencies and finite access bandwidth.

432 Constant Memory

The constant memory supports short latency, high bandwidth, and read only access -by the
device- when all threads simultaneosly access the same location.

17

CHAPTER 4. CUDA ARCHITECTURE

433 Registers

These are located on the chip memories. Variables that resides these type of memory can be

accessed at very high speed in a highly parallel manner. Registers are allocated to individual
threads; each thread can only access its own registers.

A kernel function uses registers to hold frequently accessed variables that are private to each
thread.

434 Shared Memory

It is allocated to threads blocks; all the threads in blocks can access variables in the shared
memory locations allocated by the block.

Shared memory is an efficient means for threads to cooperate by sharing their input data and
the intermediate resullts of their work.

44 CUDA Events

An event in CUDA is essentially a GPU time stamp that is recorded at a user specified point in
time. Since the GPU itself is recording the time stamp, it eliminates a lot of problems we might
encounter when trying to time GPU executions with CPU timers. A time stamp con- sists of just
two steps: creating an event and subsequentialy recording an event. The trickiest part of using
events arises as a consequence of the fact that some of the calls we make in CUDA are actually
asynchronous [9].

45 CUDA Best Practices

In order to obtain the best performance from this architecture, a number of specific program-
ming guidelines should be followed, the most important of which are:

I. Minimize data transfers between the host and the graphics card
II. Minimize the use of global memory: shared memory should be preferred
1. Avoid different execution paths within the same warp
Moreover, each kemel should refiect the following structure:
|. Load data from global/texture memory

Il. Process data

18

4.5. CUDA BEST PRACTICES

[1I. Store results back to global memory

All the recomendations about best practices are in [4] and [3].

19

Chapter 5

Shieh algorithm

Shieh ¢ 4/ [6] have proposed a DCT based watermarking embedding algorithm, where an
image is transformed to the DCT domain after splitting to 8x8 blocks, and then a ratio ma- trix is
calculated between the DC and AC coefficients. In the next step a Polarities matrix is
computed. It represents the relation between image content and the embedding frequency bands,
to embed the permuted watermark into the DCT domain using the Polarities matrix and, finally,
IDCT is performed to get the watermarked image.

Shieh proposed the use of an evolutionary algorithm to optimize the position (frequency
bands) where the watermark bits ought to be inserted within the original image. Through the
different iterations, the algorithm tries to find out which are the best outcomes using PSNR and
NC to evaluate the watermarked image.

| decided to use this watermarking algorithm because Professor Sabourin's team has an
implementation of it in Matlab and it was easy for me to see how they implemented the func- tions
involved in the algorithm, particularly the ones related with images, since | had not worked
with images before.

They decided to use Shieh method because it is a blind method which means that it does not
need the original cover image to extract the watermark. For the applications dealing with huge
number of images, it would be very expensive to store all cover images for watermark extraction.

The steps of the algorithm are described below and shown in figure 5.4. Part of the

implementation of the algorithm is described in the Appendix A. This appendix shows the
configurations used for the GPU to implement the equations described in the next steps.

. Initially, the image X of size M - N to be watermarked is splitted into 8 - 8 blocks to
perform Discrete Cosine Transform on these blocks.

21

CHAPTER 5. SHIEH ALGORITHM

IIl. The individual 8 - 8 blocks are DCT transformed using the equation 2.1. The resultant

matrix Y () has the upper left corner as DC coefficient and the rest of the matrix
are the AC coefficients, where the DCT coefficients are zigzag ordered as in figure 5.1.

[ll. The watermark image to be embedded 17 is assumed to be a binary image, of size
My, - Ny . This binary image is permuted using a pre-determined key £, resulting
¥, see equation 5.1.

W, = permut W, k) 1)

W, is used for embedding the watermark bits into the selected DCT frecuency bands.

Funlll} | ¥aull} | Fomnid 5 -F.._,_-\:'J-i:. b 15 | ¥z | ¥ a2

Yiaa@) | Faafd) | Viaad T | Fiaafl13h | Food15) | Fio o 26) Fimad¥2h

O rlrr':ﬂnl F’Ilf_ﬂ_’;.m:l F-u_e'lq'l:' F.:E_u-'_l.""‘s;'

Fiaad31) | Ko) | Vo 534D | Koo 332

Fimed 10} | Finpd 19} | FimulZ3) | Fimpl 320 | Kol 390 | Fiond43) | Fimmil 32 | Fomed 340

Fiaal20} | Fia st ZZ) | Fiaat{33) | Fiust{ 38} | Fiaaddb) | Faul31) | Fuul55) | Fouul0)

Founf21} | Fraal) | Fourd3T) | Fountf3T) | Fomedd B0 | Fino{ 50D | Fometl 50 | om0l

Fiaarl35) | Fa s 36} | Fiaarl®) | Fiastld9) | Fraad5T) | Faad ZE) | FandlS2) | Fonosl53D

Figure 5.1: The matrix of the zigzag ordered DCT coefficients. Each Yo(k) is a frequency band
where the watermark bits could be inserted.

IV. Initially frequency bands to embed the watermark are selected from 17 iteration of the
optimization problem using Evolutionary Computation (EC), e.g. choose Y na(6),
Ymn(9), Yimn(12) and Ymn(29). Along the iterations for optimization, these fre-
quency bands are chosen for optimal embedding until the optimal frequency bands are
reached using the EC algorithm. The transformed matrix Y/...(£) is then used to get
the ratio matrix between the DC and the AC coefficients R(;) using the equation 5.2.

M/8 N/8

R() = Y (0) i € [1,63] (52)

=1 n=1 mn Z)

In figure 5.2 just four blocks of the total grid of the whole image are shown. To get the value
of R(1) it is necessary to divide the element (0) and element (1) of each block, and then to
add up all of them.

R(L) = D@0+ (0) By 0) = 53

(3 0)(1) B(l 0)(1) B(O 1)(1) B(l 1)(

Same for R(2) :

R(2)=B B (54)
o 05)(52> Bi1o(2) Bo 1)&) Y b NG o

Block(0,0) Block(1,0)

[.5 6 1411527 28 0!5 6 1415 27 28]

71131626 29 42| 2|4 7131626 29 42
8 12(17/25 30 41 43] 3 | s 12]17 2530 4143
111812431140 44/53] 9 11 18/24/3140 44 53
19 231323945 52/54}10/19 2332|3945 52 54
22 33/38/46 51 55 60§20/ 22 33|38 46/51/55 60
34 37/47 50 56 59 61]21/34/37 47|50/ 56 59 61
536 48 49 57 5862|6335 36 48 49 57 5862 63
:.5 6 14,1527 2800 Wl 5 |6 (14|15 27 29|
71131626 29/420 2] 4| 711311626 29 42
3 s 12/17/25(30/41 43| 3 8 121712530 4143
9 11,18 24/ 3140/44 53| 9 |11 1824 3140 44 53
1019 23 32/39 45 52/54}1019/23 3239 45 52 54
20 22 33 38 46 51/55 60J20 22 33 38 46 51 55 60
2134 37 47 50 5659 61|21/34 37 47 50 56 59 61

13536 |48 49 57 5862 |63)35/36/48 49 57 58 62 63
Block(0,1) Block(1,1)

—
FRES ol

Figure 5.2: The image shows the zig-zag order of four 8x8 blocks of the original image. The R(1)
value is the sum of the division of the element (0) between element (1) on each block of the whole
image.

V. Then the polarities matrix P is calculated using the equation 5.5.

23

CHAPTER 5. SHIEH ALGORITHM

1 (Y(m,n)(z') ® R(2)) > Y(W)(O), ieF;
P(m,n)(z') = 0 otherwise. (69)

24

VI. Next, the watermarked DCT coefficient Y'is obtained using the equation 5.6.

0

0

U Y(mn)(l) Z][P”Hf Z) W(Mﬂ) Z) 0 7 EF

= (Yo (0)/R(@) + 1if Py (z) 0, Wyonn(d) =1, i € F;
Y(m,ﬂ)(l) = 0 .

(¥n(0)/R(3) — 1 i (56)

The next figure shows an example of how to embed the watermark within the image. If

the image size is 512-512 there are 4096 blocks (512/8+512/8), and if the watermark size is
128 - 128 there are 16384 bits. Then, to embbed the watermark bits whitin the image, it is
necessary to divide the number of watermark bits and the number of blocks of the image
16384 /4096 = 4. Number 4 represents the watermark bits that will be inserted in each
block of the image.

Now, there will be chosen four frequency bands for each block where the watermark bits
will be inserted applying equation 5.6 (where the polarities and ratio matrices are involved
in the process), the frequency bands could be different from one block to another. Figure

5.3 shgws an.example.
m a(bé? bie Block(1,0) Watermark

11516 1215 27]25[0 15 6 141527128
2.4 ?141626 26/42|2 |4 7151626 29 42
3 812 17/25(30/4143]3 | 8 [12 17|25|3ﬂ--1-43.
9 11 1824 3140 44 53] 9 [11 18 24/3140 44 5%

10 19 23 32125/45 52 54[10 19 23 32 39 4952
20 22 33 38|46 51 55 60[20 22 33 38 46 5156
21343747 50 54 59 61)21 4750 56 59
3536 48 49 57 58 62 63|35 36 48 49 57 58 62
01 5[6 141527280 [1[5 |6 [14/1527
2 4 71316126 2942|2 |4 7/13/1626 29
38 12(172530/4143] 3 | 8 1217|2530 41
9 11 18 24 3140 44/53]9 11 1824 3140 41 5
10/19 23 32 39 45 52 54]10/19/23 32 39|45 52
20 22 33/38 46 51 55 60[20| 22 33 38 46 51 55 60
2134 3747 50 56 59 61|21/34 37 47 50 56 59

3536 48 49 57 58 62 63]35/36 48| 49 5758 62

Block(0,1) Block(1,1)

WO N U B WN O

Figure 5.3: Embedding the watermark bits within the image. Each bit is inserted using the
equation 5.6.

CHAPTER 5. SHIEH ALGORITHM

VII. After that, the watermarked image X is obtained by using the inverse DCT equation
22fory.

VIII. Now the PSNR is calculated as shown in equation 2.4 between the original image X
and the watermarked image X using the MSE as seen in equation 2.5.

IX. Next, different attacks are applied to X and the attacked images are denoted by X,
where p is the number of attacking schemes. Then the NC is calculated between em-

bedded watermark W(z;/) and the extracted watermark from the attacked image Wi
using equation 2.6

X. Finally the fitness function for the optimization problem is formalized using the aggre-
gation of quality objective PSNR and the robustness objective NC, this can be formu- lated
for the ¢ iteration in the EC algorithm as 5.7.

J)
f,i=PSNR,+ (NC,,*4) (6.7)

=1

where /,, is the magnifying factor for the NC because the PSNR is dozen times larger. The
process starts again in the step IV until obtaining the required optimization in the
watermarked image.

%

ﬁ.
Watermnark Altncs - Attack
Embedder | ¢ # g #n
e l ¢
P - -
s Walemmark . Watgrmark
: Datection Detaction
Holes m m
Computation ¥ " il
Wialerark Watermark
—— . [—
Sinilarity » Similarity o
Filnass)
« F L =
H-qg.. Wakermariing Robust Waterma ricing

L]

Fragiie and Aobust Watermarking

Figure 5.4: Generic Block Diagram for Watermarking.

CHAPTER 5. SHIEH ALGORITHM

51 The extraction algorithm

When extracting the watermarks, the original image X is not required in our algorithm. How- ever,
the optimized watermarked image might be subjected to some intentional or uninten- tional
attack, and the resulting image after the attack is represented by X . We calculate the DCT of the
watermarked image after attacking Y, in the attacked X, with the secret key

corresponding to the frequency set F, £,. We then reproduce the estimated reference table R

from the attacked X by following the operations in Eq. 5.8, and we are able to extract the
pemuted watermark,

14 (Ym,n)(z') *eR(2)2 Y(W)(O), Vi
W, (mmy ()= 0 otherwise. (©8)

W, = O U 1y —

=0 n
Y,(0), i eF ©9)

()

mn

Finally, we use £, in Eq. 5.10 to acquire the extracted watermark 17" from I?"p ,

W, = permute(W , ko) (5.10)
X*—»= Watermark
Extraction W
key,—={ with Eq. (15)

Figure 5.5: The block diagram for watermark extraction.

Chapter 6
Particle Swarm Optimization (PSO)

Nowadays, evolutionary computation makes use of models based on the natural evolution
process, designing and implementing algorithms for solving problems.

There is a large variety of proposals and studies on these models, which are called with the
generic name of Evolutionary Algorithms. These have as a common feature the inspi- ration on
the simulation of the evolution of populations through processes of selection and reproduction.

Another set of proposals inspired by biological models, such as Ant Colony and Swarm-
optimization algorithms are classified into what has been called bioinspired algorithms; a new
way to solve problems based on the behavior of animals or systems that took centuries to evolve.
These systems, Artificial Intelligence (Al) paradigms, are able to minimize the computation
time of certain complex mathematical problems such as the traveling salesman problem.

Particle Swarm Optimization (PSO) is a population based stochastic optimization tech-
nique developed by Dr. Eberhart and Dr. Kennedy in 1995, inspired by the social behavior of
bird flocking or fish schooling [10].

PSO shares many similarities with evolutionary computation techniques such as Ge- netic
Algorithms (GA). The system is initialized with a population of random solutions and searches
for the optimal using an iterative algorithm. However, unlike GA, PSO has no evolution
operators such as crossover and mutation. In PSO, the potential solutions, called particles, fly
through the problem space by following the current optimum particles. It has been successfully
applied to many problems in several fields such as Biomedicine (S. Selvan 2006 [18] and Energy
Conversion (J. Heo 2006 [8]), image analysis being one of the most frequent applications, like
Biomedical images (Mark P. Wachowiak 2004 [19]), Microwave imaging (M. Donelli 2005 [12]
and T. Huang 2007 [14]).

CHAPTER 6. PARTICLE SWARM OPTIMIZATION (PSO)

The proposal of using CUDA to implement these optimization algorithms is derived from the
need of Banctec to have a tool to satisfy robustness and fidelity requirements for water- marking
in huge quantities of gray scale images, which is why minimizing the time of the procedure
was of great importance.

PSO is an algorithm based in populations, meaning that it has a lot of possible solutions that
need to be evaluated, and finding the best one -depending on the problem- and the eval- uation
itself consume a lot of processing time.

This is the main reason why CUDA comes as a viable option to accelerate the process due
to the fact that operations involved in the algorithms could be parallelized (see appendix B),
resulting on a minimization of the runtime of the operations.

The idea of using PSO as the optimization algorithm comes owing to the fact that it has few
parameters to adjust. Since | was novice in programming with CUDA, it seemed like a suitable
option to start working with.

6.1 BasicPSO

Each particle keeps track of its coordinates in the problem space which is associated with the
best solution (fitness) achieved so far (this fithess value is stored). This value is called ples.
Another"best” value that is tracked by the particle swarm optimizer is the best value, obtained so
far by any particle among the neighbors of the particle. This location is called Zes~. When a
particle takes all the population as its topological neighbors, the best value is a global best and
is called gbesr.

The PSO concept consists of, at each time step, changing the velocity (accelerating) of
each particle toward its /st and gbest locations. Acceleration is weighted by a random term

with separate random numbers being generated for acceleration toward Zess and gest locations.

After finding the two best values (%esr and gbes?), the particle ; updates its velocity and
position with next equations 6.1 and 6.2, where /=1, 2, 3..N.

VAt+ 1) = V(D) + din(BO) — X(0) + (B~ X(9) ©6.1)

X+ D) =X+ V(+1) ©62)

¢ and ¢, are positive constants called acceleration coefficients, . is the total number of
particles in the "swarm", r and », are random values, each component is generated between

0

6.2. PARALLEL PSO

[0, 1], and g represents the index of the best particle in the neighborhood. The other vectors X, =
[, %, ..., X;p] = position of the # particle; 17,= [z, », ..z,] = velocity of the #

particle; B, = best historical value of the # particle found, B:= best value found of the #;

particle in the neighborhood [1].

Algorithm 1 Basic PSO
1: Initialize particles population
2: while do not get the max number of iterations or the optimal do
3 Calculate the fithess for each particle ;

Update B; if pbest is better than last one

Calculate B: of the neighbors ;
for each particle ;do
Calculate 1;(eq.6.1)
Update X (eq. 6.2)
Update best global solution (ges?)
10: end for
11: end while

© ® N o g A

Another important feature that affects the search performance of the PSO is the strat-
egy according to which B¢ is updated. In synchronons PSO, positions and velocities of all ;
particles are updated one after another. The value of B:is only updated at the end of each ;
generation, when the fitness values of all particles in the swarm are known.

The asynchronous PSO, instead, allows Bs to be updated immediately after the evalua-
tion of each particle fitness. In agynchronons PSO, the iterative sequential structure of the
update is lost, and the velocity and position update equations can be applied to any particle at
any time, in no specific order [7].

62 Parallel PSO

The PSO was implemented in CUDA architecture to take advantage of the power offered by the
massively parallel architectures available nowadays. The parallel programming model of CUDA
allows programers to partition the main problem in many subproblems that can be solved
independiently in parallel.

To exploit this feature of the CUDA architecture, in this thesis, the following implemen-
tation of the PSO algorithm was proposed. Figure 6.1 shows the UML diagram class of the PSO
algorithm; it has been modeled with structs. Each particle has its position and velocity, besides
the current fitness, best local fitness and best local position through the different iter- ations. The
swarm has all the particles, the best global particle included.

31

CHAPTER 6. PARTICLE SWARM OPTIMIZATION (PSO)

class 041 CD Algorithm .~

Swwanm:]
ferte Pasition

AT e
Ep‘lg:mdi;il:gmd_ = fitness: I:mu‘aIE N donbile
63 double - fitnessLbast: double .y doubls
e o - Ibest Paosition
pos:. Poziticn
vel: Velocity

ghest: Farticle
k. double
maxlteration: int
swarmSize: int + get¥(): double
w. double propearty gets

S NN getFitness() | double e :
wmin: double getFitnessl best() ; double + fiEl:’{IdDuHE."Z\"E!ﬂ.
getlbest() : Position el + sefY{double) : void
getFosition{) - FPosition

]

o e

+ calculsteConstriction() : void

#+ calculatelnertia(int) © double getVelocity() : Veloity

+ genergteSwarmd) | void aproperty sete Velocity

+ printGlobalBest() - void + setFitness(doubla) | void

+ printSwam() : void + cetFitnessl bestjdoubie) @ void - % double

=+ updateGbest + sefl bestiPesitien) @ void .y double

+ - updatel b + setPosition{Position) - void

+ updsteFositi woid + setWelocityVelodty) ; void wproperty geta

= updateVelocity(int) - void + get¥{) doubls
property gete + gef¥{): double

-*

+ getGbest() : Position
+ gethisxlterstiond) : int
-

«pTOpErty sete
+ set¥{double) : woid

petFarticlas]) - Farticle]] T R e - el

getSwarmSize(y: int

A

ropesty sets
setC1(double) : void
setCHdouble) - void
setGhest{Position) | void
sethaxterationfint) : v
setSwarm Sizelint) : void
setWmaxidouble) : void
setWminidouble) vaid

oid

R e R e

Figure 6.1: PSO UML Class diagram.

In the PSO algorithm, there will be as many swarms as the number of 8x8 blocks gener- ated
after the DCT. If the image size is 512x512, then the number of blocks -as result of the DCT- will
be 64x64 (4096 blocks). With the data separated into different blocks it is possible to compute
them apart from each other, which means that they can be processed in parallel (the swarm 0
corresponds with the block O of the image). The implementation of the PSO in CUDA is
described in the appendix B.

Each particle in the swarm has a possible solution where the watermark image could be
inserted. The form to evaluate if the particle is a satisfactory solution is through the fitness value.
In this work, Pareto dominance is used to evaluate the fitness function (see chapter 7).

Chapter 7
Multiobjetive optimization

When k objetive functions are simultaneously optimized in a problem, it is called multiob-
jective problem (MOP). In these problems maximization and/or minimization of k functions

are required. In MOP, it is necessary to seek for the vector x*=[x;", ", .., x| to sat-

isfy the inequality constraint set g(x) >0V /=1, 2, .., »and the equality constraint set

hix) =0V i=1,2,.., nto optimize the functions vector /() = [£{(x), A(>), .-, ()]

that represents the objetive function; where x =[x, x,, ..., x,]T is the decision variables
vector. The solution ought to have acceptable values in the whole objetive set.

71 Pareto Theory

The notion of "optimum" was originally proposed by Francis Ysidro Edgeworth in 1881. This
notion was later generalized by Vilfredo Pareto (in 1896). Although some authors call
Edgeworth-Pareto optimum to this notion, we will use the most commonly accepted term:
Pareto optimum.

711 Pareto dominance

A vector « = (u,, m,..., u,) dominates » = (v, »,, ..., »,) if and only if « is partially less than

v (uv).

712 Pareto optimal

A solution »* € Q is Pareto optimal if and only if there is nox € Q and I=1, 2, .., £ where
Vi e If(x)=f(>*) and there is at least one 7 € If(x) > f(x*).

The Pareto curve is the set of x* where there are no other solutions for which simultaneous
improvement in all objectives can occur. Generally a solution set known as non-dominated
solutions is produced.

CHAPTER 7. MULTIOBJETIVE OPTIMIZATION

713 Pareto optimal set
For a MOP denoted by 7(x), the Pareto optimal set (P*) is defined as:

*=xeQ|«Ixe Qf(x) f(20).
714 Pareto frontier

For a MOP denoted by f(x) and a Pareto optimal set (P*); the Pareto frontier (P F*) is de-
finedas:

P F*=u=f=(f(>9, A(>) - Ji(x)) | x € P,

fl § l
\ O - .
O O
\.-L“" = |t [
T O O
ﬁk\ -
P"’Ern\gﬁz

f2{A)< f2(B) fZ:

Figure 7.1: The boxed points represent feasible choices, and smaller values are preferred to
larger ones. Point C is not on the Pareto Frontier because it is dominated by both point A and
point B. Points A and B are not strictly dominated by any other, and hence do lie on the frontier.

715 Pareto Dominance used in this thesis

Choosing a good representation and constructing a good fitness function depend on the
essence of the problem and it might be difficult. For this work, fidelity and robustness are
considered as two objectives in conflict. By applying Pareto dominance it is relatively easy to
evaluate the fithess function (consisting on the addition of fidelity and robustness) and
moreover, add more objectives to the optimization process. In this process the objective is to
minimize the disturbance of the original image after the insertion and the attacks.

In order to propose a simpler way to measure the fitness and the robustness spending the
shortest time possible in the fithess calculation, the MSE was taken from the PSNR and the NC
was changed. When measuring the MSE in each block just 64 comparisons are needed and they
are executed at the "same time" in the other blocks. In the sequential process there

A

7.1. PARETO THEORY

are needed 512x512 evaluations one after another for a 512x512 image size. The same case was
applied for the NC, instead of being calculated for the whole image -as in the sequential form- it
was just computed for each block.

The NC and the MSE are computed for each 8x8 block as showed in the figure 7.2. This was
done with the purpose of dividing -as much as possible- the data in the GPU. In order to
calculate the fidelity, it is necessary just to compare block by block how much the original image
changes in contrast with the watermarked one. If the MSE value is zero, then it means that the
block has not changed at all. As you can see, it is not necessary to calculate the PSNR if it is possible
to obtain the same calculation -image fidelity- by just using MSE.

In the case of NC (for robustness), a variation of it was calculated. The bitwise operations are
faster than a multiplication, which is why applying one of it reduces the runtime. In order to reduce
the runtime in the evaluation of the NC, the logical operation "exclusive disjunc- tion", also called
"exclusive or" (see fomula 7.1) was used. The NC value must be close to zero between the
original watermark (17) and the extracted watermark (17), to prevent the loss of the watermark
image information.

W N (WG @ WG)]
NC= Bands per block (71)

The exclusive or calculation is shown in table 7.1.

0] 1 1

1 1 0

Table 7.1: Exclusive or.

The next image 7.2 shows -in big scale- how the blocks of the image -after the DCT- are
organized. For each 8x8 block, the MSE and the NC are calculated. If the MSE and the NC
values are close to zero, it is an indication that there is a good frequency bands set (see chapter
5) to insert the watermark image into the corresponding 8x8 blocks.

CHAPTER 7. MULTIOBJETIVE OPTIMIZATION

MSE[0] MSE[1] MSE[31]
NC1[0] NC1[1] NC1[31]
0156141527 28|01 5 6 141527 2 0 1 56 14 1527 29|
2 4713162629 42{2 4 7131626 29 42| 2 4 71131626 29 42|
38 1217/2530 4143| 3| 8 |12 17 253041 43| 3 8 1217 2530 4143|
9 11 18 24/3140 44 53] 9 11 18 24 31/40 44 53 9 11 18/24 3140 44/53|
10 19 23 32|39 45 52 54|10 19 23 32 3945 52 54 10 192332 39 45 52 54
20 22 33 38/46 51 55 60§20 22 33 38 46 51 55 60 20 22 33 38 46 51 55 60
2134 37 47|50 56 59 61|21 34 37 47 50 56 59 61| 2134/37 47 50 56 59 61
35 36 48 49 57 58 62 63]35 36 48 49 57 5&@% ________ - 35 36|48 49 57 58 62 63
91115 6141527290 [1 5 |6 141527 011156 [14]15/27 28
2|4 713)16126/2942}2 | 4| 7131626 29 42| 2 4| 7/1131626 29 4
38 11217|25/30/41 43 3 | 8 12 17/2530 4143 3 8[12/17 2530 4143
9 11 /18/24 3140 44 53] 9 111 18 24 3140 44 53 9 11(18/24 3140 44 53
10 19 23 32/39 45 52 54}10 19 23 32 39 45 52 54 10/19(23(32 39 45 52|54
0/22/33 38146 51 55 60f20 22 33 38 46|51 55 60 20 22 33 38 46 51 5560
21 34 37 47 50 56 59 61|21 34 37 47 50 56 59 61 2134 37,47 50 56 59 61
35 36 48 49 57 58 62 63]35 36 48 49 5758 62 63 35 36 48 49 57 58 62 sal
0156 141527230 115 6 14 1527 28] 0115 6 [14 1527 28]
2 4 7131162629 42]2 4 7131626 29 42 2[4 71311626 29 42
38121172530 4143]3 8 12 17/2530 41 43 3|8 1217 25130 41 43
9 11 18 24 3140 44 53] 9 11 18 24 3140 44 53| 9 [11/18 24 31140 44 53
10192332 39 45 52 54]10 19 233239 45 5254 """ttt j0/19 23 32 39 45 52 54
20|22 3338 46 5155 6020 22 33/38/46 51 55 60 20(22/33 38/46/51 55 60
2134|3747 50 56 59 61|21 34 37 47 50 56 59 61| 21/34/37 47 50/56/59 61
3536 48 49 57 58 62 63|35 36 48 49 57 58 62 63| 3536 48 49 57,58 62 63
MSE[4031] MSE[4032] MSE[4095]
NC1[4031] NC1[4032] NC1[4095]

Figure 7.2: Image blocks organization.

The PSO algorithm spends a lot of time in the evaluation of the fitness function and in the
calculation of the position and velocity vectors used for the particles to move, looking for other
possible solution. Simplifying the functions -as much as possible- to calculate the fitness function
helps to reduce the PSO's runtime.

Table 7.2 shows an example of the fithess (dominance) calculus (consider minimization in
both objetives). The MSE and the NC must be close to cero; in the swarm, the particle with
both values closest to zero is chosen to be the global best. In the example, there are six particles,
particles 1, 3 and 4 are nondominated solutions, whereas 2, 5 and 6 are dominated by 3, 4 and 1
(seefigure 7.3).

7.1. PARETO THEORY

11 05 0 0
2| 08 |01 2
3| 03 |02 0
4| 02 |07 0
5| 09 |03 4
6| 07 |01 1

Table 7.2: Pareto dominance.

To calculate the fitness, all the particles are compared. Using particle 5 as example, the MSE
of particle 5 always is higher for all the other particles, and the NC of particle 5 is always
higher for all, except for particle 4, from the 5 comparisons made, in 4 of them parti- cle 5 is
always higher in both values -MSE and NC-, that is why its fitness is 4. In the case of particle 6, it
is just higher -in both values- to particle 1, that is why it has a fitness value of 1.

Pareto dominance
o8
o7 3
0.6
05
MSE 0.4 s
03 B 5 —
0.2 . 4 5 2
o1 3 I—Il———
o L
o] 0.2 0.4 0.6 0.8 1
NC
@ nondominated particles B dominated particles

Figure 7.3: Pareto dominance chart.

Therefore, in the swarm there are three particles that could be used to insert the water-
mark, but just one of them is taken as the best global particle in the swarm. To make this
choice, the particle with the MSE closest to zero is chosen, if there is a tie -from the parti- cles
with the same MSE-, the one with the NC closest to zero is chosen. If there are only
dominated particles to choose, the particle with the MSE and the NC closest to zero is taken -
under the same procedure already explained for nondominated particles-.

Chapter 8

The optimization algorithm

This chapter is dedicated to explain the complete procedure implemented to make the water-
marking optimization algorithm combining the Shieh and the PSO algoritms. The objective of the
optimization is to find the best frequency bands set to insert the watermark within the image.
Different frequency bands are tested through the iterations of the algorithm findig out the best
solution. At the end of the execution the application has as results the watermarked image and a
matrix with the whole best positions (frequency bands) to insert the complete watermark.

The implementations in CUDA for the Shieh algorithm functions is detailed in the ap-
pendix A. The implementation of the PSO algorithm functions is detailed in appendix B.
These appendices show the configuration of the threads for the functions involved in both
algorithms.

This process is detailed as follows.

I. Using the DCT idea to split the image in 8x8 blocks, each block is used as a swarm.
An image of 512x512 has 4096 blocks; hence each block will be a swarm. At the
same time, each swarm is mapped in the GPU as a block where the configuration of the
threads depends of the function to be executed. The number of particles per swam is
specified as a configuration parameter of the algorithm. It is necessary to take into account
that each particle in a swarm is a possible solution (frequency bands set).

Il. Each particle has a position vector. The vector size depends on the number of wa-
termark bits used to be inserted in each block of the image. If the watermark size is
128x128 and if it is divided uniformly in the 4096 blocks of the image, then 4 bits are
inserted in each block. Each position corresponds to a frequency band in the 8x8 block,
where the watermark bits are inserted.

CHAPTER 8. THE OPTIMIZATION ALGORITHM

At the beginning, all the swarms are initialized randomly (each swarm must have the
same particles number). If 4 bits will be inserted, 4 bands are required, then 4 random
numbers must be created between 1 and 63. This means that each particle will consist of 4
frequency bands (positions).

If each swarm has 5 particles, every particle has a set of 4 frequency bands used to
originate 5 different solutions. To generate solution 1, all the particles with index 1 are taken
and joined from every swarm; to generate solution 2, all the particles with index 2 are taken
and joined from every swarm and so on. This procedure is shown in figure 8.1.

Solutions
) 3
81 B1
BZ B2
B3 B3
B4 =
| B1] 81
< B2 B2
[| &l B3
,"I B4 B4

Figure 8.1: This figure shows how the solutions are generated taking from particles P1 and P2 -

from the different swarms- the frequency bands B1, B2, B3 and B4, generating the cor-
responding solution.

1. After the insertion and the extraction operations (see chapter 5), the MSE (equation
2.5) and the NC (equation 7.1) are calculated. The addition of the MSE and the NC
values is used as fitness function and its value is estimated -according with the theory in
chapter 7- using Pareto dominance.

IV. One of the particles must be selected as the best global. Among the best options gen-
erated, one of them is chosen to be the best global. To choose the local best particle is
considered to add up the MSE and the NC. If the new value is closest to zero than the old
one, the new particle replaces the old one; otherwise the old one continues in the process
(see chapter 7).

V. In the last step, the velocity and the new position of the particles are calculated, accord-
ing to the formulas 6.1 and 6.2 . This generates the new bands and new the iteration
begins. The next figure 8.2 shows the whole algorithm.

Swarms . s
initialization — - Insertion —&= Extraction
Pareto dominance |s——— MG = MSE
Global best g Mew bands
particle ——»| Local best particle — » generation —

Figure 8.2: The optimization algorithm.

4

Chapter 9

Tests and Results

This chapter explains the servers features where the algorithm writen in C++ and CUDA C runs,
the input necessary to execute the code, and the results of different tests.

91 Server Features

All tests were executed on two different servers with the following features. As you can see in
the tables 9.1 and 9.2 the servers have the same GPU version, the same number of cores, but

with different velocity.

Uxdea

Intel Xeon E5620 @ 2.4GHz

Geogpus

Intel Xeon ES677 @ 3.47GHz

Table 9.1: CPUs Server features.

Uxdea

TeslaC1060

240

Geogpus

TeslaC1060

240

Table 9.2: GPUs Server features.

CHAPTER 9. TESTS AND RESULTS

92 Inputdata

In order to test the implementations, figure 9.1 shows the original image (a) used in the algo- rithm
to insert the watermark (b). The size of the original image is 512 - 512 in 24-bits BMP format.

(b) Watermark

Figure 9.1: Input data

9.3. OUTCOMES

93 Outcomes

931 Shieh implementation

The figures 9.2 and 9.3 show the outcomes of executing sequential and CUDA implementa- tions
in both servers Geogpus and Uxdea. The first tables show the results of executing five
experiments, and taking the runtime for each function involved in the insertion and extraction
algorithm.

These experiments were executed with the aim of comparing the runtimes between the
implementation in C++ and the one in CUDA C based on the idea that the operations exe- cuted
in the GPU must be faster than the ones computed in the CPU. The experiments shown in the tables
were executed in both servers Geogpus and Uxdea.

The results obtained from the GPUs in both servers are faster than the ones collected from the
CPU. At this point, the results seem to fit in the idea that the GPU is faster than the CPU. It should
be noted that the functions are not considering the load and download of the data to and from the

GPU.

RATIO (ms) POLARITIES (ms) IDCT {ms) INSERTION {ms) EXTRACTION (ms)
1 0.18646 0.00388 0.00032997 0.016899 0.001003 0.000041962
2 0.18629 0.003881 0000337188 0.01913 0.0010269 0.000041008
3 018733 0.0036848 000033716 0018871 0.0010052 0.000041008
1 018609 0003866 0.00032997 0018895 0.001003 0.0000422
5 0.1882 0.00385 0.00032997 0.018888 0.0010071 0.000040054
0.18687400 0.00387236 0.00033059 0.01893660 0.00100904 0.00004125
GEOGPUS (CUDA
DCT (ms) RATIO (ms) POLARITIES (ms) IDCT {ms) INSERTION {ms) EXTRACTION {ms)
1 0.0002141 0.0019349 0.000000051212 | 0.000051975 0.00014806 0.000082493
2 0.00021601 0.001907 0.000000050902_| __0.000051975 0.00010586 0000085115
3 0.00021505 0.0016331 0.000000050592 | 0.000051022 0.0001049 0.000081062
1 0.00021482 0.001937 0.000000049901 | 0.000051022 0.00014687 0.000082803
5 0.00021505 0.0016671 0.000000049806 | 0.000051975 0.00010395 0.000082016
0.00021501 0.00182782 0.00000005 0.00005159 0.00012193 0.00008270

Figure 9.2: Runtime for functions involved in the insertion/extraction algorithm running on the

Geogpus server.

CHAPTER 9. TESTS AND RESULTS

UXDEA (sequential

DCT (ms) RATIO {ms) POLARITIES (ms) IDCT (ms) INSERTION (ms) EXTRACTION (ms)
1 028871 0.0060811 0.00057411 0.029216 0.0014939 0.000061989
2 026541 00053891 000054598 0029207 00015059 0000061989
3 0.28844 0.0053879 0.00056505 0.029235 00015071 0.000062227
a 0.26843 0.006079 000056297 0.029185 0.001503 0.000062943
5 028854 0005485 000056815 0025178 0.001508 0.000057936
0.28850600 0.00602442 0.00056324 0.02920500 0.00150238 0.00006142
UXDEA (CUDA
DCT (ms) RATIO (ms) POLARITIES {ms) IDCT (ms) INSERTION (ms) EXTRACTIOM {ms)
1 0.000211 0.0026978 0.000008579 0.000035012 0.00010896 0.000081062
2 000020599 0.002233 0.0000088007 0000036001 0.00010085 0000080824
3 000020599 0.002193 0.0000074502 0.00003602 0.00010204 0000080109
4 000020695 0.002126 0.0000083215 0000036955 0.00010109 0000082016
5 000020695 00020871 0.0000073191 0000036001 0.00010109 0000077009
0.00020738 0.00226738 0.00000809 0.00003600 0.00010281 0.00008020

Figure 9.3: Runtime for functions involved in the insertion/extraction algorithm running on the
Uxdea server.

The figures 9.4 and 9.5 show the runtime of the complete procedure to insert and extract a
watermark involved in Shieh algorithm. In these experiments —where the upload and
download of the date are considered— the GPU does not seem such superior considering the
results of the last figures. The MSE and the NC functions (see MSE and NC in the figures)
executed on the GPU without considering the data transfer seems to be fast, but considering the
data transfer are more expensive than the ones executed in the CPU (see MSE Total and NC Total
in the figures).

GEOGPUS (sequential

INSERTION OP. MSE EXTRACTION OP. NC
1 023152 0.002527 022152 0.0061359
2 0.22963 0.0025148 0.22486 0.0055099
3 0.23099 0.0025282 0.22162 0.0056429
4 022983 00025229 0.22303 0.0060408
5 0.22824 0.002522 0.22373 0.0061831
0.23004200 0.00252298 0.22295200 0.00590252
GEOGFPUS (CUDA
INSERTION OP. I SE Total MSE EXTRACTION OP. NC Total NC
1 0.019511 0.012955 0.0000088215 0.036793 0.00573 0.0000081062
2 0.019452 0012958 0.0000097752 0.037034 0.0064609 0.0000078678
3 0.018466 0.014669 0.0000088215 0.036534 0.0058 0.0000078674
4 0.019507 0.012967 0.000010014 0.037186 0.005774 0.0000081062
) 0.019937 0.013699 0.000010967 0.037502 0.0058062 0.0000081062
0.01957460 0.01344960 0.00000968 0.03781100 0.00592622 0.00000801

Figure 9.4: Runtime of the insertion and the MSE, and the extraction and the NC operations on

Geogpus.

9.3. OUTCOMES

UXDEA (sequential

INSERTION OP. MSE EXTRACTION OP. NC
1 0.354 98 0.0039091 0.34248 0.00634
2 0.35367 0.0039029 03457 0.006284
3 0355852 0.003%06 0.34104 0.007237
4 0.35404 0.0039041 03445 0.0062512
5 0.3539 0.0039051 0.34266 0.006207
0.35446200 0.00390624 0.34267600 0.00647184
UXDEA (CUDA
INSERTION OP. MSE Total M SE EXTRACTION OP. NC Total NC
1 0.035745 0.028732 00000078678 0.063088 0.0069678 0.0000081062
2 0.035785 0.030604 0.0000081062 0.063564 0.0069449 0.0000078678
3 0.035772 0.030602 0.0000081062 0.063319 0.0070071 0.0000081062
4 0.035756 0.030622 0.0000081062 0.06242 0.007031 0.0000081062
5 0.035592 0.030598 00000090599 0.062749 0.006952 0.0000078678
0.03573000 0.03023160 0.00000825 0.06302800 0.00698056 0.00000801

Figure 9.5: Runtime of the insertion and the MSE, and the extraction and the NC operations on
Uxdea.

In accordance with the features of the server, the GPU of Geogpus is faster than the one of
Uxdea. Seeing the results in the figures 9.2 and 9.3, practically there is no difference in the
runtimes, but seeing the results in figures 9.4 and 9.5 it could be established that the GPU of
Geogpus has a better transfer velocity that helps it to be almost two times faster than Uxdea.

47

CHAPTER 9. TESTS AND RESULTS

932 PSO implementation

The figures 9.6 and 9.7 show tables with the runtimes of the implementation of the optimiza-

tion algorithm —PSO—. These figures present five experiments with a different number of
iterations for the execution in the CPU and in the GPU. The outcomes are compared in exper-
iments with the same iteration number. These experiments were made to compare the amount of
time used for the algorithm and the quality of the resuilts.

As in the experiments made for the Shieh algorithm, the operations on the GPU must be
faster. The first point to evaluate in the PSO algorithm is the random number generation. Using
the random numbers in the sequential version it is remarkable the difference in time. The use of
those numbers consumes a big quantity of time due to its necessity to spend time in the CPU to
generate different numbers. For the sequential version, the random numbers are generated using
the C function "drand48" that retums a pseudo-random number in the range [0.0,1.0). On the
GPU, the random numbers are generated using a library called curand [5].

GEOGPUS

10 lterations

Sequential (min) LIERIGEE: Final fitness Initial fitness Final fitness
1 53.7133 3.0079 0.24625 £.6422 53136 4.9884
2 53.6950 57397 0.27473 6.62058 0.66101 0.33581
3 53.6600 2.9303 0.25068 6.6103 0.62102 0.50254
4 53.6517 3.5922 0.27855 6.6197 16.315 14.716
5 53.6433 4.2929 0.2387 6.6786 1.9163 1.5937
53.6727 6.6743

30 lterations

Sequential (min) Initial fitness Final fitness CUDA (s) Initial fitness Final itness
1 161.35 24236 0.21096 18.126 1.7282 1.324
2 1606917 34672 0.2026 18.516 078431 0.39118
3 160.635 5.8846 0.23375 18.081 0.81376 0.40794
4 161.075 3.1447 0.19965 18.397 1.6347 1.2302
5 161.35 3.3854 0.19588 18.113 14422 1.0504
161.0203 18.2466

Sequential no random numbers

10 lterations {s) LERIGEE Final fitness 30 Iterations (min) Initial fitness Final fitness
1 26.228 47199 0.22448 72.8140 26.167 0.223
2 26.108 51654 0.29945 726400 5.8238 0.23352
3 26.208 24494 0.2621 72.8590 7.7055 0.21568
4 26.279 10.571 0.26432 72.7310 1.9816 0.20543
5 26.167 6.073 0.20027 73.0250 2.9215 2.9215
26.1980 72.8138

CUDA no random numbers

10 lterations (s) |nitial fitness Final fitness 30 Iterations (s) Initial fitness Final fitness
1 6.5794 2.8593 2.5458 17.7430 1.1509 075917
2 B.5145 1.2957 0.97485 17.9710 7.8518 7.2715
3 6.6214 0.82386 0.49934 17.8740 085466 0.47516
4 6.6271 52253 4.8637 17.6850 56334 5.2352
5 9.8096 2321 1.996 17.0650 0.490%1 0.1239
7.2304 17.6676

Figure 9.6: Runtime for PSO on Geogpus.

9.3. OUTCOMES

UXDEA

10 lterations

Sequential {min) Initial fitness Final fitness Initial fitness Final fitness
1 75.0933 4.7145 0.28886 17.696 2429 2.1085
2 75.1300 11.316 0.3058 17.754 0.9868 0.64933
3 75.1467 54008 0.254 17.744 0.85646 0.53621
4 75.1433 3.1818 0.2784 17.626 21421 1.8232
] 75.0767 3.1201 0.2568 17.696 3.9049 3.6014
751180 17.7032

30 lterations

Sequential (min) Initial fitness Final fitness CUDA (s) Initial fitness Final fitness
1 225 3833 3.8861 0.22232 48.535 0.70031 0.30285
2 225.1000 4.0846 0.20906 48.635 1.4996 11144
3 225 2667 25326 0.20198 48.794 2.0107 1.6072
4 224 §833 3.3661 0.2154 48.597 6.3667 54775
5 2253833 44556 0.21926 48.757 0.67997 0.28269
2252033 48.6636

Sequential no random numbers

10 lterations (s} Initial fitness Final fitness 30 Iterations (min) Initial fitness Final fitness
1 36.363 6.3162 0.24992 1005400 3.3363 0.21798
2 36.664 3.0694 0.2729 1006400 23531 0.22367
3 36.289 3.2031 0.26768 100.5000 8.4095 0.20501
4 36.302 2.9081 0.25941 1005500 3.1055 0.20916
5 36.404 3.902 0.325894 100.5100 5.426 0.22008
36,4044 100.5560
CUDA no random numbers

10 Iterations (5) Imitial fitness Final fitness 30 Iterations (z) Initial fitness Final fitness
1 17.347 1.041 0.72842 47.8740 0.66338 0.26873
2 17.395 1.2237 0.90721 47.9710 7.8518 7.2715
3 17.59 5.0348 4.1984 47.9920 2.8143 2.4339
4 17.462 5.149 4.8263 47.8480 4.5465 4.1704
5 17.577 1.1466 0.8309 48.1320 0.8529 0.46197
17.4742 47.9634

Figure 9.7: Runtime for PSO on Uxdea.

Reviewing the values (figures 9.6 and 9.7) of the initial fitness and the final fitness it is
noteworthy that the sequential version gives better results than the ones obtained from the GPU.
For all the cases, the runtimes indicate that GPU is faster than CPU, even when all data have been
loaded or when using static numbers in the CPU version. With this, it is possible to set up that —
at least for this version of the application—, if the user wants a good opti- mization for the
watermarking, the sequential version must be used. By contrast, if the user needs a quick
approximation, the GPU version ought to be applied.

Chapter 10

Conclusions and future work

101 Conclusions

With the vast volume of information flowing on the Intemet, watermarking is widely used to
protect this information authenticity. The need for copyright a huge quantity of digital files,
spending the less possible amount of time and avoiding the loss information were the reasons to
propose the use of an algorithm for watermarking —Shieh algorithm—, Particle Swarm
Optimization as an optimizer, and finally a GPU -based in CUDA architecture- to accelerate the

process.

The use of a GPU for accelerating the operations involved in the algorithms of insertion and
extraction of the watermark and in the optimization algorithm was a challenge, since it is a
parallelism paradigm. There is not a standard configuration for the blocks, threads or the
memory treatment in the GPU. That is why the analysis and design of the procedures are a
requirement to take advantage of the parallelism. In order to use parallel programing in a GPU, it
is necessary to shift from a sequential to a parallel thinking, strictly to learn how to divide a huge
problem into small ones —divide and conquer—, attempting to have the best perfomance.

Using an image of size 512x512 as an input, it is possible to divide it in 64x64 blocks —
such as in the DCT—. The 64x64 matrix is easily mapped to the same number of blocks in the
GPU, and the configuration of the threads will depend on the type of operation to be executed.
For example, in the calculation of the NC there were required just 4 threads to do the
comparisons, but in the case of the MSE 64 threads working at the "same time" were required
(see appendix B). Therefore, the configuration of the blocks and threads for an ap- plication on a
GPU must be carefully analyzed.

Other point of consideration in the use of the GPUs is the memory treatment. In this
application the global memory was used to put up the image and the watermark data, the ratio
and polarities matrices, without forgetting the random numbers. This memory is used to carry
the data from the host (RAM memory) to the device (GPU memory) and vice versa.

51

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

The problem of using it is the long time it spends in the transfer —that depends of the amount of
data—. As you can see in the experiments, the runtime of the functions are quickest in the
GPU without considering the data transfer. Considering the data transfer, sometimes the function
spends more time than the sequential execution (see chapter 9). Other type of mem- ory used in
this application was the shared memory. This memory is used just inside the blocks and it is
not visible between others —unlike the global memory that is visible for all the blocks—. The
shared memory is faster than the global memory, the problem with it is the handling and the
overall synchronization with the threads (the MSE operation uses shared memory to execute a
reduction operation, this is shown in the appendix B).

The design of the PSO algorithm was made applying object oriented analysis (see chap- ter
6) and it was implemented using C++ in order to have two implementations —C++ and CUDA
C— to compare outcomes. At the moment of trying to map the classes from C++ to CUDA C
there was a big problem: in the classes | used dynamic memory to store the results from the
operations. At the moment when | tried to map it to the GPU memory it was not possible to
keep the references, so it was necessary to make some changes for the CUDA C version. The use
of structs instead of classes was the first change due to fact that the classes used in C++ are not
equivalent in CUDA C. The second change consisted on the use of static memory instead of
dynamic memory.

| analyzed the different options to implement the PSO, but | decided to use as much
swarms as number of blocks used to divide the image in the DCT (see chapter 6). This was in profit
of dividing a big problem in small ones, which suited with this parallel paradigm. As it was
established, there is not a standard configuration in CUDA architecture, so | made the configuration
in accordance with the need of the function. The PSO needs to evaluate two vectors: velocity
and position. Position depends of the velocity that is why velocity needs to be computed first. If
there are 4096 swarms —4096 blocks— and each swarm has five particles, then each of them
need to update the velocity vector. The number of operation to be calculated in a CPU is: 4096
(swarms) * 5 (particles) * 1 (operation) = 20480 operations one after another. In the case of the
same operation on the GPU, there are executed the same 20480 operations, but the difference is
that there are 4096 swarms with 5 threads working in parallel computing one operation, hence
there are 20480 threads working at the same time. If one thread in the CPU spends 1 second by
operation the runtime will be 20480 s, but in the case of the GPU there are 20480 threads working
at the same time, and they spend 1 second to finish the calculus. In the last example | am not
considering the speed of the processor —neither CPU nor GPU— nor the upload/download of
the data to/from the GPU.

The velocity vector needs random numbers to be calculated (see equation 6.1). In order to
generate random numbers | used a library called curand (see [5]). This library is useful
because it is easy to generate a lot of numbers in a short time; the problem comes with the
memory. If there is a big quantity of this numbers generated and held in global memory, there might
be a shortage of space to store other data. For one iteration of the PSO there are used two random
numbers to calculate the velocity value. If there are 4096 blocks with 5 particles

82

10.1. CONCLUSIONS

each, 40960 random numbers for iteration are needed. There is another type of memory on the
GPU, the constant memory. This memory is loaded in the GPU but it cannot be changed. This
memory was considered to store the random numbers because they do not modify its value on
the execution of the calculation of the velocity value.

There are a lot of GPUs on the market to be used, some of them for servers, others for PCs
or laptops. | decided to use the ones from Nvidia since | already have a laptop with one of its
cards. | started to program on it, but there was a problem, when | tried to execute the same
code in a server with a better GPU, | realized that the float and the double numbers
representation changed. This is not represents a big obstacle because in small GPUs the dou- ble
number is changed to float automatically. Another feature that needs to be considered is —from
GPU to GPU— the velocity of the processor. This is evident in the experiments because the
Geogpus server is faster than the Uxdea server (see chapter 9).

In the case of the Shieh algorithm, the equations required to be parallelized were analyzed to get
the best performance on the GPU. For the calculation of the MSE and NC there was not an
improvement of the performance compared with the sequential version. The execu- tion of the
functions is fast, but the transfer of the data to the GPU and back slows down the performance.
For this reason it is necessary to seek for another solution for the transaction of the data.

To program an application oriented to be executed on a GPU it is necessary to have knowl- edge
of how the CUDA architecture works. At the beginning it is not easy to start thinking in parallel and
change a big problem in small ones. The important thing to make a good design of an application
for a GPU is to consider the management of the different sorts of memories and their capacity to
store data, as well as to bear in mind that the velocity of the processor changes with the versions
of the GPU, such as the number precision representation, thus take out some portability.

To program on a GPU there is another language called OpenCL (Open Computing Lan-
guage). It is made for running in any GPU independent manufacturer. At the moment of
starting this work there was more information about CUDA than OpenCL, besides the option of
program in the GPU of my own laptop. These were the reasons to start working with CUDA.

After this analysis of the present work, | can say that the use of CUDA helps to improve the
performance of the application and that an algorithm based in population could be im-
plemented on it, as long as the developer is aware of the features of this technology. This
application is the cornerstone and it provides the opportunity to keep working on it to make it
more robust.

CHAPTER 10. CONCLUSIONS AND FUTURE WORK

102 Future work

In this thesis, quantization was used as an attack to the watermarked image, but it was applied
before the IDC Transform in the insertion routine, and it could be implemented as an extern
routine to apply after the insertion.

Other attacks can be implemented in order to be applied to the watermarked image; each new
attack should be added as a new objective in the PSO evaluation. If there are more attacks,
the application could have a switch used to adjust the attacks to be optimized in ac- cordance with
the user requirements.

There is a library called Thrust that provides a flexible high-level interface for GPU pro-
gramming and offers the possibility of doing operations without the requirement of configure the
blocks and threads on the GPU —removing weight off the programmer's shoulders—. This
library could help to improve the performance of the application.

A different implementation to calculate random numbers in the CPU could be done in order
to improve the time needed to be generated.

Additionally, the PSO could be adjusted in order to look for best outcomes.

Appendices

Appendix A

Analysis, Design and Implementation of
Shieh Algorithm

This appendix shows part of how the Shieh algorithm was implemented using CUDA C.

Figure A.1 shows the flow diagram of Shieh algorithm, and the operations already imple-
mented in C++ and CUDA.

Original image _ | Load image in DC i
and watermark ! memaory Transformation REEky e
L
Polarities
Y
Watermarked IDC e o Embedding
image Transformation Suaniidion watermark

Figure A.1: Flow Diagram of Shieh Algorithm.

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH
ALGORITHM

Figure A.2 shows the flow diagram for watermarking extraction, and the operations al-
ready implemented in C++ and CUDA.

Load
Watermarked oc
: = walermmarked = - ;
image image in memory Transformation
Watermarked F -
o - Ratic Values

Figure A.2: Flow Diagram for Watermarking Extraction.

A1 Shieh Operations

As an example -for all the set of operations on the Shieh algorithm- a 128x128 binary wa-
termark is considered to be inserted into a 512x512 gray scale image. In agreement with the steps
of the algorithm described in Chapter 6, it is necessary to load the image into the GPU memory
and to apply the DCT. In order to take advantage of the parallelism, a library with this function
provided by CUDA was used. After applying the DCT to the 512x512 image, a matrix of 64x64
blocks -that represents the image- is obtained. Each block is divided at the same time into 8x8
frequency bands where the watermark will be inserted. The configuration of 32x32 blocks is
maintained in the GPU for all the operations, each block in the GPU rep- resents one block of the
image after the DCT; what differs in the GPU is the configuration of the threads that depends on the
need of the operation to be executed.

A11 Ratio Operation

Once the image in DCT is already loaded in GPU memory, the next step is to get the ratio
between the DC and the AC coefficients R(;) using the equation 5.2. This operation was

divided in two parts. First division between ¥, is performed and runs on the GPU. The v,
second part is the sum, that runs on the CPU.

The block configuration on the GPU is:

dim3 ThreadsRatioBlocks(BLOCK_SIZE, BLOCK_SIZE);

58

A.1. SHIEH OPERATIONS

dim3 GridRatioBlocks(Size.width/BLOCK_SIZE,
Size.width/BLOCK_SIZE);

With this block configuration, a 64x64 grid of blocks is generated and each block has 8x8
threads. Each thread makes just one operation between the DC and the AC values. The AC
corresponds with the thread position on the block (current coefficient). The results are stored in the
vector raux;, this vector is used to do the sum.

__global__ void CUDAKernelRatio(float *src, float *raux,
int stride, int blockSize){

/I Block index
int bx = blockldx.x; int by
= blockldx.y;

/I Thread index (current coefficient)
int tx = threadldx.x; int ty =
threadldx.y;

/Icopy current coefficient to the local variable
float dividend = src[(by * blockSize + 0) * stride +

(bx * blockSize + 0)]; /IDC value
float divisor = src[(by * blockSize + ty) * stride +
(bx * blockSize + tx)]; /IAC value
/loperation
if(divisor 1= 0)
raux| (by * blockSize + ty) * stride +
(bx * blockSize + tx)] = dividend / divisor;
telsef
raux[(by * blockSize + ty) * stride +
(bx * blockSize + tx)] = 0; //Default value
}
__syncthreads();

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH
ALGORITHM

A12 Polarities Operation

To make this operation based in equation 5.5, it is necessary to load from the host memory to

the GPU global memory the ratio and the bands vector. Bands vector keeps the places where the
watermark will be embedded in each block. Next example shows how to load the bands vector
from host memory to the GPU global memory. The size of the bands vector must be equal to the
size of the watermark image.

int *dev_bands;
HANDLE_ERROR(cudaMalloc((void**)&dev_bands,

bandSize * sizeof(int))); //allocate memory
/lon GPU

HANDLE_ERROR(cudaMemcpy(dev_bands, bands,
bandSize * sizeof(int),
cudaMemcpyHostToDevice)); //copy memory from
/Ihost to GPU

The block configuration on the GPU for this operation depends on the number of bands by
block. The block number in the grid is 64x64, and the total thread number is equal to the bands by
block. This is due to it is just necessary to compute the frequency bands where the watermark will
be inserted.

dim3 ThreadsPolaritiesBlocks(bandsByBlock);
dim3 GridPolaritiesBlocks(Size.width/BLOCK_SIZE,
Size.height/BLOCK_SIZE);

The results are stored in the vector p, this vector has the same size as the number of bands.

__global__ void CUDAKernelPolarities(float *image, float *p,
float *r, int *bands, int height,
int width, int stride, int blockSize,
int bandsByBlock){

// Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index (current coefficient)

60

A.1. SHIEH OPERATIONS

int tx = threadldx.x;

int ib = bands[(by * ((width/8)*bandsByBlock)) +
(bx * bandsByBlock + tx)];

float c = image[(by * blockSize + 0) * stride +

(bx * blockSize + 0) I;
float a = image[(by * blockSize + iY[ib]) * stride +

(bx * blockSize + iX[ib]) I;
float b = rJib];

if (a*b>=c)
p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 1;
telse{
p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 0;
}

__syncthreads();

}

A13 Watermark Embedding Operation

This operation is bassed on equation 5.6, and it requires to load the watermark from the host
memory to the GPU global memory. The watermark size is the same as the number of bands.

dim3 ThreadsExtractBlocks(bandsByBlock);
dim3 GridExtractBlocks(Size.width/BLOCK_SIZE,
Size.height/BLOCK_SIZE);

As it was seen in the code above, the grid configuration is the same as the one used in po- larities
operation. The next code shows the watermark embedding operation into the image. The
watermarked image quality is evaluated with the MSE as seen in equation 2.5.

61

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH
ALGORITHM

__global__ void CUDAKernelWatermarklnsertion(int *bands,
float *image, float *newlmage, int *water, float *p,
float *r, int height, int width, int stride,
int blockSize, int bandsByBlock ¥

// Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index (current coefficient)
int tx = threadldx.x;

int ib = bands[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];
int a = p[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)];
float b = r[ib];

int idx = (by * blockSize + iY[ib]) * stride +
(bx * blockSize + iX[ib]);

if(a==0&& b == 0){

newlmage[idx] = (image[idx]/ b) + 1;
lelse if(a==1&& b == 1){
newlmage[idx] = (image[idx]/ b) - 1;

}

__syncthreads();

}

A14 Quantization

This function was applied using a library of CUDA. Due to the facility of use of this library,
it was not necessary to program it.

A.1. SHIEH OPERATIONS

A15 Watermark Extraction Operation

This operation is based on equation 5.8, and it needs to load the watermarked image from the

host memory to the GPU global memory to extract the watermark. As a result, it generates the
watemrmark that was embedded in the last steps.

dim3 ThreadsWaterBlocks2(bandsByBlock);
dim3 GridWaterBlocks2(Size.width/BLOCK_SIZE,
Size.height/BLOCK_SIZE);

The result is stored in »» and it will be compared with the original watermark using the
Normalized Correlation (NC) shown in equation 7.1.

__global__ void CUDAKernelWaterExtraction(float *image, int *wm,
float *r, int *bands, int height, int width, int stride,
int blockSize, int bandsByBlock ¥

// Block index
int bx = blockldx.x;
int by = blockldx.y;

/I Thread index (current coefficient)
int tx = threadldx.x;
/lint ty = threadldx.y;

int ib = bands[(by * ((width/8)*bandsByBlock)) +
(bx * bandsByBlock + tx)];

float ¢ = image[(by * blockSize + 0) * stride +
(bx * blockSize + 0) I;

float a = image[(by * blockSize + iY[ib]) * stride +
(bx * blockSize + iX[ib]) 1;

float b = r[ib];

if (a*b>=c)
wm[(by * ((width/8)*bandsByBlock)) +
(bx * bandsByBlock + tx)] = 1;

63

APPENDIX A. ANALYSIS, DESIGN AND IMPLEMENTATION OF SHIEH
ALGORITHM

telse{
wm[(by * ((width/8)*bandsByBlock)) +

(bx * bandsByBlock + tx)] = 0;
}

__syncthreads();

}

Appendix B

Analysis, Design and Implementation of
PSO Algorithm

This appendix shows how the PSO algorithm was implemented using CUDA C.

| START)
. PR

F

PS50 operations

Y

Swarm generation

r

Fitness function

L]

MO
EF'IDI_I‘Q?\\
iterations 7

YES

F

Parefo dominance

END

Figure B.1: Flow Diagram of watermarking algorithm (Shieh + PSO).

The PSO algorithm has the next set of steps:

I. The swarm initialization generates one swarm for each block of 8x 8 and it has N
particles, each particle has the position or bands to insert the watermark image.

Il. The insertion and extraction operations are executed to calculate the MSE and NC used
to estimate the Pareto dominance (objetive function).

[Il. Pareto dominance is applied to get the best particles in each swarm.

65

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

IV. Before executing PSO operations, a random numbers array is calculated in the GPU and
stored there, it is necessary at the moment of the particle velocity calculus. The PSO
operations are executed to generate the next positions or bands to insert the watermark

image.

V. Steps I, Il and I1” are in a loop of M iterations.

B06 Random number generation

To generate the random numbers, the CURAND library was used. It provides facilities that
focus on the simple and efficient generation of high-quality pseudorandom numbers on the GPU.

size tn=20;
curandGenerator_t gen;
float *devData;

/* Allocate n floats on device */
HANDLE ERROR(cudaMalloc((void **)&devData,
n * sizeof(float)));

/* Create pseudo-random number generator */
CURAND_CALL(curandCreateGenerator(&gen,

CURAND_RNG_PSEUDO_DEFAULT));

I* Set seed */

srand48(time(NULL));

CURAND_CALL(curandSetPseudoRandomGeneratorSeed(gen,
Irand48()));

/* Generate n floats on device */
CURAND_CALL(curandGenerateUniform(gen, devData, n));

B0.7 PSO operations

These operations are based on 6.1 and 6.2 equations. The operations need as parameter the
particles of each swarm. Each particle is loaded in shared memory, and at the end of the
operations the outcomes are retumed to the global memory. The results are used to generate new
positions to insert the watermark image.

To take advantage of the parallelism in CUDA, each block executes its own evaluations of
the functions. If the image size is 512x512, there are generated 4096 blocks (see chapter 8). For
example, in the case of the evaluation of the velocity value, if there are five particles in each block,
then five operation are executed in parallel in the 4096 blocks, for each particle it is assigned one
thread. 20480 threads are working in parallel -4096 (blocks) * 5 (threads)- compared with the
20480 operations that would have been in the sequential mode.

In the case of velocity and position vectors, are assigned threads as number of particles by
block.

B.0.71 Velocity

__device__ void updateVelocitiesGPU(Particle * particles,

Particle * gBest, float *radomNum, int swarmSize, float C1,
float C2){

int tid = blockldx.x;
int tx = threadldx.x;

int tid2 = (blockldx.x * 4)+threadldx.x;
__shared__ float a[4], b[4], c[4];
while(tid < swarmSize K

a[tx] = particles[tid].vel.vel[tx];

b[tx] = C1 * radomNum[tid2] * (particles[tid].Ibest.pos[tx]
- particles[tid].pos.pos[tx]) ;

c[tx] = C2 * radomNum(tid2] * (gBest->pos.pos[tx]
- particles[tid].pos.pos[tx]) ;

particles[tid].vel.vel[tx] = a[tx]+b[tx]+c[tx];

tid += blockDim.x * gridDim.x;
tid2 += blockDim.x * gridDim.x;
}

}

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

B.0.72 Position

__device__ void updatePositionGPU(Particle * particles,
int swarmSize){

int tid = blockldx.x; int tx =
threadldx.x;

__shared__ float a[4];
__shared__int c[4];

while(tid < swarmSize){

a[tx] = (particles][tid].vel.vel[tx]*100) +
(particles|tid].pos.pos[tx]*100);

c[tx] = fabs(a[tx]);

c[tx] = (c[tx] % 63) + 1;

particles[tid].pos.pos[tx] = c[tx];
tid += blockDim.x * gridDim.x;
}

}

The calculus of the MSE and the NC are based in the equations 2.5 and 2.6 respectively. To
calculate the MSE value there are needed 64 threads for each block, where each thread executes
a comparison (if there are 4096 blocks, then 262164 operations -4096 (blocks) * 64 (threads)-
would be executed in parallel). The reduction is done by using in every iteration the half of the
threads. If there are 64 threads, then the iterations start with 32 threads. The threads with indices
lesser than this value do the job.

The figure B.2 shows the assignation threads for the reduction operation. Fer each itera- tion,
the threads are divided by the half. At the end of the operation just one thread stores the result.

FIE P 5 P

Qv
()

Ta
N B

Figure B.2: Threads management for the reduction operation.

To calculate NC just 4 threads are required, each thread executes one bitwise operation. If 4
bits of the watermark were inserted by block, just 4 threads would be needed to make the
comparisons (if there are 4096 blocks, then 16384 operations -4096 (blocks) * 4 (threads)-
would be executed in parallel).

B073 MSE

__global__ void MSEKernel(byte *Img1, byte *Img2,
float * answer, int Stride, ROI Size){

__shared__ float cache[64];

/! Block index
int bx = blockldx.x;

APPENDIX B. ANALYSIS, DESIGN AND IMPLEMENTATION OF PSO ALGORITHM

int by = blockldx.y;

/I Thread index (current coefficient)
int tx = threadldx.x; int ty =
threadldx.y;

/! Indices
int idx = (by * 8 + ty) * Stride + (bx * 8 + tx);
int ith = ty * 8 +tx;

cache[ith] = POW((Img1[idx] - Img2[idx]));
__syncthreads();
inti=32; /] total block / 2

while (i 1= 0) {

if (ith <)

cachelith] += cachelith + i];
__syncthreads();

i/=2;

}

int bidx = by * Stride + bx;
if (ith == 0)
answer[bidx] = cache[0]/64;

}

B074 NC
__global__ void ncKernel(int *waterO, int *waterE,
float *answer, int Stride){
__shared__ float cache[4];

/I Block index
int bx = blockldx.x; int by
= blockldx.y;

int tx = threadldx.x;
// Indices

int idx = (by * 4)* 64 + (bx * 4 + tx);

cache[tx] = waterO[idx] ~ waterE[idx];
__syncthreads();

inti=2;
while (i 1= 0) {
if (tx <i)
cache[tx] += cache[tx + i];
__syncthreads();
i/=2;
}

int bidx = by * 64 + bx;
if (tx ==0)
answer[bidx] = cache[0]/4;

71

Appendix C
Utilities
Utilities are the stuctures that help in the algorithm, but they are not involved in the algorithm.

C1 Timer.h

This structure is used to meassure the time when a code is running on the CPU or the GPU. The
structure has two methods: sza#T imen(), to initialize the timer, and swpT imen() to stop the
timer.

Timer

+ startTimes() : void
+ stopTimed) : float

Figure C.1: Timer struct.

To meassure the time, the gys/zne.h library is used.

struct timeval start, stop;

void startTimer(){
gettimeofday(&start, 0);

}

APPENDIX C. UTILITIES

float stopTimer(){

gettimeofday(&stop, 0);

float elapsedTime = (stop.tv_sec+stop.tv_usec*1e-6)-
(start.tv_sec+start.tv_usec*1e-6);

return elapsedTime;

74

C.2. SHIEHUTILITIES.H

C2 ShiehUtilities.h

ShiehUtilities is used to load one image and one watermark in memory, it has two methods:
loadlmagd) and loadW atermark(). The path, and the image and the watermark names are
stored in a file. Due to this, it is not necessary to re-compile the code to use a new image or
watermark.

Utilities:: ShiehLtilities

+ |loadlmage{int) : int
+ loadWatermark() : int
+ |loedWatermarkint{) : woid

Figure C.2: ShiehUtilities struct.

struct ShiehUtilities{

IIMAGE

char *SamplelmageFname;

char *SamplelImageFnameResCUDAZ2;

char *pSamplelmageFpath;

ROI ImgSize;

int ImgStride; //Step between two sequential rows
byte *ImgSrc;

byte *ImgDstCUDAZ2;

INNATERMARK

char *WatermarkPath;
ROl WaterMImgSize;
int WaterMStride;
byte *WaterMSrc;

ROl WaterMSize;

int *WaterMSrclnt;

[IBANDS

int *bands;
int bandsstart;
int bandsend;

75

APPENDIX C. UTILITIES

int bandSize;
int bandsbyblock;

ShiehUtilities(){

ImageParamlLoader ipl;
ipl.loadProperties();

SamplelmageFname = ipl.getOrigin();
SamplelmageFnameResCUDAZ2 = ipl.getDestination();
pSamplelmageFpath = ipl.getHome();
WatermarkPath = ipl.getWatermark();

bandsstart = ipl.getBandsStart();

bandsend = ipl.getBandsEnd();

}

/**

khkkkkkkkkhkkhkhkhkkkhkkhkkkhkhkkkhkhkkhkhkhkhkhkkhkkkhkhkkhkkhkkkkhkkkkkkhkkk

* This function generates the initial bands in a row

*

* \param totalElements [IN] - Is equivalen to the
oxk number or blocks

times number of bands
*\return Array with all the bands for whole image
*/

void makeDiagonalBands(int totalElements){...}

/**

khkkkkkkkhkkhkkhkkkhkkkhkkhkkhkhkhkhkkkhkhkhkhkhkkhkkhkhkhkhkkkhkkkhkhkhkhkkkhkkkkkkkkx

* This function load the initial bands from a file

*

* \param totalElements [IN] - Is equivalen to the
* number ob blocks times

* number of bands

*

*\return Array with all the bands for whole image
*/

C.2. SHIEHUTILITIES.H

void loadDiagonalBands(int totalElements){...}

/**

khkhkkkhkhkhhkhhkhhhhhhhkhhhkhhhhhkhhhhhkdhhhhkdhhkhhkdhhkdkrdrhrhkbrhhrd

* This function generates the initial bands in a row

*

* \param totalElements [IN] - Is equivalen to the

* number ob blocks times
* number of bands

* \param baux [IN] - The bans choosen by the user

* \param bandsByBlock [IN] - Number of band for each block

*\return Array with all the bands for whole image

*/

void makeDiagonalBands2(int totalElements,
int *baux, int bandsByBlock){...}

/**

khkhkkhhkhkhkdkhhhhhhhhhhhkhrhhhhhkhhhkdhhhhkdrhkdhddhkdrhdrhhhdbrk

* Load the original image to be used for watermarking

* \param op [IN] - Is the option to load de
* original image
* or the watermarked image

*

*\return integer, 0 = Successful, 1 = Error
*/

int loadlmage(int op){...}

/**

khkkkkkhkkkhkkhkhkhkkkhkkhkkkhkhkkkhkhkkhkhkhkhkkhkkkhkhkkkhkhkkhkkkhkhkkhkkkkhkkkkk

* Load the watermark image

%

*

*\return integer, 0 = Successful, 1 = Error

7

APPENDIX C. UTILITIES

*/

int loadWatermarkint(){...}

C.3. IMAGEPARAMLOADER.H

C3 ImageParamLoader.h

ImageParamLoader is used to load the path where the auxiliar files are stored. Image and
watermark names are extracted from a file called inage.properties which contains the fol-
lowing information:

ORIGIN = barbara.bmp
DESTINATION = data/barbara_cuda.bmp
IMAGE_HOME = data/barbara.bmp
WATERMARK = data/logo128x128.bmp
BANDSSTART =28

BANDSEND =31

BANDSBYBLOCK =4

In the class, the method 4adP rmpertie() loads the parameters and they can be called by their
getter function.

Utilities:: ImageParamlLoader

- destination: char®
- home: char

- origin; char®

- watermark: charr

+ getHBandsEnd{) : int

+ getBandsStart() : int

+ |padPFroperties]) ;. void

wPIoperDy gets

+ getlestination{) ; char*
+ pgetHome() : char®

+ getCrigin{) : char®

+ getWatermark() : char®

Figure C.3: ImageParamLoader class.

class ImageParamLoader{

APPENDIX C. UTILITIES

private:

char *origin;

char *destination;
char *home;

char *watermark;
int bandsstart;
int bandsend;

public:

ImageParamLoader();
“ImageParamLoader();

char* getOrigin();
char* getDestination();
char* getHome();

char* getWatermark();
int getBandsEnd();
int getBandsStart();

void loadProperties();

protected:
|3
C4 BmpUtilL.h

BmpUltil is a library provided by NVIDIA. It contains basic image operations which are used by
ShiehUtilities.h to load the image and the watermark into the memory.

Bibliography

[1] Mark Johnston & Mengjie Zhang Ammar Mohemmed. Particle swarm optimization
based multi-prototype ensembles. GECCO, pages 57-63, July 2009.

[2] ByteScout. Digital watermark types, 2011. http://bytescout.com/.

[3] NVIDIA Corporation. Nvidia cuda ¢ programming, 2009.

[4] NVIDIA Corporation. Nvidia cuda ¢ programming - best practices guide, 2009.
[5] NVIDIA Corporation. Cuda curand library, 2010.

[6] Chin-Shiuh Shieh et al. Genetic watermarking based on transfrom-domain techniques.
Pattem Recognition, 2004.

[7] Luca Mussi et al. Evaluation of parallel pso algorithms within the cuda architecture.
Elsevier, 2010.

[8] & R. Garduno-Ramirez J. Heo, K. Lee. Multiobjective control of power plants using
particle swarm optimization techniques. IEEE Transactions on Energy Conversion, vol. 21,
no. 2, 2006.

[9] Jason Sanders & Eduard Kandrot. Cuda by Example: An introduction to general pur-
pose GPU programming. Addison-Wesley, USA, first edition, 2010.

[10] R. C. Kennedy, J. & Eberhart. Particle swarm optimization. Proceedings of IEEE
Intemational Conference on Neural Networks, pages 1942-1948, 1995.

[11] Anton Obukhov & Alexander Kharlamov. Discrete cosine transform for 8x8 blocks
with cuda, 2008. by NVIDIA.

[12] M. Donelli & A. Massa. Computational approach based on a particle swarm optimizer
for microwave imaging of twodimensional dielectric scatterers. IEEE Transactions on
Microwave Theory and Techniques, vol. 53, no. 5, 2005.

[13] David B. Kirk & Wen mei W. Hwu. Programming Massively Parallel Processors: A
Hands-on Approach. Morgan Kaufmann, USA, first edition, 2010.

81

BIBLIOGRAPHY

[14] T. Huang & A. S. Mohan. A microparticle swarm optimizer for the reconstruction of
microwave images. |IEEE Transactions on Antennas and Propagation, vol. 55, no. 3,
2007.

[15] M. Kutter & F.A.P. Petitcolas. A fair benchmark for image watermarking systems.
Security and Watermarking of Multimedia Contents, 1999.

[16] Kitti Attakitmongcol & Arthit Srikaew Prayoth Kumsawat. The effects of transforma-
tion methods in image watermarking. -, 2010.

[17] F. Zhang & H. Zhang Radu Sion. Digital watermarking capacity and reliability. Inter-
national Conference on E- commerce Technology, 2004.

[18] C. Xavier & N. Karssemeijer S. Selvan. Parameter estimation in stochastic mammo-
gram model by heuristic optimization technique. |IEEE Transactions on Information
Technology in Biomedicine, vol. 10, no. 4, 2006.

[19] Mark P. Wachowiak & Renata Smolikova. An approach to multimodal biomedical im-
age registration utilizing particle swarm optimization. IEEE Transactions on Evolution- ary
Computation vol. 8 no. 3, 2004.

[20] F. Zhang & H. Zhang. Digital watermarking capacity research. International Confer-
ence on Communica- tions, Circuits and Systems, ICCCAS, 2004.

	Portada

	Contents

	Chapter 1. Introduction

	Chapter 2. Transform Methods for Watermarking
	Chapter 3. Watermarking Attacks
	Chapter 4. CUDA Architecture
	Chapter 5. Shieh Algorithm

	Chapter 6. Particle Swarm Optimization (PSO)

	Chapter 7. Multiobjetive Optimization

	Chapter 8. The Optimization Algorithm

	Chapter 9. Tests and Results
	Chapter 10.Conclusions and Future work
	Bibliography

