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Abstract

The present work introduces an algorithm to determine a humanoid robot’s position
in an environment of known characteristics. The algorithm is based on evolutionary
method as a machine learning strategy and takes into account the characteristics and
constraints to which a humanoid robot is subject. The method raises the possibility to
store in the robot a set of databases holding the minimal information from the images
that describe the navigation area or possible obstacles that it may face. The infor-
mation in the database can be used later at run time by the robot to navigate.

1 Introduction

An open problem in robotics is the one dealing with the way mobile robots locate
themselves inside a specific area. The problem itself is vital for a robot to achieve its
goals. There are several ways to approach this problem. For example using landmarks
as in [1] and [2] or estimating the robot's position based on the distance it has covered
as in [3] and [4]. Most of these methods make use of several sensors of different
types in the robot to gather information about its surrounding environment [5]. How-
ever, it is not always possible to use landmarks in the environment, or use any kind
and number of sensors in the robot because of a restriction of its design. Moreover,
there is a high probability that the data obtained from the measurements of the sen-
sors or actuators contain noise that will lead to a wrong assumption of the robot’s
physical location. All these situations may apply to all kinds of mobile robots, in par-
ticular to humanoid robots. A humanoid robot is a robot whose design mimics the
human body. The intention of this work is to provide a method to determine the posi-
tion of a humanoid robot.

1.1 Definition of the problem

In order to determine the position of a humanoid robot, it is necessary to explain first
its characteristics and the constraints of which it is subject. First, unlike most com-
mon mobile robots, the humanoid robot to which we refer in this work, does not rely
on wheels to move from one position to another, it is a biped robot. Second, the only
available sensor in the robot to gather information about the surrounding environment
1s a camera located in its head. Third, it is assumed that the robot has limited re-



sources of memory space and processing power' thus it is crucial to use its resources
in an optimal way.

That said the problem that the present work aims to solve is to give a robot with such
characteristics the ability to localize itself inside an area using an evolutionary meth-
od as a machine learning strategy. In particular, one of the main purposes of the pre-
sent work is to be able to implement a reliable algorithm to determine the robot’s po-
sition in an environment of whose characteristics are assumed to be known at the off-
set. In spite of its apparent artificiality, it is of high practical interest because it ad-
dresses a problem which is systematically found when the robot finds itself in a com-
petitive arena or in an otherwise known surrounding. This is the case, for example, of
cleaning robots, where the space to free from obstacles is well known; or of a surgical
procedure where nanobots may be needed to identify their positions inside a well
known environment, etc. In particular, such is the case in a traditional international
tournament popularly known as “RoboCup” (for which see section 1.3). From the
point of view of artificial intelligence and mechatronics, RoboCup is specifically
aimed at the (apparently) ambitious goal of designing a team of robots able to defeat
its human counterpart by the year 2050.

1.1.1 Mobile robot Position’s Identification

The method proposed in this work makes use of the single sensor the robot has, a
camera, to capture a collection of images that will be processed off line and then
loaded into the robot’s memory as a condensed database that will include information
regarding the position where each image was taken along with the processed images.
The robot will use this information to determine its own position by searching in the
database the image it is getting later. Therefore, it is important to determine a way to
identify an image as unique with the less amount of information, i.e. the optimal
number of pixels and their position in the images. The collection of pixel points and

their position is called a “sieve”.

" The humanoids robots we used had a CMUcam3 [43] vision module. It is an ARM7TDMI based fully pro-
grammable embedded computer vision sensor that only has 64 KB of RAM memory and 128 KB in
ROM for custom C code. The processing power of this sensor is limited compared to other options as a
fit-PC2 [44], which is a small, light, fan-less computer that can run a full OS like Linux.



Fig. F1.1.2.1. A possible representation of a sieve.

1.1.2 Determination of the optimal sieve

To implement such database in the robot’s memory it is necessary to reduce the num-
ber of elements in the database. This condition leads to the following questions. What
is the smallest number of pixels which allows determine uniquely the position defin-
ing frame? And which are the positions of each and every one of these pixels?

The answer for these two questions cannot be simply obtained. On the one hand, it is
obvious that a largest subset will ensure a more accurate identification of an image.
On the other hand, with a small subset, the identification of the image will be as fast
as possible. Evidently, these two objectives impose conflicting optimization goals
that constitute a multi-objective optimization problem.

1.1.3 Multi-Objective optimization

We live in a world where most of the optimization problems have to deal with multi-
ple objectives. This kind of problems involves two or more different functions, which
typically are contradictory, and a tradeoff between the various objectives is always
present. Therefore, there exists more than one optimal solution for these kind prob-
lems. In fact, one of the basic problems regarding this matter is how to adequately
define an “optimum”. Chapter 2 presents a quick overview of muti-objective optimi-

zation algorithms.



In what follows, there is a brief account of the various alternative approaches that
have been explored in the recent past when trying to solve the problem of robot local-

ization.

1.2 Current methods of robot localization

Self-localization is the task of estimating the pose (position and orientation) of a mo-
bile robot. It is one of the fundamental problems in mobile robot navigation and many
solutions have been introduced in the past. These solutions usually fall into one of the
following categories [24]:
1. Behavior-based approaches that rely on the interaction of a robot with its envi-
ronment.
2. Landmarks methods that rely on the recognition of landmarks to keep the robot
localized geometrically.
3. Dense sensor matching methods that attempt to use the available sensors in-
formation to update the robot’s pose.
In probabilistic terms, localization is the process of determining the probability of the
robot being at a given pose [25] in a specific time. There are two classes of probabil-
istic localization. The first class uses an explicitly specified probability distribution
across all possible positions; this type of localization is called the Markov localiza-
tion. The second class uses a Gaussian probability density representation of robot
position and scan matching for localization. This class of localization is called Kal-
man filter localization [5].
The ability to simultaneously localize a robot and at the same time accurately map its
surroundings is known as SLAM (Simultaneous Localization And Mapping). This is
considered a key prerequisite for an autonomous robot. SLAM addresses the problem
of building a map of an environment from a sequence of landmark measurements ob-
tained from a moving robot.
In a humanoid robot, the visual perception system plays a main role; because almost
all other tasks the robot performs depend on it. The methods used to localize a hu-
manoid robot based on computational vision gather information about the surround-
ing environment and detect known objects to estimate its position based on triangula-
tion between these landmarks [13].



1.2.1 Current methods of object recognitions

A human being is capable to recognize a multitude of familiar and novel objects with
little or no effort at all, regardless of the variations they may have. People can recog-
nize objects from many different points of view, in different places, and of different
sizes. Furthermore, they even recognize them if they are partially obstructed. While it
may be obvious that people are capable of recognizing objects under many variations
in conditions, this is still a challenge for computer vision systems.

Several methods have been proposed to recognize objects; some of them are based on
feature descriptions of an image and the objects in it. These methods perform a search
to find feasible matches between object features and image features.

1.2.1.1 Object recognition by indexing

Object recognition in computer vision refers to the problem of matching object fea-
tures with those of an image. This matching process may be very complex due to the
fact that an object has many features and an image may have features that do not nec-
essarily belong to the object. One convenient way to represent the features of an im-
age and their relations is through the use of graphs. On the other hand the indexing
problem is the problem of recognizing few objects in a large database of objects
while avoiding the use of the image-feature-to-object-feature matching paradigm.
Horaud and Sossa proposed a method [35] where 3D objects and scene images are
represented in terms of 2D characteristic views, which are then characterized with a
number of weighted graphs. The graphs obtained from these objects will become the
“model graphs”. These “model graphs” are characterized as polynomials to be able
to organize them into hash tables to shape a database. Then the recognition of an ob-
ject consists of determining whether a polynomial characterization of the graphs ex-
tracted from an image is present or absent in a database of model graphs. This kind of
characterization constitutes a model for indexing because it rapidly states whether
some sensed data equals some object’s data. Furthermore knowing that two polyno-
mials are said to be equal if they have the same degree and if their coefficients are
equal makes the problem of comparing two graphs equivalent to the problem of com-
paring only the coefficients of their associated polynomials. Recognition by indexing
is therefore the process that attempts to rapidly extract from a large list of objects,
those few objects that fit a group of image features while avoiding to establish image-
feature-to-object-feature assignments.

10



1.2.1.2 Feature selection using a hybrid associative classifier with masking
techniques

Aldape-Perez et al. introduced the method in 2006 [36]. The goal of the method is to
improve the performance of current pattern classifiers by identifying an optimal sub-
set of features and removing the redundant or irrelevant ones, without the need to
compute a new classifier at each step. Its premise is that most of the times the initial
set of selected features consists of a large number of potential attributes that consti-
tute an obstacle not only to the accuracy but to the efficiency of algorithms. In high
dimensional spaces these features often tend to be correlated. Many methods have
been proposed to obtain the optimal subset of features, standing out the multilayer
perceptron networks using the back propagation algorithm.

In this method the classification and extraction of features are performed in two phas-
es. In the first phase the classification is done by a Hybrid Classification and Masking
(HCM) technique. The classification occurs using a hybrid associative memory dur-
ing the learning phase. Since one of the properties of the associative memories is to
establish links between patterns and theirs classes, iterative complexity is eliminated.
This means that one and only one classifier is computed during the whole classifica-
tion process. In the second phase a mask search algorithm is applied to the patterns
previously found in the first phase to recall them.

1.2.1.3 SIFT and SUREF algorithms

The Scale-invariant feature transform or SIFT [28], finds the key points of the objects
extracting them from a set of reference images. Objects are recognized in a new im-
age by comparing each feature from the new image to key points previously found.
The candidate matching features are selected based on the Euclidean distance.

The Speeded Up Robust Features or SURF [29], is a scale and rotation-invariant in-
terest point detector and descriptor method partially inspired by the SIFT descriptor.
A point of interest is one where combinations of measurements of intensity and its
derivatives take on unusual values (for example, at corners) [30]. It determines the
interest points using a Hessian matrix-based measure due to its stability and regulari-
ty. A descriptor describes the distribution of the intensity content within the interest
point neighborhood, similar to the gradient information extracted by SIFT.

11



1.2.1.4 Graph transformation algorithm

This 1s a two-phase algorithm. It combines the local invariant features in the first
phase with a structural matching method used in the verification phase. The features
of both the image of the object to be recognized and the image where the object is
present are found using any known method (e.g. SIFT). Once the features are found,
the descriptors are compared to obtain an initial match if it exists. The comparison
can be made using any correlating algorithm. For example, the one defined by equa-

tion (E1.2.1.4.1), where c(x, y) is the correlation’, s(g’,-',n) 1s the scene to be analyzed
and r* (§ -X,n - y) denotes the conjugated complex of the object to be detected.

cloy)=[f s(Enyr*(E-xn-yld&n (E1.2.14.1)

Other algorithms that may be used for the correlation are described in [12]. Any
match found in the first phase must be verified in the second. The verification is done
using a graph transformation also described in [12]. The graphs produced by the fea-
tures of each image are compared and the number of edges shared between the graphs
determines if the object found in the first phase is valid or not.

1.2.2 Optimum Sieve Method

The Optimum Sieve method [26], [27] consists in finding the smallest set of pixels
and their position (the “sieve”) that best identifies an image as unique in a set of im-
ages that represents the area a robot will navigate. In other words, this set of pixels
must be a minimally sufficient representation of all the pixels in an image for all the
images in the database. The purpose is to reduce the amount of the data of the im-
age’s database so it can be stored it a robot’s memory and consequently increase the
performance of image identification in a later stage. This method is one of the main
motivations for this work and it will be discussed in detail throughout the entire doc-

ument.

1.2.2.1 Image Identification

Once the sieve is determined, the image identification is performed just looking at the
position of the pixels in the test image. Then their value is compared with the images

in the database stored in the robot’s memory.

Correlation refers to any of a broad class of statistical relationships involving dependence.

12



1.2.2.2 Image formats

All the images in the present work were initially captured as a standard JPEG image
using the Fire-i™ Digital Camera [15] at a resolution of 640 x 480 pixels. However,
the images were not used either with the same resolution or with the same format.
They were scaled down to a resolution of 176 x 144 pixels and saved to the PPM file
format to facilitate their analysis and handling. The image manipulation was done
using the GIMP® [34] software.

1.3 RoboCup

The Robot World Cup Initiative or “RoboCup” for short is an international scientific
initiative with the goal of advancing the state of the art of intelligent robots. The initi-
ative and project dates since 1997, and originally used the game of soccer to promote
Al intelligence and technology. As of today, RoboCup has expanded into other rele-
vant application domains based on the needs of modern society covering the follow-
ing categories: RoboCupSoocer, RoboCupRescue, Robocup@Home and Ro-
boCuplJunior. The ultimate goal of the RoboCup Initiative as mentioned above and as
stated in the official website [6] 1s: “By mid-21st century, a team of fully autonomous
humanoid robot soccer players shall win the soccer game; comply with the official
rule of the FIFA, against the winner of the most recent World Cup.”

1.4 Goals

The main goal of the present work is to make a humanoid robot able to determine its
position using only a standard camera and an optimally reduced database. In order to
achieve this goal an evolutionary method to find the optimal number of elements and
their position in a sieve is used. It is, therefore, a machine learning strategy to setup
an optimal database containing the minimum information needed to localize the robot

in an area and recognize obstacles and enemies.

2 Multi-Objective Optimization Algorithms

Most, if not all, day-to-day problems in our world have to deal with multiple objec-
tives. A typical way to deal with this kind of problems is to combine all the objectives
into one single function and give each objective in it a specific weight [8]. This ap-

> GIMP is a multi-platform photo manipulation tool. GIMP is an acronym for the GNU Image Manipula-

tion Program.
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proach is inconvenient because it introduces the problem of how to weight each ob-
jective in the function. A different and sturdier approach is to model the problem as
separate objective functions for each requirement (including restrictions that apply
for all of them). Unlike single-objective optimization problems, there is no accepted
definition of optimal in multi-objective optimization. One possible definition could
be a way to find a good compromise or “trade-offs” rather than a single solution that
simultaneously satisfies all, leading this to a complete set of valid solutions [10].

2.1 Pareto Front

In the simultaneous optimization of multiple objectives it is not always possible to
achieve a single optimal solution with respect to all of them. If those objectives were
independent there would be a whole set of solutions that would best suit all the objec-
tives simultaneously. This set of solutions gives shape to what is called a Pareto front.
Figure F2.1.1.1 shows an example of a Pareto front for two different objective func-
tions f; and f,. A and B are two different points of the Pareto Front. Doing a compari-
son between them in each objective function f; and f, we see that A is less than B in
objective function f;, but B is less than A in objective function f; therefore both solu-
tion vectors are non-dominated. Point C is also a feasible solution but it does not be-
long to the Pareto front as B dominates it in both objective functions f; and £.

Before giving the formal definition of the Pareto front, it is necessary to introduce
first the concepts of Pareto dominance, Pareto optimality and Pareto optimal.

2.1.1 Pareto Dominance

A vector i = (ul,...,uk) 1s said to dominate V = (vl,...,vk) (which dominance is de-
noted by u=<v ) if and only if u 1is partially less than v , i.e,
ViE{l,...,k},ui <V A Hie{l,...,k}:ui <V

14
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Fig. F2.1.1.1. Example of a Pareto front [41].

2.1.2 Pareto Optimality

In general, the solutions of a multi-objective optimization problem are related in two
ways: either one of them dominates the other solutions or another dominates it (see
Figure F2.1.1.1). A vector of decision variables X is a Pareto optimal if there is no
other vector in the feasible region of the problem, which would decrease some crite-
rion without causing a simultaneous increase in at least one other criterion. This con-
cept does not lead to a single solution, but rather to a valid optimal set of solutions for
the same problem, which is called the Pareto optimal set [8]. The vector X, corre-
sponds to the solutions included in the Pareto optimal set and are called non-
dominated. The plot of the objective functions whose non-dominated vectors are in
the Pareto optimal set is called the Pareto front.

2.1.3 Pareto Optimal Set
The Pareto optimal set (7 *) is defined as: 2% := {x eQl-Ix'e F(x')—jf(x)}

In other words, x is a candidate solution in the set of optimal solutions Q for which it
does not exists another candidate solution x' for all the objective functions that domi-
nates at least one objective function with x.

15



2.1.4 Pareto Front
For a given Pareto optimal set (P*), the Pareto front (Pf *) is then defined as the

optimal solution  from  the set of all  candidates solutions

PF o (5) = [A(0) Lo (5).wens s (x)] 12 €P)

2.2 Types of Multi-Objective Algorithms

There are several ways to tackle a multi-objective optimization problem, In the
beginning of this section one such method (called aggregating functions) was briefly
mentioned. This and other methods will be briefly discussed in the rest of this
section.

2.2.1 Aggregate objective function (AOF)

This is an intuitive approach to solve multi-objective problems. The basic idea is to
combine all of the objectives into a single objective function, called the AOF (such as
the well-known weighted linear sum of the objectives [19]). This objective function is
optimized subject to constraints specifying how much of one objective must be
penalized. These constraints frequently come in the form of inequalities

gl.(?c)so i=1,2,...,m or equalities hj()?)=0j=1,2,...,p for where 76=[x],x2,...,xn]

is the vector of decision variables.

Often the aggregate objective function is not linear in the objectives expressing
increasing marginal dissatisfaction with greater incremental sacrifices in the value of
either objective. Furthermore, sometimes the aggregate objective function is
additively separable, so that it is expressed as a weighted average of a non-linear
function of one objective and a non-linear function of another objective [18]. The
optimal solution will depend on the relative values of the weights specified. This
method is subjective as it requires to be supplied with the weights to find a solution.

2.2.2 Multiple (AOF) methods

Unlike AOF a fair way to characterize multi-objective problems is by identifying
multiple Pareto optimal candidate solutions. These candidate solutions can be found
with the use of multiple AOFs where the solution of each AOF yields a Pareto point.
These methods include the Normal Boundary Intersection (NBI) [19], Normal

16



Constraint (NC) [20], Successive Pareto Optimization (SPO) [21], and Directed
Search Domain (DSD) [22].

2.2.3 Approximation by an even distribution of the Pareto points

The NC and DSD methods suggest two different filtering procedures to remove
locally Pareto points. The AOFs are constructed with the aim of obtaining evenly
distributed Pareto points that give a good impression (approximation) of the real set

of Pareto points.

2.2.4 Other Methods

There are other methods to solve multi-objective optimization problems such as: par-
ticle swarm optimization, artificial immune systems, cultural algorithms, differential
evolution, ant colony optimization, taboo search, among others that are described in
[17].

2.2.5 Multi-Objective Evolutionary Algorithms

Unlike traditional optimization techniques that search for a solution using a single
point, evolutionary algorithms (EAs) work with a simultaneous set of possible solu-
tions called the population. Genetic Algorithms are a type of EAs which:

a) Explore a discrete problem space.

b) Test multiple points of the problem space simultaneously.

¢) Encode possible solutions (points) of the problem space.

d) Evaluate every point independently.

e) Combine codes of the evaluated partial solutions to generate new exploration
points.

f) Randomly alter selected elements of the codes of the points

These characteristics makes EAs suitable to solve multi-objective optimization prob-
lems as they can find several members of the Pareto optimal set in a single “run” of
the algorithm [17]. C. Coello gives a definition of a Multi-Objective Evolutionary
Algorithm in [17] which is included here:

Definition 1 (MOP Global Minimum): Given a function f: QCR" — R¥, 2 # @,
k = 2 for x € 2 the set PF £ f(x;) > (—oo, ..., —o0)is called the global minimum if

and only if Vx € Q2:f(x;) < f(x). Then, X;,i = 1, ..., n is the global minimum solu-
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tion set (i.e., 7 *), f is the multiple objective function, and the set £ is the feasible
region. The problem of determining the global minimum solution set is called the
MOP global optimization problem.

Definition 2 (Evolutionary Algorithm): Let I be a non-empty set (the individual

space), {u""},., a sequence in Z* (the parent population sizes), {u'" },., a sequence
in Z" (the offspring population sizes), P:I—=R a fitness function,

L: ‘;(1 “ )(i) — {true, false} (the termination criterion), x € {true, false}, r a se-
quence {r(i)} of recombination operators O X(ri)% T (Qr(i),‘f (I ”(i),I “'(I))), m a se-
quence {m(i)} of mutation operators m' Xg,?—> T (.Q,ff),’f (I ”'(i),l ‘“m)) , § a sequence
{s(i)} of selection operators st X(j)x T(I,R)e T(S?S(i),T((I“'(i)+X“([)),I”(M))),

@,(i) S Xgi) (the recombination parameters), @,(,f) S Xff,) (the mutation parameters),

and Hii) S X(Si) (the selection parameters). Then the algorithm shown in Figure

F2.2.5.1 is called an Evolutionary Algorithm.

t:=0;

initialize P(0) := {a,(0), . . ., a,(0)} € I"";
while (:({P(0), ..., P(¢)}) # true) do
recombine: P'(t) := rgg) (P(t));

mutate: P"'(t) := mg(),) (P'(t));
select:
if y

then P(t + 1) == s, J (P"(2));

else P+ 1) := s"

(ot).0) (P”(I)UP(t))5

s

fi
t=t+1;
od

Fig. F2.2.5.1. Evolutionary Algorithm Outline [17]
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Definition 3 (Multi-Objective Evolutionary Algorithm): Let @:1 - R*, (k > 2, a
multi-objective fitness function). If this multi-objective fitness function is substituted
for the fitness function in Definition 1 then the algorithm shown in Figure F2.2.5.1 is
called a Multi-objective Evolutionary Algorithm.

2.2.5.1 Types of MOEAs

Multi-Objective Evolutionary Algorithms can be classified into three major catego-
ries [8], [17] depending on what stage, search or decision, is carried out first.

1. A Priori techniques: These techniques make decisions before searching. They are
based on non-Pareto approaches; they include lexicographic, linear fitness combi-
nation, and nonlinear fitness combination. The solution obtained with these tech-
niques is a single point and therefore they do not incorporate the concept of Pareto
optimal. However, they are easy to implement.

2. Progressive techniques or interactive computational steering: These techniques
integrate search and decision-making. They use a ranking scheme to rank each in-
dividual in the population and a sharing function to preserve diversity.

3. A posteriori techniques: These techniques perform a search before making any
decision. They are emphasized in performing a search as widespread as possible,
to generate as many different elements of the Pareto optimal set as possible. The
decision-making process takes place only after completing the search. Among the-
se techniques are: independent sampling, criterion selection, aggregation selection,
Pareto-based selection, Pareto rank- and niche-based selection, Pareto deme-based
selection, Pareto elitist-based selection, etc.

In the following sections some of the first multi-objective evolutionary algorithms are
mentioned.

2.2.5.2 VEGA

David Schaffer [47] proposed the Vector Evaluated Genetic Algorithm (VEGA) in
1985. It is considered the first implementation of a MOEA [17]. The idea of the
algorithm is to evaluate a vector of objective functions of a multiobjective problem.
The following description of the algorihtm is given in [17]: “The VEGA concept is
that, for a problem with &k objectives, k£ sub-populations of size M/k each would be
generated (assuming a total population size of M). Each sub-population uses only one
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of the k£ objective functions for fitness assignment. The proportionate selection
operator is used to generate the mating pool. These sub-populations are then shuffled
together to obtain a new population of size M, on which the GA would apply the
crossover and mutation operators in the usual way.” These techniques do not
incorporate directly the concept of Pareto optimum, are unable to find some portions
of the Pareto front, and are only capable of handling a small number of objectives [8].

1. Procedure MOGA(N’,g,fk(x))DN’ members evolved g generations to
solve f,(x)
. Initialize Population P’
. Evaluate Objective Values
. Assign Rank based on Pareto Dominance

2
3
4
5. Compute Niche Count
6. Assign Linearly Scaled Fitness

7. Shared Fitness

8. for i:=1 to g do

9. Selection via Stochastic Universal Sampling
10. Single Point Crossover

11. Mutation

12. Evaluate Objective Values

13. Assign Rank Based on Pareto Dominance

14. Compute Niche Count

15. Assign Linearly Scaled Fitness

16. Assign Shared Fitness

17. End for

18. End procedure

Fig. F2.2.5.3.1. MOGA algorithm [17]

2.2.5.3 MOGA

The Multi-Objective Genetic Algorithm (MOGA) was proposed by Carlos M.
Fonseca and Peter J. Fleming in 1993 [48]. It is a variation of Goldberg’s GA where
each individual is ranked according to number of individuals in the current
population by which it is dominated [8]. All individuals that are nondominated have
the rank 1. The dominated individuals are penalized according the number of
indivuals by which they are dominated [17], [45].

In the algorithm a fitness sharing function is used to maintain diversity, together with
a mating restriction scheme that avoids crossover between very distant individuals in
the search space. Figure F2.2.5.3.1 shows the MOGA algorithm as presented in [17].
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11.
12.
13.

Procedure SPEA(NCgKﬁ(xn
Initialize Population P’
Create empty external set E'(|E'| < |P'])
for i:=1 to g do
E' = EEUND(P') > Copy members evaluating to be nondominat-
ed of P to E
E'= ND(E) > Keep only member evaluating to nondominated
vectors in E
Prune E’' using clustering if max capacity of E' is ex-
ceeded
Viepsr Evaluate(P’;) > Evaluate fitness for all member of E’
and P’
Viep, Evaluate(E';)
MP « T(P'UE") > Use binary tournament selection with re-
placement to select individuals from P'+ E' (multiset union)
until the mating pool is full
Apply crossover and mutation on M®P
End for
End procedure

Fig. F2.2.5.4.1. SPEA algorithm [17]

2.2.5.4 SPEA

The Strength Pareto Evolutionary Algorithm (SPEA) was introduced by Eckart
Zitzler and Lothar Thiele [49]. This approach was conceived as a way of integrating
different MOEAs. Its main characteristics [46] are:

It incorporates elitism, a set of the optimal individuals generated are
maintained besides the population.

The set is used to evaluate the fitness of individuals according to the
prevalence relationship.

The population’s diversity is preserved using a prevalence based mechanism.

A clustering method is incorporated in order to reduce the Pareto set without
losing its characteristics.

SPEA uses an external archive containing nondominated solutions previously found.

At each generation, the nondominated individuals are copied to the external

nondominated set. For each individual in the external set, a strength value is
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computed. The strength is proportional to the number of solutions to which a certain

individual dominates. The fitness of each member of the current population is

computed according to the strengths of all external nondominated solutions that

dominate it. The fitness assignment process of SPEA considers both closeness to the

true Pareto front and even distribution of solutions at the same time.
Figure F2.2.5.4.1 shows the pseudo code of SPEA as presetned in [17].

10.
11.
12.
13.

14.
15.

16.
17.
18.
19.

1. Procedure NSGA-II (N,g, fi(z;)) >N’ members evolved g generations to
solve fi(x)

2. Initialize Population P

3. Generate random population - size N’

4. Evaluate Objective Values

5. Assign Rank (level) Based on Pareto dominance - sort

6. Generate Child Population

7. Binary Tournament Selection

8. Recombination and Mutation

9. for i:=1 to g do

for each Parent and Child in Population do

Assign Rank (level) based on Pareto - sort

Generate sets of nondominated vectors along PFknown
Loop (inside) by adding solutions to next generation
starting from the first front until AN’ individuals
found determine crowding distance between points on
each front

end for

Select points (elitist) on the lower front (with lower

rank) and are outside a crowding distance

Create next generation

Binary Tournament Selection

Recombination and Mutation

end for

20. end procedure

Fig. F2.2.5.5.1. The NSGA-II algorithm [17]

2.2.5.5 NSGA-II

Deb, et al [23] proposed an algorithm called NSGA-II wich is an improved version of

the NSGA. It performs sequentially the three basic tasks of fitness assignment,

density estimation and archiving [8]. It uses simultaneously an elite preservation

strategy and an explicit diversity preserving mechanism.
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1. A child population is created using the parent population, both population are of
size N.

2. Both populations are combined together to form a single population of size 2N.

3. The combined population is classified using non-dominated sorting.

4. Finally, the new population is filled with the individuals of the best fronts, until

its size becomes equal to N. If the population becomes larger than N, a niching
strategy is used to select the individuals of the last front.
Niching refers to the clustering of individuals with similar characteristics inside
the population such that the identification of the said clusters will promote and
maintain a stable population [32], [33]. A way to do this is by adding a clustering
distance to each member of the population. Labeling the individuals as per their
cluster keeps the population diverse and helps the algorithm to explore the fitness
landscape [17].

The pseudo code of the algorithm as presented in [17] is shown in figure F2.2.5.5.1:

2.2.5.6 RSPGAe — Reduced Pareto Set GA With Elitism

The RPSGAe [10] is a Genetic Algorithm that seeks to distribute uniformly the solu-
tions across the Pareto’s front. Besides, it reduces the set of solutions by clustering
them in groups that maintain their characteristics. The algorithm is explained in detail
in [8], [10] and its main steps are listed in Figure F2.2.5.6.1. First an internal popula-
tion of size N is randomly created (step 1) then an empty external population is creat-
ed (step 2). In each generation the following operators are applied: 1) The population
is evaluated (step 3a); i) a clustering technique is applied to reduce the number of
solutions in the Pareto front and the fitness of the internal population is obtained (step
3b); iii) a predetermined fixed number of the best individuals is copied to the external
population (step 3c); 1v) if the external population is not full the genetic operators
selection (step 3c), crossover (step 3f) and mutation (3g) are applied to the internal
population and the cycle is repeated. Otherwise, a clustering technique® is applied to
the external population (step 3d-i), the individuals are then sorted and a predefined
fixed number of the best ones are copied to the internal population replacing the indi-
viduals with the worst fitness.

* In MOEA clustering techniques are used to reduce large sets of solution candidates with a minimum loss

of diversity leading to a better distribution of the solutions in the Pareto Front [46]. Clustering is one of
the metrics used to compare different algorithms on how well distributed are the solutions in the PF [50].
One of these techniques used for clustering is the grid-mapping technique.
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1) Generate a random initial population (internal).
2) Create an empty external population.
3) While not Stop-Condition Do
a) Evaluate internal population.
b) Calculate the Fitness of the individuals using a cluster-
ing technique.
c) Copy the best individuals to the external population
d) If the external population becomes full then
i) Apply the clustering to this population.
ii) Copy the best individuals to the internal population.
End If
e) Select the individuals for reproduction.
f) Apply crossover.
g) Apply mutation.
4) End While

Fig. F2.2.5.6.1. RPSGAe Algorithm [§]

3  World mapping

So far, we talked about how multiple optimization problems are solved. In addition, a
brief introduction to the methods used for object recognition in computer vision was
given as well as a glimpse to the optimum sieve method. However nothing has been
said about the environment the robot is going to navigate or how the information (in
our case the images of the environment), were acquired and optimized and how it is
going to be used to localize the robot. These topics are going to be addressed in this
section, starting with the definition of mapping and world map and how the environ-
ment is usually represented. Then the details of the environment used for the purpose
of this work are given.

Knowing the environment is very helpful to find routes, i.e. paths the robot may use
to navigate to different positions in the environment. Furthermore, if an optimal route
is required then it is necessary to have a map, which will be defined later in this sec-
tion. For a mobile robot, this is an important part of the navigation system. The prob-
lem of world mapping in robotics is that given some readings from the robot's sen-
sors, it should find a map of the environment to localize itself as it moves in it. This
can be seen as the chicken-or-egg problem: if there is a map, localization can be

done; if there is localization, a map can be created.
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Representation
Classification

Description

Uses

Notes

Continuous rep-

resentation

Used for an exact de-
composition of the
This
means that the featu-

environment.

res of the environ-
ment can be repre-
sented precisely in

continuous space.

Mobile robots use
continuous  maps
only in 2D repre-

sentations.

An advantage is the
high accuracy with
respect the environ-
ment’s configuration
and the robot’s posi-
tion.

This approach is usu-
ally combined with a
closed-world assump-

tion.

Decomposition

strategies

This is an abstraction
of the environment.
Decomposition and a
selection of environ-
mental features take

place.

It is useful when it
is planned
fully to abstract the
relevant useful fea-

carc-

tures of the world.

A disadvantage is the
lost of accuracy.

Its advantage is the
minimization of the

map representation.

Table T3.1.1. Environment classification

3.1 Definition of world map

A world map in robotics is the representation of a physical environment in a way that

a robot can understand. With this definition, a single environment could be represent-

ed in many different ways. Therefore the choice of the map’s definition may be very

broad. This leads to the following question: which representation is the best for the

robot? To answer it, Roland Siegwart and Illah R. Nourbakhsh recommend in their

book “Introduction to Autonomous Mobile Robots” that the following three relation-

ships must be understood first [5]:

1. The precision of the map must appropriately match the precision with which

the robot needs to achieve its goals.

2. The precision of the map and the type of features represented must match the

precision and data types returned by the robot’s sensors.
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3. The complexity of the map representation has direct impact on the computa-

tional complexity of reasoning about mapping, localization, and navigation.

Having these requirements in mind the obvious conclusions is that each representa-
tion has an impact on the robot. Table T3.1.1 shows a classification of the environ-
ment representation along with current uses, advantages and disadvantages.

3.2 Mapping algorithms fundamentals

Once the way to represent the environment has been chosen, the new question to an-
swer is: How does a robot obtain a map? Before answering the question, it is needless
to say that creating a map is not an easy task. The readings from the robot’s sensors
may contain a lot of noise. In addition, the robot’s motions may not be precise. This
can also be seen as noise in the robot’s movements. Many techniques have been de-
veloped to overcome this problems and Sebastian Thrun [15] has pointed out that
there are already robust methods for mapping static, structured and limited size envi-
ronments. However, the problem we want to solve is not static at all. Once the robot
is in the area it is going to navigate, the environment changes dynamically as there
are other agents interacting analogously inside it. Some techniques approach this
problem by using short time windows where the environments are considered as stat-
ic. Thrun also points out that as of today most state-of-the-art robotic mapping algo-
rithms are probabilistic [15], meaning that they use probabilistic models of the envi-
ronment. The reason behind this lies on what we previously pointed out: robotic
mapping is characterized by the noise generated inside and outside the robot’s sen-
sors and the uncertainty produced by them on the robot’s position.

3.2.1 Bayes rule

The Bayes rule is used as the starting point for many statistical mapping algorithms.
It relates the chances of the occurrence of event x given the evidence y. It states that:

posterior = likelihood x prior (E3.2.1.1)
marginal likelihood
and is defined by equation (E3.2.1.2)
plxly)=mp(y|x)plx) (E3.2.1.2)
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where p(x | y) is called the posterior probability distribution over X p(x | y) speci-
fies the probability of finding y given x. In other words, it makes possible to generate
different measures y under different states x. p(x) is the probability to be at a given
state x before any measure, and it is called the prior probability distribution. # is a

normalizer used to ensure that it is valid probability distribution. In robotics mapping
all data from the sensors is obtained over time. The Bayes filter (see section 3.2.3) is
a powerful tool for performing sequential estimations and it is commonly used to in-

tegrate this data.

3.2.2 Sequential estimation

To better understand the Bayes filter we point out that a sequential estimation is a
method used to estimate a parameter by analyzing large enough data samples until
significant results are observed or a certain degree of precision is reached.

To further illustrate this concept suppose that the data obtained from one of the ro-
bot’s sensor needs to be analyzed. If the probabilistic distribution function of the

measurements on that sensor is already known ( p(x)), the mean can be obtained di-

rectly with:

u =fxp(x)dx (E3.2.2.1)

In general, p(x) is not known. Therefore to obtain the mean it is necessary to per-
form estimations with the data sampled by the sensor. If n samples are obtained

{xl, Xysenns xn} the mean can be obtained by equation E3.2.2.2.

1 n
m=—)>»x, E3.2.2.2
nE : ( )

With this approach, all n samples must be known before calculating the mean. How-
ever, a better approach is to update the mean as new samples are obtained. For only 1

sample the mean will be m, = x,, doing this will also improve the previous estimation

of the mean as new samples are acquired. Therefore the mean m in equation

(E3.2.2.2) will become a function of the sample x, and the value of the mean before

the current sample m,_, as it shown in (E3.2.2.3):
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PSR A (E3.2.2.3)

This is known as the sequential mean of a random variable [38] and is described by
equation (E3.2.2.4).

! ,+t;lmt_1 (E3.2.2.4)

where ¢ is the time where the sample is obtained.

Posterior probability distribution can also be sequentially estimated as actions are
taken and as observations are made [38]. The produced actions and the observed
states over time can be modeled and the model can be used to improve the estimates.
However we also have to bear in mind that noise will always be present in the obser-
vations as in the state, and it has to be included in the model.

3.2.3 Bayes Filter

The Bayes filter is used as a recursive estimator. It consists of two steps. The first one
called Prediction update, and the second one called the Measurement update. The
Prediction update represents how the current state is expected to be, given the esti-
mate of the previous state and what actions were applied. It is given by equation
(E3.2.3.1).

pu(xt ) =fp(xt | X154, ) mu(xt—l yxt—l (E3.2.3.1)

where x, is the current state, x,_,is the previous state, 4, is the action taken at time ¢

and the function mu(x,_,) 1s called the Measurement update.
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The Measurement update represents how the observations over time, z,, change the

posterior into the prior probability. It comes directly form Bayes rule (E3.2.1.1.1) and
is expressed by equation (E3.2.3.2)

mu( ) np(t|x)pu( ) (E3.2.3.2)

Where 7 is a normalizer and pu(xt) 1s the prediction update.

By combining equations (E3.2.3.1) and (E3.2.3.2) in a single equation (E3.2.3.3), a
generic Bayes filter for simple estimation problems is obtained. With equation

(E3.2.3.3) a posterior probability over the state x, can be obtain recursively.

p(x, Iz’) =np(z Ix,)fp(x, Ix,_l)p(xt_1 1z Jdx _, (E3.2.3.3)

where z' represents the data obtained from one of the robot’s sensors up to time ¢, i.e
z' = {zl,zz,...,zt}, X, is current state and x,_, is previous state.

As the Bayes filter is recursive, it needs to be initialized with an initial probability at
time ¢ =0. The initial probability is p(xo |z°)= P(xo ) In [39] Thrun gives an over-
view of how p(xo) should be initialized when x,, is unknown. The Bayes filter also
requires that the state X, contains all unknown quantities that may influence sensor

measurements at multiple points in time. In the context of robotic mapping, there are
typically two such quantities: the map and the robot’s pose in the environment. Both
of them influence sensor measurements over time. Hence, when using probabilistic
techniques, the mapping problem is truly one where both the map and the robot pose
have to be estimated together [15]. Using m to denote the map and s for the robot’s
pose the following Bayes filter is described by equation (E3.2.1.3.4). Notice that s

and m comprise the full state vector x, i.e. x, = (st,mt )T

p(st,m, Iz’) 7, ls,,m, ffp s, m,|s,_,m )p(st_l,m,_1 Iz"l)als,_ldmt_1 (E3.2.3.4)

A detailed discussion about the Bayes rule and the Bayes filter can be found in [39].

3.2.4 Kalman Filter
Rudolph Emil Kalman introduced the Kalman filter in the1950s. It was primary used

as a technique for filtering and predicting in linear systems [39]. Kalman filters are
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Bayes filters [42] that represent the posterior probability p(st,mt | ' ) with Gausians’.

Here we will present a brief description of the Kalman Filter as explained in [15] and
[39]. Mapping algorithms based on Kalman filters are often referred to as SLAM al-
gorithms [15]. The mapping relies on the following assumptions: the motion model
and the perceptual model must be linear with added Gaussian noise. A linear motion
model implies that the pose of the robot and the map at a given time depend linearly
on the previous pose and map. However, the Kalman filter is implemented for contin-
uous states. Therefore it is not applicable to discrete or hybrid state spaces. Hence, a
modified version was introduced in 1960 called the discrete Kalman Filter. The dis-
crete Kalman filter estimates a process by using a form of feedback control: the filter
estimates the process state at some time and then obtains feedback in the form of
(noisy) measurements. As such, the equations for the Kalman filter fall into two
groups: time update equations and measurement update equations. The time update
equations are responsible for projecting forward (in time) the current state and error
covariance estimates to obtain the “a priori” estimates for the next time step. The
measurement update equations are responsible for the feedback for incorporating new
measurements into the a priori estimate to obtain an improved a posteriori estimate.
As pointed out previously, the Kalman filter addresses the problem of trying to esti-
mate the state of a discrete-time controlled process governed by a linear model. In
cases where a non-linear model is present, the model needs to be approximated by a
linear function before using the Kalman filter. Such implementation is referred to as
an extended Kalman filter or EKF.

3.2.5 Markov localization

Markov localization is the straightforward application of Bayes filters to the localiza-
tion problem. It addresses the global localization problem, the position tracking prob-
lem, and the kidnapped robot problem in static environments. Markov localization
uses an explicitly specified probability distribution across all possible robot positions.
The robot's belief® state is represented as a separate probability assignment for every
possible robot pose in the robot’s map. The data from the robot’s sensor measure-

(z — 1)’
A Gaussian function is a function of the form f(z) = ae 2¢2 | The parameter a determines the
height of the curve, b is the position of its center, and ¢ determines the width. Gaussians functions are

used to describe normal distributions.
The robot’s belief about its position on the environment.

5

6
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ments is used to update each possible robot position in the belief state individually
using the Bayes formula. Therefore, every time a new measure is sensed, the proba-
bility of every possible pose of the robot in the map has to be updated as well. A
more detailed discussion of these topics is found in [5], [15], [39], [40].

3.3 Environment set up

So far the concept of map in robotics and some of the algorithms that have been used
for mapping have been introduced. In this section we will describe how the environ-
ment was setup for this work.

The environment consisted of an area of 2.1 x 2.1 mts® divided into 49 square tiles

each one of 0.30 x 0.30 mts2, each tile mapped to a Cartesian coordinate in a (x, y)

plane. The following three tasks were performed to set the environment:

1) The landscape was segmented in three coordinates:
i. A horizontal coordinate
1. A vertical coordinate
iii. An observation angle (x, V, 6‘)
2) A picture was taken on each possible (x, V, 19) coordinate combination i.e. imag-
es were taken from 360° around the robot at each coordinate with a 30° step for
the observation angle. At each coordinate (x, y) 12 images were captured (as

shown in Figure F3.3.1) yielding a total of 588 images.

3) Each one of the images was digitalized using a standardized RGB format with a
total of 640 x 480 pixels per image.

4) Each one of the images was manipulated in GIMP to resize them using the Sinc
(Lanczos 3) interpolation [37] to a resolution of 176 x 144 pixels. All images
were saved in the PPM format (Portable Pixel Map [9]), which maintains con-
stant file size for all images. To reduce the amount of rough data the images

were then sampled at regular interval every 16 pixels by our algorithm.

These images formed a database that included information about the position of the
image. This information consists of the X,y coordinates and the angle & of the im-

age. All of these images will be used as offline training data so the robot can know its
position by looking only into the database for an image that match with what its sen-
sor is getting at some future time. It is true that there may be cases where some ambi-
guity will occur. For example, when the robot is to close to a wall and it is facing to it
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or it is to close to a post or simply by looking directly to the floor. In those circum-
stances, a possible solution is to make the robot turn its head and camera to a differ-
ent angle to take a new picture.

2.1m
6 54321

2.1m

OO bbb WN-=O

6543210

Fig. F3.3.1. Illustration of the sampled area.

3.3.1 The Portable Pixel Map Format

The PPM format is a color image file format that can contain one or multiple images
in a single ppm file that can be ASCII or binary. In the file there are no data delimit-
ers or padding before, after, or between images. The file consists of two parts. In the
first part lies the general description of the file. Among other things, the first part of
the file contains the type of the file, the height and width of the images and the max-
imum color value. The second part of the file is a raster that represents one or multi-
ple images, every width pixels in the raster represents a row of the image and the ras-
ter will have height number of rows in it to represent a single image.

Each pixel in the row is the value of the red, green, and blue samples of the pixel in
this order. Each sample can be either 1 or 2 bytes of size depending on the maximum
value reported in the first part of the file.

For this work, a binary representation of the file was used, leading to 54 bytes (from
byte 0x0000 to 0x0035) that represent the description of the file. The second part,
starts from byte 55 (0x0036 onwards) and it is a raster that represents the images. As
we used images of size 176 x 144 pixels, every 528 bytes in the raster represented a
row of pixels of the image in the RGB color space. The reason behind using this for-
mat is that it is easier to process the pixel information as they all had the same

amount of information.
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3.3.2 Data set up

As pointed in the previous section, in th PPM format, each pixel value in the raster
that represent the image is composed by 3 bytes, one byte for color red, gree and
blue. Therefore, the total amount of bytes in only one picture of size 176 x 144 pixels
is 76,032 ((176 x 3) x 144), hence the total amount of pixels in the database for the
588 images i1s 44,706,816 (76,032 x 588). This simple exercise gives an idea of the
huge amount of information that needs to be processed and the implication on the
time need to perform the computations. In order to further reduce the amount of data,
a pixel out of 16 was selected leaving with only 1,584 pixels per image to work with.
The database of images was created reading each of the PPM images files, discarding
all the information using only the information of the pixels values.

4  Determination of the Sieve

The method consists of the extraction of a fixed number of pixels from an image cap-
tured by the robot along with their position (in the image) to perform a search in a
database that will contain all images loaded into the robot’s memory. With this set of
pixels, a single image must be identified from all the images in the set, and the
amount of pixels in the set must have to be the minimum. In figure F4.1 we illustrate
an image and its possible representations by two different sieves. The main motiva-
tions to reduce the amount of information in the database are that it must fit into the
robot’s memory and that this information is to be processed in real time. The first
issue is vital if there are limited resources of memory space and processing power in
the robot. At first glance, to overcome this problem the robot’s memory can be in-
creased as well as its processing power, but there is a better choice. The database size
may be reduced in a way that it only holds a minimum amount of data required to
identify an image. To achieve the reduction in size, a number of pixels p, expected to
be less than the total number of pixels that conforms an image (i.e. 1,584 in this case)
must be found. Additionally the number of pixels p should be such that an image
should not be wrongly identified. It is obvious that if the number of selected pixels in
the sieve reaches the total number of pixels in the image, the probability to identify
an image as a different one will be low. On the other hand, if the number of pixels is
minimum, e.g. one pixel, the probability to misidentify an image in the database will
be high. Therefore, two things have to be minimized:

a) The number of pixels p in the sieve required to identify an image,
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b) The image identification error, €;.

| o

=

=

Fig. F4.1. An image of the environment and its possible representation by a set of pixels
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This is a typical multi-objective optimization problem with conflicting goals. In sec-
tion 2.2 we mentioned that there are different ways to approach these kinds of prob-
lems, e.g., by aggregating the objectives into a single objective function. A different
approach is by using a Multi-Objective Evolutionary Algorithm (MOEA).
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Fig. F4.2. A sample view of 10 individuals for images of 35 pixels

The algorithm we propose uses a population of » individuals. Each individual ge-
nome is the size of the number of pixels in the image, i.e. 1,584. Every allele in the
genome maps directly to a position of a pixel in the image. The set of alleles with a
value of 1 represent the pixels that will work as a sieve, which will be used to select
the pixels of all the images in the same position. In other words a bit turned on in the
genome means that the pixel in that position will be part of the sieve. The number of
pixels that will be part of the sieve is selected randomly. Figure F4.2 shows a set of
10 individuals created for hypothetical images of 35 pixels each one. Every dark rec-
tangle in the image represents the position of the pixel selected to be part of the sieve.
Each individual may have a similar or different sieve sizes as it is also shown in the
figure. To evaluate the candidate sieve, a random image is selected from the set of
images. The pixels in the sieve are then compared with the remaining images. Every
time that the value of a pixel is in another image, a counter for the candidate sieve is
increased. This counter will provide the number of repetitions found across all the
images. The number of repetitions is called the pixel identification error, €. The

number of pixels repeated per image is called the image identification error, €;. To
find €;, the pixel identification error € is divided by the total number of images

(588) and the number of pixels that form the sieve. The result is then multiplied by
the number of pixels that correspond to a single image as shown in equation (E4.1).

£ =;SN (E4.1)
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where: &, is the image identification error, € is pixel identification error, T; is the

number of images, s are the pixels in the sieve and N is the number of pixels in an
image.

The population in the MOEA will produce a set of points that will be part of the solu-
tion space. If there is a subset of points in the solution space that dominates all the
other solutions, then this subset will outline a Pareto front. This process is repeated
each generation. If the number of pixels in the sieve falls in a predefined threshold,
the algorithm has reached the optimal set of points in the sieve, which allow us to

satisfy objectives a) minimize the size of the sieve s and b) minimize ¢;.

4.1 Adjustments performed to the RPSGAe algorithm

The MOEA used to solve this problem was the RPSGAe algorithm implemented in
Java and introduced in section 2.2.5.3. Several runs were performed and the algo-
rithm took more than 40 minutes to find a Pareto front. A closer analysis of the im-
plementation revealed that the clustering procedure was consuming most of the pro-
cessing time. As there were only two objective needed to be optimized, it was decid-
ed that the clustering module was unnecessary and therefore it was eliminated from
the implementation. This simple modification speeded up the processing time to just
a few minutes. It is important to point out that the RPSGAe algorithm leaves open the
implementation of the genetic operators: selection, crossover and mutation. Therefore
the genetic operators were implemented as in the Eclectic Genetic Algorithm [31] to
include: Deterministic Coupling, Full Elitism and Annular Crossover. By doing so we
can take advantage of a high degree of elitism and at the same time give variety to the
genetic pool [31].

5 Obstacles in the field of view

With this method, the robot expects to find a perfect landscape in the sense that it
ought to unequivocally determine at least one of the identifying sieves. There are two
possible reasons for which an image may not be identified: a) There is too much
noise in the image or b) There is an object (originally not present) which is obstruct-
ing the field of view of the robot. When this does occur, it must be that something
happening in its environment modified the landscape in its field of view. In this hypo-
thetical case, (and discarding the possibility of excessive noise in the environment)
one must conclude that a new object (not present in the original scenery) is causing
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the ambiguity of position problem. In our case, rather than becoming a nuisance, this
fact will allow us to a) Determine the presence of an extraneous object and b) Deter-
mine the precise nature of such object. If we assume a finite collection of extraneous
objects we will be able to characterize them much the same way we were able to
characterize the environment. Following this line of reasoning, we can introduce new
data to determine what caused the change in the landscape and where this change oc-
curred.

5.1 Enemy identification

Once the problem of identifying the robot’s position has been dealt with, there is a
second possible application of the method. Namely, it does allow us to take one-step
further and identify the strange objects in the field of view. In the context of a soccer
match such as the ones in RoboCup, the possible obstructions (and the consequent
inability to identify an image from its sieve) must be due to the presence of an alien
object not present in the course of image acquisition. These objects are hereinafter
called “enemies”. To be able to identify an enemy it is necessary to take pictures of
each enemy to create a new set of images that will form an enemy database. Then we
can identify them by applying morphologic operators, which make such enemy imag-
es position and scale independent. At that point, the non-identification of a robot’s
position is an advantage. Since it implies the detection of the presence of an undesir-
able (in the sense that a robot playing soccer must avoid it) obstacle. Furthermore, it
allows the robot to identify the type and distance of the enemy relative to the present
position. It is important to clarify that the enemy identification was not done as part
of the present work; it was included here only as an example of a different application
that the sieve method may have.

6 Validation of the sieve

To demonstrate the effectiveness of the Optimum Sieve method proposed in this
work a statistical validation method was performed using two similarity measures:

1. The Hamming distance
2. The Euclidean distance

This section describes the similarity measures and the data used in the validation.
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6.1 Data setup for the validation

To validate this method a new database of images was set up. The validation method
applied to this database used both:

a) The complete set of pixels (1,584) and
b) The reduced set of pixels found by the MOEA.

The new database was setup by 28 images acquired from a unique point located in the
center of the area showed in figure F3.4.1. The images have a separation of 5 degrees
between them and sweep a range from zero to 30 degrees in the horizontal and from
zero to 20 degrees in the vertical as oppose to the original set of images that had a
separation of 30 degrees between them only in the horizontal. The robot’s camera

was facing forward and parallel to the ground.

6.2 Similarity measures

Given the nature of the problem there should be a way that can help determine if an
image the robot is sensing at a specific time is similar to another image in the robot’s
database. If the two images are alike, then the probability that the robot is in the same
position as the image in the database is high, and it will be low if the two images are
different. Therefore, the robot is set in a different position. To be able to measure
how different is an image from another a similarity measure between images is need-
ed. In the present work, two different measures were used. One was the Hamming
distance (between two sets of pixels). The other was the Euclidean (which determines

how "far" or “similar” are the components of a pixel relative to another one).

6.2.1 Minkowski metric

Given two points x = (xl , xz) and y = (y1 Vs ), a general measure of their closeness is

the p-Minkowski [11] metric given by

1
d’(x,y)= ﬁxl -yl +x, —yzp]; (E6.2.1.1)

where p is a positive real number such that p > 1. For p=1, d (x, y) 1s the Hamming

distance. For p=2, d, (x, y) is the well known Euclidean distance. For p= oo equation
(E6.2.1.1) reduces to

-yl (E62.12)

dm(x:J’) = maxﬂxl -

2
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6.2.1.1 Hamming distance

A particular case of the above is the so-called Hamming distance, which is defined
as:

d=(3(x,y)-1'(x,)) (E.6.2.1.1.1)

The Hamming distance [14] determines the number of positions at which the corre-
sponding symbols of two or more hypothetical messages are different. In our case, we
focus on the differences between any two pixels. The higher the number of different
positions, the more different they are.

PixelA (1 |01 |1 |1|0]0]|1]/0O0
Pixel B rj{1r{1ryo0(1j1ry0j;1/0
ojrjo0(1j0|1j0(0|0]|]=3

Fig. F6.2.1.1.1. Example of the Hamming distance between two binary strings

6.2.1.2 Euclidean distance between pixels

From the Minkowski metric shown in section 6.2.1, the Euclidean distance can be
defined as:

d= (2 (1(x,y)-1'(x, y))z)% (B6.2.1.2.1)

To calculate the distance between two pixels, each pixel was considered as a three
dimensional vector of values (R, G, B). Therefore, the distance between two pixels is
obtained with equation (E6.2.1.2.2).

1
d=((r-rP+(g-gP+B-bFP (E62.122)

It is important to notice that the pixels used to calculate the distance share the same
position in their corresponding image. That is, to get the distance between pixel A
and pixel B both must have the same position in image 1 and image 2.

The distance between the pixels of two different images is obtained one by one and
then added to obtain the aggregated pixel distance. This distance is divided by the
total number of pixels of the images. At the end we will have the average pixel dis-
tance between two images. This average pixel distance is use to determine how simi-
lar are the images compared. A shorter distance will correspond to similar images a
greater distance will correspond to dissimilar images.
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After calculating the distance between every pixel for each pair of images in the da-
tabase, the average distance between two images was obtained with equation
(E6.2.1.2.3)

d (E.6.2.1.2.3)

1

M=

D=L
NS

where N is the total number of pixels of an image.

6.2.1.3 Euclidean distance between images

A more typical way to calculate the distance between two images is to consider each

image as a vector. The distance is obtained using equation (E6.2.1.3.1)
1

d= (2:((r ') + (s8-8 +(bi-b, ')2))2

(E6.2.1.3.1)

6.3 Statistical validation

The total number of comparisons performed to calculate the distances was obtained
with equation (E6.3.1)

Comparisons = —* (T. - 1) (E6.3.1)

1

Do | N

where 77 is the total number of images in the dataset.

For a database with 28 images, 378 comparisons were made. The comparisons were
performed exclusively between different images, as there was no reason to compare
an image with itself, as it is already known that the distance of two images alike is
zero. Additionally images that were already compared were not compared again i.e. if
image a vs. image b were compare previously there was no need to compare im-
age b against image a as it will yield the same result.

7 Results

7.1 MOEA results

For a population of 10 individuals several runs were performed to find the optimal
sieve for the 588-image database. Figure F4.2 is a sample view of the genetic coding
for 10 hypothetical individuals. Figure F7.1.1 shows the Pareto fronts result from the-
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se runs. The graphic shows the number of errors obtained for a specific size of the
sieve. The reader can notice that as the number of points in the sieve decreases the
number of errors increases and likewise as the number of points in the sieve increases
the number of errors decreases. The proposed algorithm does not implement the self-
adapting feature present in the original EGA therefore the following parameters were
used: Population: 10, Generations: 50, Crossover factor: 0.8, Mutation factor: 0.01
and a random seed: 5123412.
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Fig. F7.1.1. Pareto fronts found for the original 588-image database

Table T7.1.1 and Table T7.1.2 show the numerical results for just one of the runs of

the Pareto front from the first 3 and the last 3 generations.
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Generation 0 Generation 1

Points in Points
Errors the Sieve Errors the Sieve
4.173461 1502 3.3837917 1449
4.527774 1127 5.4062386 870
5.046563 878 7.7692122 455
7.7246842 313 15.411243 135
14.57172 5 53.789436 15
Generation 2
Points in
Errors the Sieve

3.3837917 1449
5.244737 1117
6.6968594 903

Table T7.1.1. Results for the first 3 generations

Generation 26 Generation 27
Points in Points in
Errors the Sieve Errors the Sieve
5.2382 17 3.3730834 12
6.8688245 11 7.60477 11
43.4753 9 44.07496 9
Generation 28
Points in
Errors the Sieve

2.4735944 12

Table T7.1.2. Results for the last 3 generations

From these runs, the best suitable solution at generation 28 with a single element in
the Pareto front corresponds to the data in Table T7.1.3 which shows the 12 pixels
sieve found by the algorithm that produce an error of 2.4735944.
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PIXEL R G B
1 161 159 82
2 244 255 248
5 239 251 250
7 243 255 249
8 244 254 249

13 244 255 248
18 244 255 248
182 244 255 248
748 45 41 51
1219 136 179 161
10 1369 246 253 248
11 1465 44 46 44

N
0
1
2
3
1
5
6
7
3
9

Table T7.1.3. The sieve found for the 588 images database (RGB values are representa-
tive).

7.1.1 Determination of the sieve for the new database

Although an optimal sieve was known for the original database, a new optimal sieve
was required for the new database of 28 images described in section 6.1 to validate
the method. These data will be used as a training data as we will obtain a new sieve
for them. Then they will be compared against each other. As pointed out previously,
unlike the EGA, the proposed algorithm does not self-adapt its parameters. Therefore
the following parameters were used in the MOEA to obtain the optimal sieve of pix-
els that describes an image for the new database: Population: 50, Generations: 100,
Crossover rate: 0.6 and Mutation rate: 0.01.

The sieve found for this new set of images had a size of 405 pixels. As can be noted,
the size of the sieve is considerably larger than the one for the original set of images.
It is important to remember that the separation in the new set of images was smaller
than the original set of images (it had 5° of separation between each image as oppose
to the 30°). Therefore the images are similar to each other than the images in the

original set.

7.2 Validation of Results

As pointed out in section 6.1 the validation of the resulting sieve was derived from
the two similarity measures (Hamming and Euclidean distance) for the complete set

of pixels (1,584). To present the results as clearly as possible, the statistical analysis

43



using the 1,584 pixels of the images will be presented first. Then the same analysis
will be shown using the 405 pixels sieve. It is also important to clarify that the valida-
tion was performed on the new set of 28 images and not on the original set of 588
images.

7.2.1 Image Similarities using 1,584 pixels

The maximum average Euclidian distance found between two images was 117.46. Its
corresponding Hamming distance was 11.32 Figure F7.2.1.1.

ERPE
g{l._

Fig. F7.2.1.1. These two images have the maximum average distance of 117.46 using 1,584
pixels per image.

The minimum Euclidian distance found was 27.35 and its corresponding Hamming
distance was 8.05 Figure F7.2.1.2.

Fig. F7.2.1.2. These images have the minimum average distance of 27.35 using 1,584 pixels
per image.

The average Hamming distance of the complete dataset is 10.67 and its standard de-
viation is 0.93 as shown in Fig. F7.2.1.3.
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Fig. F7.2.1.3. Hamming distance of the set of 28 images compared using the 1,584 pixels of
the image.

The average Euclidean distance is 83.22 and the standard deviation is 21.75 as shown
in Fig. F7.2.1.4.
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Fig. F7.2.1.4.  Euclidean distance of the 28 images compared using the 1,584 pixels of the
image.

From figures F7.2.1.3 and F7.2.1.4 it can be seen that two images with a distance be-
low the mean are similar to some degree. Moreover, images extraordinarily similar
are those whose distance is two times the standard deviation below the mean. This
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observation is important because it can allow us to establish a degree of certainty
when one image is compared with another. The results obtained from the compari-
sons of the images with the 1,584 pixels are important because they establish a metric

with which we are going to compare the images using the sieve.

7.2.2 Image Similarities using a pixel sieve of 405 pixels

When using the 405-pixel sieve, the maximum Euclidian distance was 121.16 and its
corresponding Hamming distance was 11.54 Figure F7.2.2.1.

Fig. F7.2.2.1. These two images have the maximum average Euclidean distance of 121.16
using a 405-pixel sieve.

The minimum Euclidian distance was 27.86 and its corresponding Hamming distance
was 7.85 Figure F7.2.2.2.

Fig. F7.2.2.2. These two images have the minimum average Euclidean distance of 27.86 using
the 405-pixel sieve.

The average Hamming distance is 10.69 and the standard deviation is 0.92 as shown
in Figure F7.2.2.3.
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Fig. F7.2.2.3. Hamming distance of the images compared using the pixel sieve.

The average Euclidean distance is 84.69 and the standard deviation is 22.43 as shown
in Figure F7.2.2.4.
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Fig. F7.2.2.4. Euclidean distance of the images compared using the pixel sieve.

The reader can notice that figures F7.2.2.3 and F7.2.2.4 are similar to figures F7.2.1.3
and F7.2.1.4 and they display the same behavior. Images described by the sieve
whose distance is below the mean are similar. In addition, as in section 7.2.1, images
whose distance is two times the standard deviation below the mean are also extraor-

dinarily similar.
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7.2.3 Validation using control and test images

With the results obtained from the validation tests described in sections 7.2.1 and
7.2.2 we concluded that the images with a short distance value are similar in some
degree that can be established using the standard deviation and most importantly that
we can use only the points in the sieve instead of the whole set of pixels to compare
the images. This last conclusion is important as the information to be stored in the
robot is decreased and also the time needed to compare the images is also reduced.
For instance, the size of the original 588-image database used in this work is of 2.8
MB, after the sieve was found a new image database was created sampling only the
pixels in the sieve. The size of this new database was of 22 KB. With this in mind we
perform a new test. We took new pictures of the environment and compared them
against the 588-image database using the 12-pixel sieve previously found and report-
ed in section 7.1. The reason behind using the 588-image database is that this set of
images covers a wider view of the environment. The new images were compared us-
ing the method described in section 7.2.2. It is important to notice that the images
were taken long after the original set of images and the environment changed consid-
erably since then. As result the test images had new objects, some were moved from
their original location, and other objects were removed. This may be considered as
near real case scenario. The hypothesis we want to validate is to be able to recognize
the location where a picture was taken by comparing an image with the set of 588
images using only the sieve found Figure F7.2.3.1 shows the result of comparing 4
images taken from a known position using the 1,584 pixels. The accuracy percentage
of the identification of the position for these images is of 83% using the Hamming
distance, 92% using the Euclidean distance between pixels and 83% using the Eu-
clidean distance between images. The same was done using the 12-pixels sieve
found. Figure F7.2.3.2 shows the positions result from the comparisons. In this case
the accuracy percentage decreased in all cases to 67% using the Hamming distance,
to 83% using the Euclidean distance between pixels and to 67% using the Euclidean
distance between images. Based only on these percentages’ we may say that the Eu-
clidean distance between pixels is the best option to decide the position of the robot.

7 These percentages were obtained from the average of the times x, y and 8 were successfully found.
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Fig. F7.2.3.1. Positions found using all the 1,584 pixels of the on control images.
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Fig. F7.2.3.2. Positions found using the 12-pixel sieve on control images.
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Conclusions

The results obtained in the validation procedures show that the sieve has the same
statistical behavior as the complete number of pixels that define an image. The accu-
racy percentages shown at the end of section 7.2.3 where we performed the image
identification using the 1,584 pixels and the pixels in the sieve are an example of this
behavior. The decrease in the accuracy percentage when using the sieve is due the
image identification error introduced by the sieve that is roughly of 2.5. The accuracy
will be higher if a new sieve with a smaller image identification error is found and
used instead. This, as in all multi-objective problems, may present a tradeoff between
the size of the sieve and the image identification error and will impact directly in the
size of the database to be stored in the robots memory. Based on the previous analysis
a robot can determine if an image acquired with its camera is similar to an image in
its local database with a degree of certainty based on how far an image is from anoth-
er. In the present work three different ways to measure the similarity between the im-
ages were used. These similarity measures can be used to decide the position of the
robot. Hence it is viable to provide a database containing just the essential infor-
mation needed by a robot to locate itself in a known area by searching in it the pixels
determined by the proposed algorithm. In addition, the method allows not only to
identify the robot’s position but also alien objects within the robot’s line of sight.
Therefore, we could, in principle, determine where an obstacle stands for the robot to
take possible evasive actions. In the case of unrecognized images, this methodology
can be applied to identify foreign objects in a scene, assuming that the forms of the
foreign objects are already known with or without the use of scale invariant operators
to describe such objects. This could be a starting point for future works based on this
method. It is a fact that the method requires that the area in which the robot will navi-
gate is known beforehand. Mainly because of this it is necessary to acquire the imag-
es for the offline training. This opens the opportunity to find new ways to obtain
such images in a better way.
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8 Appendix A. The Eclectic Genetic Algorithm

As it was mentioned in section 4.1, some of the operators in the MOEA used in this
work were modified to use some of the operators of the Eclectic Genetic Algorithm
(EGA). To give a better understanding to the reader on how these operators work in
the EGA, a modified version of the original article [31] is included in the current ap-
pendix.

Over the years, the area of Genetic Algorithms has seen the rise of several strategies
to overcome issues as a) whether it will converge to an acceptable solution and, b)
How to choose the parameters of the GA (such as crossover probability, population
size, etc.) to achieve efficiency. The EGA addresses the said issues by taking the
"best" out of all strategies found in Genetic Algorithms approaching what, in the lit-
erature, has been called an Idealized GA (IGA). An IGA should have:

a) Full elitism over a set of size n of the last population.

b) A deterministic selection scheme (as opposed to the traditional proportional
selection operator).

c) Annular crossover.

d) Selective invocation of a Random-Mutation Hill Climbing (RMHC).

e) Population self-adaptation of the following parameters: »n (the number of off-
spring), P, (probability of crossover), P,, (probability of mutation), PH (prob-
ability of RMHC’s invocation).

8.1 Full Elitism

Full elitism means that a copy of the best n individuals is kept up to generation . In
other words, given that nk individuals have been tested by generation £, the popula-
tion will consist of the best n up to that point.

Therefore, the population is forced to lean towards a focalized set of hyperplanes.
The obvious risk is that the search space gets restricted in a way that hampers the GA
excessively. To avoid this, the selection operator is modified as described in section
9.2.

8.2 Deterministic Selection

Deterministic selection does not rely on the individual fitness to determine the most
desirable descendants. It rather, emphasizes a genetic variety by imposing a strategy
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that enforces crossover of predefined individuals. In this model a new strategy is
adopted to select and individual i deterministically and cross it with individual n-i+1.
This selection scheme is called the Vasconcelos Model (VM). At a first glance, this
strategy seems to destroy the good traits of the best individual by deliberately cross-
ing it with the worst individual. However, when taken in conjunction with full elitism
it leads to the implicit analysis of a wider variety of schemas (i.e. it maximizes the
exploration of the solution landscape). The exploration of such vast landscape is fo-
cused via the full elitism implicit in the model.

GENERATION

1 2 k

Best |
n
Individuals

n

Fig. F8.1.1. Full Elitism.

The desired schemas remain present as full elitism is being use and, as before, cross-
ing over dissimilar individuals avoid hitchhiking. Additionally, the crossover rate has
to be such that the time for crossover that combines two desired schemas is small
with respect to the discovery time for such schemas. Full elitism guarantees that, even
in the Vasconcelos strategy, the worst individual for population £ is in the top 1/k
percentage. For example, if n = 50 a look at the 20th generation, the individuals in
such population will be among the best 5% of the total individuals analyzed. This
characteristic is incrementally exposed as the GA proceeds.
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8.3 Annular Crossover

In annular crossover, the genome (as shown in figure Fig.9.3.1.) is no longer seen as
a linear collection of bits but rather as a ring whose leftmost bit is contiguous to its
rightmost bit.

n II‘iﬁ all L
bit position

L] lFiIlall ]
hit position

Fig. F8.3.1. Annular Genome.

When applying annular crossover, there are two parameters to consider for each in-
terchange:

a) The starting crossover locus. That is, where the segment to be extracted from
the individual starts.

b) The length of the semi-ring. That is, how many genes of the individual are go-
ing to be extracted. Clearly, for a genome of length / there are / possible locus
and /-1 possible lengths. When extracting the first individual’s genes, howev-
er, we must no longer concern ourselves with position encoding dependen-

cies.

8.4 Self-Adaptation.

Although this feature was not added in the MOEA implemented for this work as
mentioned in sections 4.1, it was included to show the EGA characteristics complete-
ly. When running a GA there are several parameters that are to be set a priori: Three
of these are the most common:

a) The mutation rate (P,,)
b) The crossover rate (P,.), and
c) The size of the population (N).

In many cases the user tries to fine tune these parameters by making a number of runs

on different "representative" case problems. In a self-adaptive GA the three parame-
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ters are included as an extension of the genome in such a way that the parameters
evolve along with the individual. The idea behind self-adaptation is that not only does
the GA explore the solution landscape but the parameter landscape as well. In this
way, the genome is divided in two sub-genomes: a strategy genome and a solution
genome. Both sub-genomes are subject to the genetic operators. We should consider
the parameter sub-genome as a set of three sub-genomes which are functionally inde-
pendent. The self-adaptive genome is shown in figure Fig 9.4.1.

PHI Px -

Mutation Crossover Number of Individual's Encoding
Probability | Probability | Descendants

}[I) I 11/)'] n

m

STRATEGY SUB-GENOME SOLUTION SUB-GENOME

FULL GENOME

Fig. F8.4.1. Self-Adaptive Genome.

Notice that the size of the population N is implicitly dealt with by considering not the
population’s size itself, but rather the number of descendants produced by the genetic
operators.

In this case of self-adaptation the way the operators affect the performance of the GA
takes into consideration the population (for any given generation) as a whole. In a
sense, this self-adaptive GA is aimed at improving the mean values of the population
rather than the values of each individual.

8.4.1 Probability of mutation

P, is encoded in every individual. The mutation rate for the whole population in the
k-th generation gy is calculated as follows:

=;{§(Pm) (E8.4.1.1)

= ;

~

Therefore, the mutation operator’s rate is fixed for all the individuals during g;.
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8.4.2 Probability of Crossover

P, is, as before, encoded in the genome of every individual. Now, in generation g the
crossover rate is given by
1 N

(Pe)y, = N& (P); (E8.4.2.1)

The crossover operator’s rate is fixed for all the individuals during g;.

8.4.3 Number of Descendants

The number of descendants, n, is also encoded in the genome of every individual and

the number of descendants »; in the k-th generation is given by
ne=— > (E8.4.3.1)

The number of descendants is fixed for all the individuals during g;.

Using a self-adaptive strategy as the one mentioned here frees the user from the ini-
tial arbitrary parameter selection, to a certain extent. It is usual to set upper bounds on
the possible values encoded in P,, P. and n. In that sense, there is still an arbitrary
selection of initial parameter values. However, individuals which represent the better
parameters for the particular problem are allowed to learn from the problem that is
being solved.

The EGA approaches the behavior of an idealized Genetic Algorithm. Furthermore,
in including a self-adaptive behavior it modifies its behavior without impairing the

desirable characteristics.

8.5 Adaptive Hill Climbing.

Finally as part the EGA an RMHC is used when the GA is very close to find the solu-
tion. That is, the EGA consists of a self-adaptive GA plus a HC. The HC is activated
also using a self-adaptive mechanism.

a) The first step is to define two bounds:
1. The minimum Hill Climber percentage (nA).
2. The maximum Hill Climber percentage (np).

where

O0<m, <m, =1 (E8.5.1)
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The HC algorithm will then be activated, at least, 77, of the time and, at most, 7 u of

the time.

b) As a second step, we must define two other bounds:
1. The minimum number of function evaluations to be performed by the

HC upon invocation (N, ).

2. The maximum number of such function evaluations (N u )

These two bounds are given as a percentage of the population’s size N. The actual
percentage of HC function evaluations (relative to N) is included in the strategy sub-
genome and is subject to the genetic operators. The actual number of evaluations up-

on HC invocation (Nn ) in generation k is given by

N,) (ES.5.2)

I
b

>,) (E8.5.3)

where

1 if individual was found by the HC
L, = (E8.5.4)

0 otherwise

To be able to determiney, ’s value we must include a new element in the ¢, genome.

This element is of type boolean. It will be set when the individual has been found by
the HC and reset otherwise. The genome for the EGA is shown in figure Fig.9.5.1.

d) Denoting the probability of invoking the HC by PH, we have:

i e < ma
Pg=qns if g <ng <y,
e i1y >y (E8.5.5)
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Fig. F8.5.1. Self-Adaptive Genome for Eclectic Genetic Algorithm.

e) Generate a random number p, , where 0 < p, =<1. Prepare to invoke the HC
if P, < pg.

f) Once the HC is scheduled to start, the string upon which it will operate is se-
lected randomly from the first five in the population. Recall that the individu-
als in the population are ordered from best (individual 1) to worst (individual

N). Therefore, to select the string ¢, upon for the HC to operate, we make

, = |[Rx5]+1 (E8.5.6)

where R is a random number uniformly distributed and 0 <R < 1.
The result of the strategy just outlined is to guarantee that the HC will be active
whenever it has proved to be effective. The probability that the HC will override the

GA proper is bounded above by Tu. This prevents the HC from taking over the

whole process. On the other hand, the HC will be invoked with £# = which, in

turn, avoids the possibility that due to poor performance of the HC at some genera-
tion gk, the HC is shut out for the rest of the process. The EGA incorporates an HC
process that is self-adaptive on two accounts:

a) Because its activity is determined by its effectiveness, and
b) Because the adequate number of function evaluations is evolved as the GA

unfolds.

It is important to clarify that the algorithm proposed in this work is not an extension
of the EGA to solve multi-objective problems, it rather leverages some of the opera-
tors found in EGA: selection, crossover and mutation, and incorporates it in the
RSPGA algorithm to found the sieve.
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