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PRESENTA:
Fernando Abigail Galicia Mendoza

TUTOR
Dr. David Arturo Rosenblueth Laguette IIMAS, 

UNAM

TUTOR
Dr. Armando Solar-Lezama

CSAIL, MIT

Ciudad Universitaria, Cd. Mx. Febrero 2021



 

UNAM – Dirección General de Bibliotecas 

Tesis Digitales 

Restricciones de uso 
  

DERECHOS RESERVADOS © 

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL 
  

Todo el material contenido en esta tesis esta protegido por la Ley Federal 
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México). 

El uso de imágenes, fragmentos de videos, y demás material que sea 
objeto de protección de los derechos de autor, será exclusivamente para 
fines educativos e informativos y deberá citar la fuente donde la obtuvo 
mencionando el autor o autores. Cualquier uso distinto como el lucro, 
reproducción, edición o modificación, será perseguido y sancionado por el 
respectivo titular de los Derechos de Autor. 

 

  

 









Acknowledgments

First, I want to thank my parents, Leticia Mendoza and Ramón Galicia, for their constant
support of my goals. I can achieve more academic credentials, but I am going to be still learning
form both of you.

This work would not be the same without the feedback, teaching and support of my advisers
David Rosenblueth and Armando Solar-Lezama. Your knowledge of computation, mathematics,
language and other topics (like recipes) created an excellent work environment for the development
of this work.

The feedback given by the committee formed by David Flores, Favio Miranda and Francisco
Quiroz, not only enriched this work, but also, was an interesting challenge to do in this step of my
academic life.

The moments I shared with my friends: Antonio, Estefańıa, Joshua, and Montserrat, were the
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Abstract

One of the goals in computer science is the automation of tasks. An especially important task
is the writing of programs. More formally we can describe this problem as: Given a high-level
specification ϕ, find a program that satisfies ϕ. This should not be confused with the problem
of compiling a program. The difference comes from the word find ; a compiler takes a high level
description of the behavior of the program, then the compiler applies some transformation rules to
generate machine code. The process we are exposing is synthesis, and more than a transformation
over a high-level specification, the system finds a possible program that satisfies a user specification.

In this thesis, we introduce reCipe, a new style of synthesis that takes advantage of the temporal
expressiveness given by the temporal logics formulas. This style differs from others in that it is
focused in taking advantage of the semantics of a temporal logics. reCipe is based on prior work
by Morgenstern and Schneider [19].

We use logic systems to formalize aspects of the entities that we work on in this thesis. The
process of formalizing has such consequences in computer science that it has its own name: formal
verification. On the one hand, we are interested in logic systems that can describe the behavior of
a program as states. On the other hand, one of the interests of computational logic is to “model
check” a system with respect to a property. We describe this last task as: Given a structure and
a specification, decide if the structure satisfies the specification. Therefore, we are interested in
programs that can solve the problem of model checking for temporal logics.

The problem that reCipe solves is how to generate a program from a user specification, where
the user specification is a temporal formula with first-order quantifiers. Our procedure creates a
sequential program that should satisfy the user requirements. One of the benefits of reCipe com-
pared with other techniques lies in the idea of creating a program by only using the information
given in a formal specification, and not the control structure.

The core of reCipe lies in the semantics of the temporal operators: EX and AX. The first one
denotes the existence of a program P . The second one is used to analyze all possible inputs over
P . In other words, we choose a program P and execute P with each possible input. In this last
step, P should satisfy all possible inputs.
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Chapter 1

The Synthesis Problem

“The approach of (program) synthesis by theorem

proving tell us that such a system need not to

contain much more than a theorem prover.”

Pnueli, Amir & Rosner, Roni (1989) [21]

In a general context, synthesis is the action of combining separate ideas, techniques, elements,
etc. in order to get a new product. Therefore, we can describe the synthesis of a program as the
search of techniques able to generate a program from a collection of semantic and syntactic require-
ments [24].

There are different approaches to solve the program-synthesis problem. For example:

• Deductive synthesis: given a program, the synthesizer generates a more efficient implemen-
tation.

• Inductive synthesis: given a set of inputs/outputs (IO), the synthesizer generates a function
that matches with IO .

• Functional synthesis: generate a program from a declarative specification. Traditionally, the
specifications for these synthesizers are ∀∃-formulas or similar.

• Automaton synthesis: given a temporal formula with a specific form, synthesize a transition
system that satisfies the temporal formula.

In this thesis, we extend the synthesis defined by Morgenstern and Schneider in [19]. Such a
work is based on two aspects:

1. Use as specification an incomplete program with assertions, a sketch [23].

2. Use the semantics of temporal logics to give richer specifications over the execution of a
program.

There are other implementations that solve the synthesis problem. One example is the program
extraction tool of the proof assistant Coq1. One of the steps of this extraction tool is the transfor-

1Official website:http://coq.inria.fr/
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1. THE SYNTHESIS PROBLEM

mation of a proof into a λ-term. This transformation is a solution of functional synthesis [20].

In the next sections, we introduce two current synthesis approaches that use the two previous
aspects. At the end of this chapter, we mention how Morgenstern and Schneider combine the
previously aspects. We formalize the work by Morgenstern and Schneider in Chapter 3.

1.1 A program begins with a sketch

In this section, we introduce a state-of-the-art program synthesizer called Sketch. Created by Solar-
Lezama in [23], Sketch is an implementation of the syntax and semantics of a language, with the
same name, allowing a programmer to give an incomplete program with assertions that should be
satisfied. Solar-Lezama called this type of templates sketch.

The synthesizer has the following behavior: it first parses a sketch and creates a set of con-
straints that are given to an SMT solver1. Then, the SMT solver searches for the values that will
satisfy the constraints and finally, the synthesizer fills in the “holes” of the incomplete program.

To deal with the synthesis problem, Sketch represents the problem as follows: Let us use ϕ to
denote the description of the missing parts of the program (called holes), σ to denote the input
state of the program and Q to denote a predicate that is true iff the complete program satisfies ϕ
under the input σ. Therefore, Sketch solves the program-synthesis problem by solving the following
constraint:

∃ϕ.∀σ.Q(ϕ, σ)

Solar-Lezama in [23] explains that the synthesizer does not try, in one attempt, to search for a
ϕ that works for all possible inputs. Instead, Solar-Lezama defines the procedure Counterexample
Guided Inductive Synthesis (CEGIS) in order to perform a smarter search. This approach has the
following behavior (see Figure 1.1): the synthesizer generates a new candidate ϕ′ for a particular
input σ′, then the synthesizer verifies if Q(ϕ′, σ′′) holds, where σ′′ is a new state of the input. If the
verification fails, the synthesizer will add σ′′ into the search space, and repeats the procedure. This
procedure ends with either a program that satisfies all the inputs or with a message saying that the
synthesizer was not able to generate a candidate with the allotted resources (i.e., time and memory).

In Figure 1.2, we show a toy example of a sketch and the completed program generated by
Sketch. In this case, the synthesizer figures out that one possible value for the hole (??) is the
number 1.

Morgenstern and Schneider try to extend the domain of the assert statement by adding tem-
poral operators. To satisfy these new assertions, they suggest to replace the SMT solver by a model
checker.

1A SMT solver is a program that proves the satisfiability of a SMT instance, where a SMT instance is a formula

in first-order logic.
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1.2 The power of the temporal specifications

Figure 1.1: A diagram of CEGIS created by Solar-Lezama in [24]

void decrement(int x){

while(x > 0){

x = x-??;

}

assert (x == 0);

}

Sketch 1.1: A sketch of the decrement function.

void decrement(int x){

while(x > 0){

x = x-1;

}

assert (x == 0);

}

Code 1.1: The completed sketch.

Figure 1.2: An example of a sketch and its completed version.

1.2 The power of the temporal specifications

Another approach that at first sight might appear to be slightly away from the program synthesis
is the automata approach. This last approach exploits the semantics of the temporal specifications
so as to generate a state machine that satisfies a temporal specification. We only present a brief
idea of how this synthesis is done.

The pioneers of this approach are Pnueli and Roni in [21]. They have different synthesis goals
in comparison with Solar-Lezama [23]. Pnueli and Roni try to synthesize reactive programs. The
main difference between reactive and non-reactive programs is that the first ones are designed in
order to run all the time. An example of this kind of programs is a program handling the access of
users into a web page.

3



1. THE SYNTHESIS PROBLEM

Pnueli and Roni take a temporal formula ϕ(x, y), where x is an input and y is an output, and
try to synthesize a state machine that satisfies ϕ(x, y). In other words, they deal with a formula of
the form:

∃f.∀x.ϕ(x, f(x))

where f is a function and x is an input variable.

Their approach is to split the variables into input and output variables. If there exists a system
that realizes the specification, construct such system. The construction is based on a two-player
game between the environment (input variables) and the system (output variables). The winning
condition is when the system is capable of satisfying ϕ against all the possible input variables.

The researches working on reactive synthesis have presented different strategies to synthesize
this type of systems. Examples of these strategies are: taking formulas that have a specific form
or define new types of automatas so as to deal with the exponential time caused by the mentioned
game.

However, the basic idea of this synthesis lies in the semantics of temporal logics. Morgenstern
and Schneider add this expressiveness into the assertions used by Sketch.

1.3 The basis of two worlds

Morgenstern and Schneider in [19] extend the domain of the assert statements in order to use
temporal operators. In Sketch 1.2, we show an example of this extension.

On the one hand, this extension allows us to give more powerful assertions against the original
approach. On the other hand, the semantics of the temporal logics allows to specify concurrent be-
haviors. Therefore, in theory, we could synthesize sketches with concurrent behaviors. Morgenstern
and Schneider argue that the only critical change between their approach against the approach of
Solar-Lezama is the type of checker. Whereas Solar-Lezama uses a SMT solver, Morgenstern and
Schneider use a model checker. They encode the process of completing a sketch into a Kripke
structure and use the Kripke structure for verifying the assertions given by the user.

In Chapter 3, we present and extend the idea of Morgenstern and Schneider, in order to syn-
thesize programs where the only input is a temporal formula.

1.3.1 reCipe: One step further

The procedure defined by Morgenstern and Schneider in [19] takes as input a sketch, where the
assertions occurring in the sketch have temporal logic formulas, and returns a program that satisfies
the assertions. In this thesis, we argue that such a procedure can be generalized by dispensing with
the program structure determined by the sketch. More precisely, we contend that it is possible to
generate an entire program by only using as the input a temporal logic formula.

4



1.3 The basis of two worlds

void func(int x){

while(x > 0){

x = ??;

assert (EF x == 0);

}

}

Sketch 1.2: A sketch with a temporal assert.

Temporal logic formulas not only establish properties of each state of a program, but also de-
scribe the desired behavior. With the previous idea in mind, if we generate a sketch with holes
that affect both the values of the variables and the program flow, then we will be able to use the
procedure defined by Morgenstern and Schneider. A sketch of the program flow is a program with
holes in the goto-statements, and holes in the guards of the if-conditionals.

In Figure 1.3, we give a diagram of our procedure: reCipe. First, we use the information from
a user specification ϕ for generating a sketch S and a set of candidate expressions C that fill in S.
After creating S and C, we create a structure M that encodes the process of filling in S, by using
the expressions of C, and the execution of the generated programs. We verify if there is a encoded
program behavior P in M that satisfies ϕ. If the verification succeeds, we can generate a program
from P ; otherwise, we create a new set of candidates C ′, that has more complicated expressions
than C, and try again the process by using the same sketch S and replacing C by C ′.

In Chapter 3, we give detailed information about the execution of Figure 1.3. In the next
chapter, we give a brief introduction in how to solve the model-checking problem for a temporal
logic whose semantics adjusts with our main goal.

5
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Figure 1.3: A diagram of reCipe.
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Chapter 2

CTL model checking

“Companies such as AT&T,(. . . ),Siemens, and

Sun are using model checkers increasingly on

their own designs to reduce time to market and

ensure product quality.”

Halpern, Joseph et al. (2001) [14]

In this chapter, we introduce the model-checking problem for computation tree logic (CTL) and
one algorithm that solves the model-checking problem for CTL.

2.1 Introduction

As users, many of our personal and professional activities are assisted or done by automated
systems. We take a leap of faith assuming the correctness and soundness of these systems [22].
Nowadays a large number of these results are “proved” by testing. However, another method has
been used for software analysis: formal verification. In contrast with testing, in formal verification
we explore all the possible scenarios and behaviors of a particular automated system through a
formal logic system [9].

There exists a variety of methods in formal verification [13]. In the particular case of this thesis,
we work with model checking ; see Definition 2.1.

Definition 2.1 (Model Checking [1]). Let M be a model and ϕ be a formula. We define the

model-checking problem as the process of verifying if the following holds:

M |= ϕ

Definition 2.1 establishes two inputs in model checking: a model and a formula. The model and
the property must be formalized through a logic system. In our case, we want a logic system with
the following characteristics:

7



2. CTL MODEL CHECKING

1. Computationally decidable.

2. Captures the temporal behavior of a software system.

3. Simulates non-deterministic choices.

4. There exists an implementation of the model checking procedure.

Computation tree logic (CTL) has the mentioned characteristics. In the next section, we introduce
the syntax, the semantics and how to represent the model-checking problem for CTL.

2.2 Computation Tree Logic

A logic system provides us with the formal syntax for the abstraction of a property. In the case of
temporal logics, we can formalize temporal behaviors of a system. Computation tree logic (CTL)
is a temporal logic that allows us to model time as a tree-like structure [15]. Using the tree-like
structure, we can model different possible futures as paths where each state in those paths is a
node of a tree. Let us begin by introducing the syntax of CTL (see Definition 2.2).

Definition 2.2 (Syntax of CTL [15]). The syntax of CTL is constructed by the following Backus-

Naur grammar:

ϕ ::= v | ¬ϕ | ϕ ∧ ϕ | AX ϕ | EX ϕ | EF ϕ | AF ϕ | E[ϕ U ϕ] | A[ϕ U ϕ] (2.1)

where v belongs to a possibly infinite-countable set of propositional variables.

Informally, the semantics of the temporal operators is the following (for other operands, see
[15]): the A and E mean, inevitably in all paths and possibly in a path, respectively. The rest are
X, F or U , meaning next state, eventually in some state and until, respectively. For further details
about the syntactic properties over the CTL formulas, see [15]. In Example 2.1, we show how CTL
is more expressive than the propositional logic through a formalization of the mutual exclusion
property.

Example 2.1. The mutual exclusion property, Figure 2.1, is announced as follows [12]:

The process C1 and process C2 are never in a critical region at the same time.

A possible propositional logic formula of the property could be:

¬p ∧ ¬q (2.2)

where p means “process C1 is in a critical region”, and q means “process C2 is in a critical region”.

8



2.2 Computation Tree Logic

If we consider the model where p is false, then Formula 2.2 is satisfiable. However, we are

forgetting the essence of the mutual exclusion property: the property needs to be true all the time.

Using the syntax and informal semantics of CTL, a better formalization is the following:

¬EF (p ∧ q) (2.3)

Figure 2.1: Mutual exclusion property for two processes.

In order to do model checking over CTL, we need a mathematical structure that models the
analyzed software system. In our particular case, we use Kripke structures:

Definition 2.3 (Kripke Structure [9]). A Kripke structure K is a tuple (S, I,R, L) where:

• S is a finite set of states.

• I ⊆ S, called set of initial states.

• R ⊆ S × S and R is total relation, where a total relation is defined as: for every s ∈ S there

is s′ ∈ S such that (s, s′) ∈ R.

• L : S → 2P , where P is a set of propositional variables. This function is called labelling

function and identifies the propositional variables that are true in a specific state of K.

The AF and E[ U ] operators use a path interpretation over the Kripke structures. A path is
simply an infinite succession of states s0, s1, s2, . . . such that (si, si+1) ∈ R for i ∈ N. As is usual,
we denote the paths as states separated by arrows: s0 → s1 → s2 → . . . .

Now, we can define a relation of satisfiability between a Kripke structure K, a state of K and
a CTL formula.

Definition 2.4 (Satisfiability [9]). Let K = (S, I,R, L) be a Kripke Structure, s ∈ S and ϕ be a

formula. We define K, s |= ϕ inductively over the structure of ϕ:

9



2. CTL MODEL CHECKING

• K, s |= v where v is a propositional variable iff v ∈ L(s).

• K, s |= ¬ψ iff K, s 6|= ψ.

• K, s |= ψ1 ∧ ψ2 iff K, s |= ψ1 and K, s |= ψ2.

• K, s |= AX ψ iff for all s′ ∈ S, if (s, s′) ∈ R then K, s′ |= ψ.

• K, s |= EX ψ iff exists s′ ∈ S such that (s, s′) ∈ R and K, s′ |= ψ.

• K, s |= EF ψ iff exists a path s0 → s1 → s2 → . . . where s = s0, and exists an si such that

K, si |= ψ.

• K, s |= AF ψ iff for all paths s0 → s1 → s2 → . . . where s = s0, there exists an si such that

K, si |= ψ.

• K, s |= E[ψ1 U ψ2] iff there exists a path π = s0 → s1 → s2 → . . . where s = s0, and exists

an si in the path π such that K, si |= ψ2, and for each j < i, we have K, sj |= ψ1.

• K, s |= A[ψ1 U ψ2] iff for all paths π = s0 → s1 → s2 → . . . where s = s0, there exists an si

in the path π such that K, si |= ψ2, and for each j < i, we have K, sj |= ψ1.

We observe that Definition 2.4 establishes the relation of satisfiability over a single state s. In
the case of program verification, the intuition could be that s is an input of the program. Thus, in
order to model check, we need to quantify the states over the set of initial states or all the possible
inputs of the program [7, 15]; see Definition 2.5.

Definition 2.5. Let K = (S, I,R, L) be a Kripke structure and ϕ be a CTL formula. We define

model checking for CTL as the procedure to verify if the following holds:

∀s ∈ I. K, s |= ϕ (2.4)

At this point, we want to automatically verify Equation 2.4. In the next section, we introduce
an algorithm that achieves this goal. This algorithm, called labelling algorithm [15], solves the
model checking problem for CTL.

2.3 A labelling algorithm

A naive way of doing model-checking for CTL in a computer is to implement Definition 2.4. The
program verifies if K, s0 |= ϕ holds by taking as inputs a Kripke structure K, an initial state s0
of K, and a CTL formula ϕ. However, a direct implementation of Definition 2.4 cannot check ϕ
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2.3 A labelling algorithm

over the infinite paths created by the unwinding of K, as the computer only checks finite data
structures. [15]

Another strategy we can use is to compute the subset of states S′ such that for every state s′

in S′, K, s′ |= ϕ holds. This approach gives us the benefit of analyzing some states only when it is
necessary. Thus, we can verify if the initial state(s) belong(s) to S′. This idea is the essence of the
labelling algorithm [15].

As other logic procedures, we compact the grammar of Equation 2.1 into the grammar of Equa-
tion 2.7. In [15], Huth & Ryan establish that this reduction has given good results in the practice.

In order to achieve the grammar reduction, we use the equivalences of Equation 2.5 and assume
the symbol > as the formula p ∨ ¬p for any propositional variable p.

AX ϕ ≡ ¬EX ¬ϕ (2.5)

EF ϕ ≡ E[> U ϕ] (2.6)

ϕ ::= v | ¬ϕ | ϕ ∧ ϕ | EX ϕ | E[ϕ U ϕ] | AF ϕ (2.7)

At this point, we split the formulas into two categories of operators: propositional and temporal.
With the last categorization, we search for the states that satisfy the propositional formulas by
giving a set interpretation of the propositional operators (see Table 2.1).

Operator Set interpretation

¬ Complement

∧ Intersection (∩)

∨ Union (∪)

Table 2.1: A set interpretation of the propositional operators

We take the following strategy for the temporal operators: we search for a state where the
variable p is true and then go backwards in order to satisfy the temporal semantics of the operator.
Let us begin with the EX operator.

The EX operator is the simplest one. Let us suppose that we have the states s0, s1, the labels
L(s0) = {p, r}, L(s1) = {q, r, t} and the following path:

s0 → s1 → . . .

We know that q is true in s1 and s1 is the next state of s0. Therefore, the state s0 satisfies EX q.

11



2. CTL MODEL CHECKING

For the rest of the operators, we rewrite each one in terms of itself, as we show in the following
equations:

E[ϕ1 U ϕ2] ≡ ϕ2 ∨ (ϕ1 ∧ EX(E[ϕ1 U ϕ2])) (2.8)

AF ϕ ≡ ϕ ∨AX(AF ϕ) (2.9)

As we establish in Table 2.1, we can give a set interpretation of Equations 2.8 and 2.9. Also, we
use the EX strategy to search for the states that satisfy E[ U ] and AF .

The main difference between E[ U ] and AF is the prefix. In the case of E, we search for
one state for the satisfaction of the formula. By contrast, in the case of A, we search for all the
initial states that satisfy the rest of the formula. We have two possibilities to deal with AF : One
possibility would be to satisfy the universal condition. Another possibility would be to express the
universal condition in terms of an existential condition. We take the first option.

We present the main procedure in Algorithm 1, the EX strategy in Algorithm 2, the E[ U ]
strategy in Algorithm 3 and, the AF strategy in Algorithm 4. In order to give a more elegant version
of the labelling algorithm, our presentation of the labelling algorithm differs in some notations from
the algorithm presented by Huth & Ryan in [15]. We use a combination of Haskell-C-pseudocode
style.

Algorithm 1 Labelling algorithm

Require: CTL formula ϕ, Kripke Structure K = (S, s0, R, L)

Ensure: List of states that satisfies ϕ

1: procedure Labelling(ϕ,K)

2: case (ϕ) of

3: p⇒ return {s ∈ S | p ∈ L(s)}

4: ¬ϕ⇒ return S−Labelling(ϕ,K)

5: ϕ1 ∧ ϕ2 ⇒ return Labelling(ϕ1,K)∩Labelling(ϕ2,K)

6: EX ϕ⇒ return EXCase(ϕ)

7: E[ϕ1 U ϕ2]⇒ return EUCase(ϕ1,ϕ2)

8: AF ϕ⇒ return AFCase(ϕ)

9: end case

10: end procedure

Apparently, the labelling algorithm is our best solution for the model-checking problem. How-
ever, the size of the Kripke structures is more often than not exponential in the number of variables.
This tendency over the size of the Kripke structures is a problem called the state-explosion problem,
and affects the performance of the labelling algorithm.
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2.3 A labelling algorithm

Algorithm 2 Case of EX operator

Require: CTL formula ϕ, Kripke Structure K = (S, s0, R, L)

Ensure: List of states that satisfies EX ϕ

1: function EXCase(ϕ,K)

2: X ←Labelling(ϕ,K)

3: Y ← {s ∈ S | ∃s′ ∈ S, (s, s′) ∈ R ∧ s′ ∈ X}

4: return Y

5: end function

Algorithm 3 Case of E[ U ] operator

Require: CTL formula ϕ, Kripke Structure K = (S, s0, R, L)

Ensure: List of states that satisfies E[ϕ1Uϕ2]

1: function EUCase(ϕ,K)

2: W ←Labelling(ϕ1,K)

3: X ← S

4: Y ←Labelling(ϕ2,K)

5: while X 6= Y do

6: X ← Y

7: Y ← Y ∪ (W ∩ {s ∈ S | ∃s′ ∈ S, (s, s′) ∈ R ∧ s′ ∈ Y })

8: end while

9: end function

13
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Algorithm 4 Case of AF operator

Require: CTL formula ϕ, Kripke Structure K = (S, s0, R, L)

Ensure: List of states that satisfies AF ϕ

1: function AFCase(ϕ,K)

2: X ← S

3: Y ←Labelling(ϕ,K)

4: while X 6= Y do

5: X ← Y

6: Y ← Y ∪ {s ∈ S | ∀s′ ∈ S, (s, s′) ∈ R→ s′ ∈ (Y )}

7: end while

8: end function

In the next section, we introduce a well-known data structure, called Ordered Binary Decision
Diagram (OBDD), that symbolically represents a set of states. Set manipulation over this symbolic
representation is efficient. If we implement the set of states manipulated by the labelling algorithm
with this data-structure, the labelling algorithm may be able to overcome the state-explosion prob-
lem [15].

2.4 OBDDs: from enumerative to symbolic checking

Symbolic methods use boolean formulas as symbols and have been effective for solving large instances
of the model-checking problem [9]. When such methods represent sets of states with symbols, it is
possible to readily incorporate them in the labelling algorithm. As a result, we will get a better
performance over other implementations of the labelling algorithm [15].

A data structure for representing and manipulating boolean formulas in a symbolic form is
the Ordered Binary Decision Diagram (OBDD). An OBDD is a directed acyclic graph where the
variables that occur in the graph are ordered [9]. As we said, one of the basis of the labelling algo-
rithm is the set manipulation. Implementing the labelling algorithm set manipulation as OBDDs
operations results in the desired symbolic strategy [15].

First, let us formally define a BDD, and then give an order over the variables that occur in the
BDDs resulting in OBDDs.

Definition 2.6 (Binary Decision Diagram). A Binary Decision Diagram (BDD) is a directed acyclic

graph with a unique initial node, where:

• The terminal nodes are labeled with either 0 (the false constant) or 1 (the true constant).
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2.4 OBDDs: from enumerative to symbolic checking

• The non-terminal nodes are labelled with a boolean variable and they only have two labelled

edges.

• Each edge is labelled with either 0 or 1.

Definition 2.7 (Ordered Binary Decision Diagram). Let X = [x1, . . . , xn] be an ordered list of

boolean variables without duplications, and B be a BDD where all the variables of X appear in B.

We say that B has the ordering X if all variable labels of B occur in X, and for every xi, xj ∈ X

such that xi is followed by xj along any path in B, we have i < j.

We are assuming that all the OBDD’s that we use in this this thesis are reduced.

There are various references on how to operate the OBDDs [9, 10, 15]. In this thesis, we focus on
how to use the OBDDs in order to solve the model-checking problem. If we want to implement the
labelling algorithm set manipulations as OBDDs operations, we will need to represent the Kripke
structure and the CTL formula as OBDDs.

We begin by representing a Kripke structure as an OBDD. We use the definitions provided
by Déharbe in [10] and Huth & Ryan in [15]. First, we show how to construct the characteristic
function of a subset of states of a Kripke structure.

Definition 2.8 (State representation). LetK = (S,R, I, L) be Kripke structure and, V = {v1, . . . , vn}

be the set of variables that occur in K. We denote by v any vector that contains all the variables

of V , i.e., v = (v1, . . . , vn). The characteristic function of a state s is defined as:

[s](v) = (
∧

vi∈L(s)

vi) · (
∧

vi 6∈L(s)

vi) (2.10)

where
∧

x∈L(s) xi = x1 · x2 · · · · · xn.

The generalization of Definition 2.8, to set of states, is simple. We recursively compute the
characteristic function of each state s and compose each characteristic function with a disjuction
(+). For simplicity, we overload the brackets.

Definition 2.9 (States representation). LetK = (S,R, I, L) be a Kripke structure, V = {v1, . . . , vn}

be the variables that occur in K and, X ⊆ S. The characteristic function of X is defined as:

[∅](v) = 0 (2.11)

[{s} ∪X](v) = [s](v) + [X](v) (2.12)

The idea of how to define the characteristic function of the relation of a Kripke structure is
similar to that of the state representation. First, we define the characteristic function of a transition:
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Definition 2.10 (Transition representation). Let K = (S,R, I, L) be a Kripke structure, V =

{v1, . . . , vn} be the variables that occurs in K and, V ′ = {v′1, . . . , v′n} be a primed copy of V . The

characteristic function of a transition between two states is defined as:

[(s1, s2)](v, v
′) = [s1](v) · [s2](v′) iff (s1, s2) ∈ R

The characteristic function of the relation of a Kripke structure is analogous to the subset of
states representation.

Definition 2.11 (Relation representation). Let K = (S,R, I, L) be a Kripke structure, V =

{v1, . . . , vn} be the variables that occur in K and, V ′ = {v′1, . . . , v′n} be a primed copy of V . The

characteristic function of R is defined as:

[∅](v, v′) = 0 (2.13)

[{(s1, s2)} ∪R](v, v′) = [(s1, s2)](v, v
′) + [R](v, v′) (2.14)

The case of CTL formulas is simple. In the previous section, we redefine the temporal operators
in terms of themselves by using propositional connectives. Thus, we can construct the OBDD for
the boolean formulas as Huth & Ryan do in [15].

We denote f as the characteristic function of the OBDD that represents Bf . In Table 2.2, we
show the boolean formulas and their OBDD representation. We denote by f [x 7→ b] the replacement
of all the occurrences of variable x by the boolean constant b in f .

The last step we need is to represent the sets (called preimages) computed by the Algorithms
2, 3 and, 4. We represent the preimages as characteristic functions [10]:

{s ∈ S | ∃s′ ∈ S, (s, s′) ∈ R ∧ s′ ∈ Y } ∃v′, JRK(v, v′) · JY K(v′) (2.15)

{s ∈ S | ∀s′ ∈ S, (s, s′) ∈ R→ s′ ∈ Y } ∀v′, JRK(v, v′) + JY K(v′) (2.16)

With the previous transformations, we replace the propositional connectives and the sets by
OBDDs that represent the characteristic functions [10].

This new version of the labelling algorithm is more efficient, for some real cases, than the version
we showed in the previous section [15]. However, the labelling algorithm has the characteristic of
being more or less efficient, depending on how we order the variables of the variables that occur in
the OBDDs. In the next subsection, we show how the order of the variables affects the size of the
OBDDs and consequently, the complexity of the OBDD operations.

2.4.1 To sort or not to sort? The OBDD NP-hard question

Various authors establish the relationship between the order of the OBDDs and the efficiency of
the labelling algorithm [9, 10, 15]. Let us introduce how the operations affect the complexity of
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Boolean formula f OBDD Bf

1 Leaf 1

0 Leaf 0

p Node(p, 0, 1)

f Swap the 0 and 1 nodes in Bf

f + g apply(+, Bf , Bg)

f · g apply(·, Bf , Bg)

f [x 7→ 0] restrict(0, x,Bf )

f [x 7→ 1] restrict(1, x,Bf )

∃x.f apply(+, Bf [x 7→0], Bf [x7→1])

∀x.f apply(·, Bf [x 7→0], Bf [x 7→1])

Table 2.2: OBDD representation of the characteristic functions.

the labelling algorithm; for further details see [9, 10, 15].

If we want to analyze the complexity of the OBDD operations, we need to define the size of the
OBDDs.

Definition 2.12 (OBDD size). Let B be an OBDD. The size of the OBDD, denoted as |B|, is the

number of nodes that occur in B.

According to Huth & Ryan in [15], the time complexity of the OBDD operations have the upper
bounds that we show in Table 2.3.

Operation Time complexity

reduce O(|B| · log(|B|))

apply O(|Bf | · |Bg|)

restrict O(|Bf | · log(|Bf |))

Table 2.3: Complexity of the OBDD operations. Bf and Bg are the OBDD representations of the

characteristic functions f and g. B is the OBDD given as input.

It is clear how the OBDD operations could affect the complexity of the labelling algorithm.

Example 2.2. Consider the characteristic function for the n-bit comparator:
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f(x1, . . . , xn, y1, . . . , yn) =

n∧
i=1

(xi ↔ yn) (2.17)

If we consider two different orders, then the number of nodes could either be polynomial or

exponential [9]:

Order Number of nodes

[x1, y1, x2, y2, . . . , xn, yn] 3n+ 2

[x1, x2, . . . , xn, y1, y2, . . . , yn] 3 · (2n − 1)

Table 2.4: Two orders for the n-bit comparator.

If we choose the second order of Table 2.4, the complexity of any OBDD operation will be

absorbed by the exponential number size of the second OBDD.

We could try to define an algorithm to search for the best order for the OBDD. This search has
been proved to be NP-hard and more than that, sometimes it is impossible to find a good order
over the OBDD, i.e., there exist not sortable OBDD’s [3]. There are some heuristics for real-life
problems that have shown this is not an inconvenient. In the particular case of this thesis, we
create an ordering that showed an improvement in our model-checking problem.

In the next section, we mention two state-of-the-art model checkers and some practice guarantees
of the model checker we have use in this thesis: nuXmv.

2.5 nuXmv and its guarantees

We are interested in a software that is an implementation of a model checking procedure. In the
particular case of temporal logics, these software solutions are called model checkers (see Figure
2.2).

Some examples of symbolic model checkers are:

• NuSMV: Is a symbolic model checker that implements the BDD and SAT-based symbolic
model checking. NuSMV is reimplementation and extension of the model checker SMV [6].
Official link: http://nusmv.fbk.eu/

• nuXmv: Is an extension of NuSMV with the capacity to work with infinite-sate models for
the LTL case [5]. Official link: https://nuxmv.fbk.eu/

nuXmv is a state-of-the-art model checker, and their responses (especially the counterexamples)
are adequate for our main contribution: reCipe. Also, nuXmv participated in the Hardware Model
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2.5 nuXmv and its guarantees

Figure 2.2: Concept of a model checker

Checking Competition (20131 and 20142) being in the three first places. Therefore, we think it is a
good option to deal with our problem.

1http://fmv.jku.at/hwmcc13/
2http://fmv.jku.at/hwmcc14/
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Chapter 3

Temporal Logic Guided Inductive Synthesis

“We expect synthesis algorithms to provide us

with some control over the space of programs that

are going to be considered, not just their intended

behavior.”

Solar-Lezama, Armando (2018) [24]

Our main contribution is the development of reCipe, a new program-synthesis algorithm that
relies on model-checking for CTL. reCipe is a synthesis procedure that generates candidate expres-
sions by providing a richer specification against more traditional sketch-based synthesis approaches
that lets the user describe how values evolve over time.

In this chapter, we describe reCipe. We begin with a cartoon version of reCipe, then we present
an illustrative example of how reCipe works, and we end with a formalization of the algorithm and
a proof of its correctness.

3.1 A cartoon version

Let us remember that the program-synthesis problem consists in generating a program P such that
for all possible inputs, P satisfies a user specification ϕ. We can formalize the program-synthesis
problem as a predicate Q(p, x) where p denotes a program, x denotes the inputs, and the meaning
of Q is the desired program behavior. Thus, the program-synthesis problem reduces to finding a
program behavior as the following equation establishes:

∃p.∀x.Q(p, x) (3.1)

On the one hand, Solar-Lezama in [23] mentions that solving equations as Equation 3.1 is PSPACE-
complete [11]. On the other hand, we can handle the model-checking problem for models with a
vast number of states [9]. Therefore, we can obtain the benefits of the model-checking techniques
by translating Equation 3.1 into a CTL formula.
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Figure 3.1: From model-checking to program-synthesis

As we show in Figure 3.1, the main idea of the translation is simple: assume that a model MP

has program traces Π. One trace in Π has a subtrace P such that P satisfies the user specification
ϕ. Therefore, if we input MP |= ¬ϕ into a model checker, such tool will return False and as a
counterexample, the trace that has P .

The previous argument is the prior work of our contribution [19]. Despite the simplicity of our
proposal, there are some challenges: How to encode the synthesis procedure and the program traces
into MP and how to transform the user specifications in such way that forces a model checker to
return P . In order to answer the previous questions, in the next section we show how reCipe works
by giving an illustrative example.

3.2 Illustrative Example

Consider a program with the following behavior: “given two initialized integer variables, x = v1
and y = v2, the program swaps the values respectively stored in the variables x and y, i.e., x = v2
and y = v1.” The goal of this programming task is to create a program by only using x and y.

The first step is to formalize the specification into a CTL formula with some syntactic sugar.
In our example, Formula 3.2 formalizes the above specification.

∀n.∀m.(x = n ∧ y = m→ EF (x = m ∧ y = n)) (3.2)

In case the formula has first-order quantifiers, we unfold the quantifiers by using a finite set of
integers D. In our example, 3.3 is the quantifier-free formula of Equation 3.2.∧

ni,mj∈D
(x = ni ∧ y = mj → EF (x = mj ∧ y = ni)) (3.3)

Since we only have Equation 3.3, the next step is challenging: create a program structure. If we
start from the variables and values that occur in a CTL formula ϕ, we can create a generic program
structure S. If we define a generic program structure as a template of a program, the sketch [22] is a
good representation of the program structure. The construction of the sketch is simple: using go-to
commands for each variable of ϕ, we create a non-deterministic choice between an if-conditional
and a while loop. For example, with the variables x and y that occur in Formula 3.3, we construct
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void func(int* x,int* y){

l1:if(*){goto l2;}else{goto l3;}

l2:*x = ??;goto {l1,l3};

l3:if(*){goto l4;}else{goto l5;}

l4:*y = ??;goto {l3,l5};

l5:if(*){goto l6;}else{goto l7;}

l6:*x = ??;goto {l5,l7};

l7:if(*){goto l8;}else{goto l9;}

l8:*y = ??;goto {l7,l9};

l9:return;

}

Sketch 3.1: The program structure generated from the Formula 3.3.

a code with “holes”, Sketch 3.1. In Section 3.5, we give a more formal construction of these generic
sketches.

We can get a program from Sketch 3.1 by filling in the holes and removing the non-determinism.
In other words, we search for the expressions that complete our sketch. If we model this search as
a search tree, then at the first level, we only have a sketch, and at the next level, each node has a
set of candidate expressions. Finally, in the last level, we take each candidate, complete the sketch
and unfold the behavior of the program with every input. Using this search tree, we can verify the
user specification at the last level of the tree and get the desired program.

We encode the last procedure as a Kripke structure K. As Clarke et al. in [9], we define the
states of K as propositions of the form (variable = value). The main difference between our Kripke
structures (synthesis procedure) and Clarke’s Kripke structures (program behavior) is that whereas
we need three categories of variables, Clarke’s Kripke structures need only the set of the program
variables and the variable that represent the program flow. In our case, we need variables that
represent the synthesis steps, variables that represent the holes that will be filled, and variables
that represent the program behavior.

We model the search tree as the Kripke structure in Figure 3.2. The parts of the Kripke
structure divide the searching steps (we call them synthesis steps):

• Step q0: We only have the sketch.

• Step qsel: We generate a variety of expressions that complete the sketch.
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• Step q1: We choose the candidates of qsel step, complete the sketch, and execute the completed
sketch with every input of domain D.

Figure 3.2: Kripke structure with synthesis states.

To represent the process of completing a sketch and to analyze the resulting program, we need
variables whose value is an abstract representation of an expression; these values will be static after
the qsel step. Therefore, we replace the holes of a sketch (??) and the non-deterministic variables,
with new variables expi, where i ∈ {1, . . . , n} and n is the number of holes. In Code 3.2 we have
replaced the variables in order to generate a program.

In the synthesis step q1, we need to complete the sketch and then try the resulting program with
every input of D. For the first part, assume that a trace π has the gray colored states of Figure
3.2. In order to complete a sketch, we use the values of each expi stored in π. In our example, we
show the resulting program in Code 3.1.

The last ingredient we need is a CTL formula with a similar interpretation as Equation 3.1. In
Table 3.1, we show the temporal operators, the transition between the synthesis states when we
apply the semantics, and the response we expect. The semantics of the CTL operators allows us
to construct the formula, formalizing the process of synthesis.

Temporal Transition between Response

operator synthesis states

EX q0 ⇒ qsel A sample of candidate expressions

AX qsel ⇒ q1 The behavior of the program

Table 3.1: Temporal operators for reCipe formula
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void func(int* x,int* y){

l1:if(*){goto l2;}else{goto l3;}

l2:*x = exp1;goto {l1,l3};

l3:if(*){goto l4;}else{goto l5;}

l4:*y = exp2;goto {l3,l5};

l5:if(*){goto l6;}else{goto l7;}

l6:*x = exp3;goto {l5,l7};

l7:if(*){goto l8;}else{goto l9;}

l8:*y = exp4;goto {l7,l9};

l9:return;

}

Sketch 3.2: Sketch with named holes.

If we add the previous operators and the negation to the formalized user specification, we will
obtain the desired trace as a counterexample. In our example, we input Formula 3.3 and the Kripke
structure of Figure 3.2 into a model checker, getting the desired values as we show in Response 3.1.

¬EX AX (
∧

ni,mj∈D
(x = ni ∧ y = mj → EF (x = mj ∧ y = ni))) (3.4)

Irrelevant information, state 1.2 is at the synthesis step qsel

--> State 1.2 <--

exp0 = plvxvy

exp1 = mvxvy

exp2 = mvxvy

exp3 = vy

Response 3.1: Counterexample path

The State 1.2 in Response 3.1 gives us a counterexample for the AX operator of Formula
3.4. Using a similar strategy, we can synthesize the guards and remove the non-determinism of the
go-to statements. In our example, we obtain Code 3.1.
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void func(int* x,int* y){

l1:if(*x !=*x + *y){goto l2;}else{goto l3;}

l2:*x = *x + *y;goto l1;

l3:if(*x !=*x + *y){goto l4;}else{goto l5;}

l4:*y = *x - *y;goto l3;

l5:if(*x !=*x + *y){goto l6;}else{goto l7;}

l6:*x = *x - *y;goto l7;

l7:if(true){goto l7;}else{goto l9;}

l8:*y = *y;goto l9;

l9:return;

}

Code 3.1: The swap algorithm

The shown procedure is straightforward, but there are some questions: How to create and use
a Kripke structure in order to encode the synthesis procedure for any program. Before we discuss
the solution to these challenges, in the next section, we show the pseudocode of reCipe.

3.3 reCipe algorithm

In this section, we present the pseudocode of reCipe. Given a user specification ϕ and a number of
iterations, reCipe returns a list of symbolic expressions for completing a sketch that satisfies ϕ. In
case no program satisfies ϕ, reCipe returns an empty list.

The main procedure (Algorithm 5) computes an input domain D, then the algorithm trans-
forms ϕ in a pure CTL formula using D. Finally, reCipe recursively creates a set of expressions
that satisfies ϕ.

At the first step, we execute bounds, a function that computes a data domain. For example, if
the user specification only has integers, bounds computes D = {minC, . . . ,maxC + 4} such that
minC is the minimum value and maxC is the maximum value that appears in ϕ. If the user
specification does not have integers, bounds returns D = {0, . . . , 4}. The constants zero and four
were obtained in an empirical way.

The next step of reCipe is to execute the function newForm uses the domain D in order to
unfold the quantifiers that occur in ϕ, adds the prefix ¬EX AX to the unfolded formula and stores
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the result in ψ. Finally, the algorithm calls the recursive subroutine reCipe AUX (Algorithm 6)
with ψ, the number of iterations n and a parameter that indicates the depth of the abstract syntax
tree.

Algorithm 5 reCipe Algorithm

Require: User specification ϕ, number of iterations n

Ensure: List of symbolic expressions that satisfies ϕ or error

1: procedure reCipe(ϕ,n)

2: (minC ,maxC )← bounds(ϕ)

3: ψ ← newForm(ϕ,minC ,maxC + 4)

4: P← reCipe aux (ψ, n, 1)

5: end procedure

6: Return: P

The subroutine reCipe AUX (Algorithm 6) is a recursive procedure that creates a Kripke
structure K with some candidate expressions whose abstract syntax tree has height i. If K 6|= ψ, a
counterexample is generated, ending the subroutine. Otherwise, reCipe AUX is called recursively
increasing i by one, i.e., we try with more complex programs because in the current iteration we
could not find a program. This process ends when we either get a counterexample or there does
not exist a program that satisfies the user specification.

The getTrace function calls the model checker nuXmv. If nuXmv finds a counterexample, nuXmv
returns a state of K where the desired expressions complete the generic sketch. Otherwise, the al-
gorithm makes a recursive call where the algorithm creates more complicated expressions by adding
a deeper level in the bottom-up search.

The algorithm ends with one of the following scenarios:

1. The algorithm finds a counterexample trace.

2. The algorithm does not find a counterexample.

There are two main reasons for the second case: first, the user specification is not exact or the
user specification is wrong; second, the expressions need to be more complicated in order to satisfy
the user specification.

In the next section, we show the correctness of reCipe by proving properties over the Kripke
structure constructed by our algorithm.

27



3. TEMPORAL LOGIC GUIDED INDUCTIVE SYNTHESIS

Algorithm 6 reCipe AUX

Require: User specification without quantifiers ψ, number of iterations n, current iteration i

1: procedure reCipe aux(ψ,n,i)

2: D← [minC..maxC]

3: V← vars(ψ)

4: M← constructKripke(D,V, i)

5: if K 6|= ψ ∧ i ≤ n then

6: P← getTrace(M, ψ)

7: else

8: reCipe aux(ψ, n, i+ 1)

9: end if

10: end procedure

3.4 Correctness of reCipe

To synthesize a program, Morgenstern and Schneider in [19] assume that the user gives a sketch S,
see [23], and their procedure fills in S by using the procedure we show below. Our contribution has
two main differences compared with the work of Morgenstern and Schneider. First, we construct
S by extracting information from a user specification. Second, we remove the non-determinism
caused by the election between a while cycle or an if-statement. In the following, we show the
non-determinism removal and in the next section, we show the sketch generation.

Assume that we used the information of a user specification ϕ and constructed Sketch 3.3. In
order to satisfy ϕ, we need to replace each ei, gi and non-deterministic goto statement by an
expression, a predicate and a deterministic goto statement. Let us show how to achieve this re-
placement.

In the rest of this section, we formally define the candidates we mentioned in the previous
sections. In other words, we define the candidates that will replace the holes of Sketch 3.3.

Definition 3.1 (Candidate). Let c be a sequence of expressions, guards and deterministic goto-

statements:

[e1, . . . , en, g1, . . . , gn, gt1, . . . , gtn]

where n is the number of variables that occur in Sketch 3.3 and each ei, gi, gti is an expression, a

guard or a deterministic goto-statement, respectively.
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void func(type x1,...,type xn){

l1: if(g1){goto l2;}else{goto l3;}

l2: x1 = e1;goto {l1,l3};

...

ln_1: if(gn){goto ln;}else{goto lr;}

ln: xn = en;goto {ln_1,lr};

lr:return;

}

Sketch 3.3: One-iteration sketch generated by reCipe

It is easy to define a function that takes a sketch and a candidate, and returns a program. We
only need to replace each hole of the sketch by an expression, a guard or a deterministic goto-
statement, according to each case. Let us call this function F .

Once we have a procedure to fill in the holes in Sketch 3.3, we want to represent a program
behavior as a Kripke structure. Clarke et al. in [9] give a translation of a program behavior, with
an input i, to a Kripke structure. Let us denote this translation as the function C. Thus, we can
get a Kripke structure by computing C(F (Sp, c), i) where Sp is a sketch, c is a candidate and i is
an input. For further details of how C is defined, see [9].

Clarke et al. in [9] define the elements of Kripke structures as first-order formulas, where the
set of states and transitions are valuations that satisfy their respectively formulas. We use the set
notation in order to simplify our notation. For example, if the initial state is defined by the formula
v = x ∧

∧n
i=1 ¬(v = yi), we define the initial state as the set v = x. In other words, the valuations

that do not appear in a state or as a part of a pair of the relation are false.

Let Sp be Sketch 3.3, c be a candidate and i be an input, then the resulting Kripke structure
Ki

c of C(F (P, c), i) has the following form:

Kc
i = (S, S0, R, L) (3.5)

S = {v = i | v ∈ V, i ∈ D} (3.6)

S0 ⊆ S (3.7)

R = {(s, s′) | ∀v ∈ V.∀v′ ∈ V′.(s(v), s′(v′)) |= R} (3.8)

L(s) = {v | s(v) = True} (3.9)

where R is the formula that represents the transitions of Kc
i .

Since we have a different program P for each candidate, and a different behavior of P for an
input i, we have a Kripke structure Kc

i for each input i and a fixed c, as we show in Figure 3.3.

29



3. TEMPORAL LOGIC GUIDED INDUCTIVE SYNTHESIS

Analogously, we have different programs for different candidates. For example, in Figure 3.3 each
Kripke structure Kc

i is defined by a different candidate ci.

With the last construction, we have defined all the possible programs and their behaviors for
each possible input. The next step to encode is the candidate election. If we “wire” the initial state
of each Kc

i , for a fixed candidate c, then we have encoded the election of candidate c. We repeat
this strategy with every candidate c, as we show in Figure 3.3.

The last step is the beginning of reCipe. We wire the previously constructed Kripke structures
with a single initial state. This initial state represents where we begin to fill in the sketch. We
show a diagram of this final Kripke structure in Figure 3.3.

Let us formally define the Kripke structure of Figure 3.3.

Definition 3.2. Let Sp be Sketch 3.3, n be the number of variables that occur in Sp, and cs be a

set of candidates {c1, . . . , cn}. First, let us define Kci
i = (Sci , S0ci , Rci , Lci) as the Kripke structure

that encodes the program behavior of the completed sketch Sp with the candidate c and input i.

Now, we define the Kripke structure KS that encodes the process of completing S as follows:

KSp =(S, S0, R, L) (3.10)

S =Init × Candidates ×
n⋃

i=1

Sci (3.11)

Init = {init = true} (3.12)

Candidates = {c = ci | ci ∈ cs} (3.13)

S0 ={init = true} (3.14)

R ={(init = true, c = ci) | ci ∈ cs} ∪ (3.15)

{(c = ci, s0c) | ci ∈ cs, s0c ∈ S0ci} ∪ (
n⋃

i=1

Rc) (3.16)

Finally, we define the labelling function by parts:

L(s0) = {init = true}

L(s) = {c = ci} iff (init = true, s) ∈ R

L(s) =
⋃n

i=1 Lci(s) otherwise

Now, we proceed to prove that the Kripke structure of Definition 3.2 stores the program that
satisfies the user specification iff this program exists.
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Figure 3.3: General form of the Kripke structure that encodes the filling in of a sketch.

Theorem 3.1 (reCipe correctness). Let ϕ be a user specification and KSp be the Kripke structure

of Definition 3.2. Then the following holds: KS , s0 |= EXAXϕ iff there exists a candidate c such

that Kc
i , si |= ϕ for the initial state si, where si represents the initial state of a program behavior.

Proof. By definition of the relation of satisfiability (see Definition 2.4), the following holds:

1. KSp , s0 |= EX AX ϕ iff there exists a state s1 such that (s0, s1) ∈ R and K, s1 |= AX ϕ.

By construction, the states accessible from s0 are those that have a valuation of the form

c = ci. Therefore, we have elected a correct candidate.

2. KSp , s1 |= AX ϕ iff for all states s2, if (s1, s2) ∈ R then K, s2 |= ϕ.

By construction the states s2 are the initial states of each Kripke structure Kc
i , where i is an

input. Therefore, we know that each Kc
i , si |= ϕ.

In step 1, we found a candidate c and in step 2, we proved that Kc
i , si |= ϕ for the initial state si.

Therefore, the theorem holds. λ

By Theorem 3.1, the Kripke structure KS of Definition 3.2 contains the candidate c that we
are searching for. We extract the candidate c by denying the formula EX AX ϕ, i.e., if we try to
prove KS , s0 |= ¬EX AX ϕ, we will get a counterexample where c occurs.

Remember that reCipe takes as second input a number of iterations n, where n establishes the
complexity of the programs generated by reCipe. The complexity is defined by the number of the
changes of each xi variable, i.e., we repeat the lines l 1, . . . , l n n times. Therefore, we only modify
the Kripke structures Kc

i and not the candidate election. Thus, Theorem 3.1 is still valid.
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The way we construct Kc
i is inefficient. In the following sections, we show how constructKripke,

see Algortihm 6, deals with the construction of Kc
i by using the SMV language.

3.5 Abstraction of a program

Our main objective is to abstract a sketch of a program into a Kripke structure. Carke et al. in [9]
give an abstraction of sequential programs into Kripke structures. We endow Clarke’s abstraction
with some syntactic sugar that results in a more comfortable way to analyze the synthesis procedure.

In [9], Clarke et al. present a transformation from a while program into a transition system
using a go to program style and first-order formulas representing the elements of the Kripke
structure. Their main objective is the verification of properties for sequential programs through
Kripke structures and model-checking techniques. It is important to observe that we are model-
checking by using finite Kripke structures, which means that some operations are limited by the
domain of the variables. For example, in Code 3.3 we reduce by one the value stored in the variable
t. If t ∈ {0, . . . , 10}, we cannot encode expressions as (t′ = t − 1)[t := 0]. Finally, Formula 3.17 is
Clarke’s representation of Code 3.3.

while(t > 0){

t = t-1;

}

Code 3.2: Decrement of t

l1: if(t > 0)then{goto l2;}else{goto l3;}

l2: t = t-1;goto l1;

l3: return;

Code 3.3: Decrement of t, GoTo style

ρ =def (pc = l1 ∧ pc′ = l2 ∧ t > 0 ∧ t′ = t)∨
(pc = l1 ∧ pc′ = l3 ∧ t ≤ 0 ∧ t′ = t)∨
(pc = l2 ∧ pc′ = l1 ∧ t′ = t− 1)∨
(pc = l3 ∧ pc′ = l3 ∧ t′ = t)

(3.17)

We now make an observation: due to the fact that the labelling function is the same as Clarke
et al. give in [9], for all the Kripke structures we define, we do not mention the labelling function
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in the rest of the thesis.

A Kripke structure K = (S, I,R) that abstracts away the behavior of Algorithm 3.3 is shown
in Figure 3.4 and formally defined as follows:

S = PC × T
PC = {(pc = l) | l ∈ {l1, l2, l3}}
T = {(t = i) | i ∈ {0, . . . , 10}}
I = {(pc = l1, t = 10)}
R = {(s, s′) | (s(v), s′(v)) |= ρ, v ∈ S, v′ ∈ S′}

(3.18)

Figure 3.4: Diagram of the Kripke structure defined by Formulas 3.18 and 3.17.

The details of how we can verify K |= ϕ for any CTL formula ϕ are available in [9, 15]. In
the next section, we introduce syntactic sugar in order to define our Kripke structures in a SMV
language style [17].

3.5.1 Syntactic sugar for the transitions

Formulas similar to Formula 3.17 represent the transitions over the states of a particular system
[9]. However, from a programming point of view, it is easier to follow the behavior of a program
line-by-line, such as Code 3.3.

McMillan in [17] defines the SMV (Symbolic Model Verification) language. The SMV language
provides expressions for a concise representation of a Kripke structure and other entities in model
checking. In our particular case, we are interested in the case expressions. The behavior of the
case given by McMillan is similar as the case expressions of some programming languages such as
Haskell or Java.

The case expression has the following syntax:

case
guard1 : op1;
guard2 : op2;

...
guardn : opn;

1 : esc;
esac;
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where for every i, opi is the result of a guardi condition. In case of no guardi is true (denoted as
1), the result is esc.

Having the possibility to make choices by a condition, we use the assign operator := indicating
the value of a particular element. For example, the assign style of Formula 3.17 is the following:

pc′ := case
pc = l1 ∧ t > 0 : l2;
pc = l1 ∧ t ≤ 0 : l3;
pc = l2 : l1;
pc = l3 : l3;
1 : pc;
esac;

t′ := case
pc = l2 : t− 1;
1 : t;
esac;

Whereas the pc′ case is showing the behavior of the program line-by-line, the t′ case is defining the
behavior of t variable. For example, the value stored in t only changes when pc = l2.

The SMV style gives us the following advantages:

1. We can observe the behavior of a specific element instead of reading and analyzing a formula.
In other words, this representation is mind-cheaper.

2. From a programming point of view, it is more natural to use the case expression instead of a
logic formula.

Having an idea of how the assign-style works, let us formally define the syntax by unfolding the
assign operator and case expressions into logic formulas.

Definition 3.3 (Assign style). Let x be a variable, g1, . . . , gn be boolean conditions, and op1, . . . , opn, esac

be values of x. We define the assign-style as:

x := case

g1 : op1;

...

gn : opn;

1 : esc;

esac;


=def (g1 ∧ x = op1) ∨ · · · ∨ (gn ∧ x = opn) ∨ (

n∧
i=1

¬gi ∧ x = otherwise)

In case of having more than one assign, we only make the conjunction of the formulas obtained
from the previous definition.
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Definition 3.4 (Assigns). Let x1, . . . , xn be variables and c1, . . . , cn be the case analysis of each

xi. We define a multiple assign as:

x1 := c1;

...

xn := cn;

 =def

n∧
i=1

assign(xi, ci)

where assign(x, c) is the unfolded assign as we establish in Definition 3.3.

The next result allows us to use this new style instead of the first-order formulas defined by
Clarke et al. in [9].

Proposition 3.1. Let A be a multiple assign-style such as Definition 3.4. There exists a formula

transition ϕ such that A ≡ ϕ.

Proof. The result is direct by induction on the number of variables and assigns. In each step of

the induction, we unfold Definition 3.3 and Definition 3.4. And finally, we compute the disjunctive

normal form. λ

With the new notation, we can define the elements of a Kripke structure in an assign-style.

The last definition allows us define a Kripke structure in a concise way. For example, we redefine
the Kripke structure of Equation 3.18 as the Equation 3.19.

S = PC × T
PC = {(pc = l) | l ∈ {l1, l2, l3}}
T = {(t = i) | i ∈ {0, . . . , 10}}
R = {(s, s′) | ∀v ∈ {pc, t}.∀v′ ∈ {pc′, t′}.(s(v), s′(v′)) |= C}

C =



pc := l1;
t := 10;
pc′ := case

pc = l1 ∧ t > 0 : l2;
pc = l1 ∧ t ≤ 0 : l3;
pc = l2 : l1;
pc = l3 : l3;
1 : pc;
esac;

t′ := case
pc = l2 : t− 1;
1 : t;
esac;

(3.19)

In the next section, we define Kripke structures that represents the synthesis procedure.
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3.5.2 A sketch inside a Kripke structure

As we mentioned, Solar-Lezama in [23] defines a sketch as an incomplete program with assertions.
For example, Code 3.4 is a sketch of the program that decrements the value stored in t.

while(t >= 0){

t = ??;

}

assert(t == 0);

Code 3.4: A Sketch of the function that decrements the variable t.

Using the same procedure as the illustrative example, we define a Kripke structure KS that
represents Code 3.4. Formula 3.20 is the transition formula of KS and Code 3.5 is the implemen-
tation of Formula 3.20.

ρS =def



pc′ := case
pc = l1 ∧ t > 0 : l2;
pc = l1 ∧ t ≤ 0 : l3;
pc = l2 : l1;
pc = l3 : l3;
1 : pc;
esac;

t′ := case
pc = l2 : ??;
1 : t;
esac;

(3.20)

l1:if(t > 0){goto l2;}else{goto l3;}

l2:t = \mathtt{??};goto l1;

l3:return;

Code 3.5: A Sketch of decrement in a GoTo style

In case we want to verify some property, there are two problems with ρS . The first problem
is that there is not interpretation for the hole (??). The second one is that we want to verify

36



3.5 Abstraction of a program

a user specification against the behavior of the program with every input of the domain. Simi-
larly as Morgenstern and Schneider do in [19], we add new states that have expressions for filling in
the hole. This last strategy, provides us with the inputs to analyze different behaviors of a program.

Let us assume that the gray states in Figure 3.2 represent the particular Kripke structure K10

whose transition relation is defined by ρS [?? 7→ t− 1][t 7→ 10]. If we replace ρS [?? 7→ t− 1][t 7→ 10]
by ρS [?? 7→ t − 1][t 7→ 9], we obtain a different Kripke structure K9. In Figure 3.5 we show
different Kripke structures K0,K1, . . . ,K9,K10 where the transition relation of each Ki is defined
by ρS [?? 7→ t − 1][t 7→ i]. In other words, we have a different Kripke structure for each possible
input.

Figure 3.5: Different values of t.

Analogously to the previous case, if we calculate ρS [?? 7→ t + 1][t 7→ i] where i ∈ {0, . . . , 10},
we generate a variety of Kripke structures Ke1 , . . .Ke10 . For example, in Figure 3.6 in the blue box
are the Kripke structures whose transition formula is defined by the substitution [?? 7→ t− 1] and
in the green box are the Kripke structures whose transition formula is defined by the substitution
[?? 7→ t + 1]. Using this strategy we can build a variety of Kripke structures in the synthesis step
q1. We only need to define a set of possible set of expressions E and use the elements of E for the
substitution of the hole.

We have a set of integers D, a set of variables V and, the maximum height of the abstract syntax
trees. We use the previous elements for the creation of arithmetic expressions using a bottom-up
strategy. The grammar that we use in this example is defined in Equation 3.21. However, it can
be extended for more complicated expressions.

e ::= n | v | e+ e | e× e | e− e (3.21)

Where n ∈ D and v ∈ V.

Once we have computed E, we need to simulate the selection of the expression that replaces
the hole and the behavior of a program by using all the inputs and the selected expression. If we
suppose that q1 has all the possible behaviors for each input, a previous step of the synthesis, called
qsel, would be the selection of a specific expression. We create states of the form (?? = e) where
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e ∈ E and a transition from qsel to qseli . We give an example of this new synthesis state in Figure 3.7.

Figure 3.6: Different values for the hole create different programs.

Figure 3.7: Example of the synthesis state qsel.

Finally, the synthesis state q0 is the first step of the synthesis, where all values of the variables
are unknown. We denote with a star (?) multiple states; also we create a transition from q0 to all
the states that appear in qsel. In Figure 3.8, we give an idea of the Kripke structure that represents
a solution for the sketch in Code 3.5. Observe that q0 has a new variable location; this variable is
the formalization of how we represent the synthesis states inside the Kripke structure.

Once we give a view of how we define the Kripke structures for the synthesis, at the end of this
section, we formally define these Kripke structures.

38



3.6 Kripke structure with oracles

Figure 3.8: Example of the synthesis state q0.

3.6 Kripke structure with oracles

As Morgenstern and Schneider do in [19], we call the previously Kripke structures Kripke structure
with oracles. Our main difference is creating more specialized oracles that decide the determinism
of a goto-statement.

l1:if(g){goto l2;}else{goto l3;} //g is a guard given by the user

l2:x = ??;goto l1;

l3:return;

Sketch 3.4: A simple sketch

One of the simplest programs that reCipe can synthesize is Sketch 3.4. This last example will be
useful in order to define Kripke structure with oracles for more complicated programs. We present
these last Kripke structures in the next section. In Definition 3.5 we formally define a Kripke
structure with oracles for sketches structured as Sketch 3.4.

Definition 3.5 (Kripke structure with oracles). Let g be a conditional guard, V and E be the set

of variables and expressions constructed by the user specification, respectively. A Kripke structure
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with oracles is a Kripke structure K = (S, S0, R) where:

S = PC × V ars× Exps× Location

PC = {(pc = l) | l ∈ {l1, . . . , ln}}

V ars = {(v = i) | v ∈ V, i ∈ D}

Exps = {(?? = e) | e ∈ E}

Location = {location = q | q ∈ {q0, qsel, q1}}

R = {(s, s′) | ∀v ∈ V.∀v′ ∈ V′.(s(v), s′(v′)) |= C}

C = is defined by the equations: Equation 3.22 initial state, 3.23 synthesis states,

3.24 search space, 3.25 behavior of the program, 3.26 behavior of the variable.

In Equation 3.22 there are some useful notations:

• List comprehension: The form b : {o1, . . . , on} can be unfolded as:

b : o1;

...

b : on;

• ei(v): The expression ei(v) is the application of the expression ei over the current value of v,

for every ei ∈ E.

location := q0 (3.22)

location ′ := case

location = q0 : qsel;

location = qsel : q1;

1 : location;

esac;

(3.23)

??′ := case

location = q0 : {ei | ei ∈ E};

1 : ??;

esac;

(3.24)
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pc′ := case

location = q1 ∧ pc = l1 ∧ g : l2;

location = q1 ∧ pc = l1 ∧ ¬g : l3;

location = q1 ∧ pc = l2 : l1;

location = q1 ∧ pc = l3 : l3;

1 : pc;

esac;

(3.25)

v′ := case

location = qsel : {i | i ∈ D};

location = q1 ∧ ?? = e1 ∧ pc = l2 : e1(v);

...

location = q1 ∧ ?? = en ∧ pc = l2 : en(v);

1 : v;

esac;

(3.26)

Observe that the oracle variables are those that occur in the right-hand side of the valuation
location = q0. Therefore, the set Exps is the set of oracle variables.

Let us show an example of how to construct a Kripke structure with oracles by analyzing a user
specification.

Example 3.1. The user wishes a program that decrements by one the value of a variable t. The

formal specification is the following:

∀x.(EF (t = 0) ∧ ∀.x(t > x ∧ x > 1→ EF (t < x ∧ t > 0))) (3.27)

The guard of the program is t > 0 and the number of iterations for the buttom-up algorithm is n.

The set of variables and integers domain of the program are:

V = {t} (3.28)

D = {0, . . . , 5} (3.29)

According to the Equations 3.28, 3.29 and the number of iterations, the set of possible expressions
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is:

E0 = {0, . . . , 5, t}

E1 = E0 ∪ {t1 ? t2 | t1, t2 ∈ E0, ? ∈ {+,×,−}}
...

E = En = En−1 ∪ {t1 ? t2 | t1, t2 ∈ En−1, ? ∈ {+,×,−}}

(3.30)

Using the previous information, we construct the Kripke structure sketch 3.31.

S = PC × V ars× Exps× Location

PC = {(pc = l) | l ∈ {l1, l2, l3, l4}} ∪ {pc = ?}

V ars = {(v = i) | v ∈ V, i ∈ D} ∪ {v = ?}

Exps = {(?? = e) | e ∈ E} ∪ {?? = ?}

Location = {location = q | q ∈ {q0, qsel, qseli , q1}}

C = as the Definition 3.5 establishes by replacing

V,D and E by Equations 3.28, 3.29 and 3.30, respectively.

(3.31)

Now, let us generalize the Kripke structure with oracles by filling in Sketch 3.3.

3.6.1 Generalizing the Kripke structures with oracles

As we said in Section 3.4, Sketch 3.3 has different types of metavariables: expression holes, guards
holes, and non-deterministic goto-statements. These metavariables can be replaced by concrete
expressions, predicates and deterministic goto-statements, respectively. Furthermore, we can con-
sider the expressions and guards holes as non-deterministic variables. We show an example of this
non-determinism in Equation 3.24.

In order to generalize the Kripke structures with oracles, see Definition 3.5, we define the
following sets:

• For every expression hole e i, we create a set Expsi, where Expsi is a set of concrete expres-
sions that can replace e i.

• For every guard hole g i, we create the set G that is a set of predicates that can replace g i.

• For every non-deterministic goto-statement, we create the set GT that is a set of line labels
that can replace a non-deterministic goto-statement.

We can extend the current definition of the Kripke structures with oracles, if we add the
following to Definition 3.5:
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• We redefine the set Exps of S, as:

Exps = Exps1 × · · · × Expsn ×Guards1 × · · · ×Guardsn ×GT1 × · · · ×GTn

• We create an assign, see Definition 3.3, for each metavariable such as in Equation 3.24.

• In Equation 3.25, we need to create every possible jump. For example, if we are in line 1 and
g1 can be replaced by a predicate p but can also be replaced by a predicate q, then we need
to consider the following cases:

location = q1 ∧ pc = l1 ∧ g1 = p ∧ p : l2;
location = q1 ∧ pc = l1 ∧ g1 = p ∧ ¬p ∧ dgt1 = l2 : l2;
location = q1 ∧ pc = l1 ∧ g1 = p ∧ ¬p ∧ dgt1 = l1 : l1;

location = q1 ∧ pc = l1 ∧ g1 = q ∧ p : l2;
location = q1 ∧ pc = l1 ∧ g1 = q ∧ ¬q ∧ dgt1 = l2 : l2;
location = q1 ∧ pc = l1 ∧ g1 = q ∧ ¬q ∧ dgt1 = l1 : l1;

(3.32)

where dgt1 is the variable that represents an unique jump, i.e., a determinisitic goto-statement.

• This case is analogous to the previous one. We need to consider every possible expression
hole e i.

In Appendix A, we show an example of a Kripke structure with oracles for two variables and
one iteration. In the previously mentioned code we show we replace the synthesis of guards by
angelic determinism. In other words, we assume the existence of the guards. This last approach is
an optimization that we describe in the next chapter.

It is clear that this construction will cause the state-explosion problem to occur. In the next
section, we present the complexity of reCipe in terms of the size of the search space and verify this
last assertion.

3.7 Complexity of reCipe

An important aspect of algorithms is their complexity. Whereas the complexity of model-checking
algorithms depends on the size of the model, the complexity of program-synthesis depends on the
size of the space of search. First, let us present the complexity of CTL model checking (see Theorem
3.2).

Theorem 3.2 (Complexity of CTL model checking [9]). Let ϕ be a CTL formula and K =

(S, S0, R, L) be a Kripke structure. There is an algorithm for determining whether ϕ is true in

a state s of K that runs in time:

O(|ϕ| · (|S|+ |R|)) (3.33)

where |ϕ| is the size of the formula ϕ.
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In our particular case, the Kripke structures with which we are working have a generic form;
see Figure 3.2. We can give a better bound using the generic form. First, we construct the bounds
in a intuitive way and then we formalize the complexity.

By construction, the set of states is divided in four sections (synthesis states):

1. q0: A unique state.

2. qsel: The number of states is equal to the number of expressions generated by the bottom-up
search.

3. q1: The number of states is equal to the number of states generated by the unfolding of the
program behavior for each possible replacement of the holes of the program.

Using the partition generated by the synthesis states, we define the number of states as follows:

Definition 3.6. Let R be the set of replacements of the metavariables generated by a user speci-

fication. The number of states of a Kripke structure sketch is:

|S| = 1 + |R|+BP (3.34)

where BP is the number of states of each program behavior.

In order to give an exact number for R, we need to compute the number of possible concrete
expressions, predicates and to know the number of deterministic goto-statements.

We denote the set of concrete expressions as E. We define E by using a bottom-up strategy
i.e., we create all possible expressions according to a bounded abstract syntax tree. Using this
information, we can compute |E| as follows:

Definition 3.7. Let V be the set of variables, D be the set of inputs, both generated by a user

specification and, n be the number of iterations. The cardinality of E is:

|E| = |En|where:

|E0| = |V|+ |D|

|E1| = |E0|+
(
|E0|
2

)
...

|En| = |En−1|+
(
|En−1|

2

)
(3.35)

The number of guards is analogous to |E|. Let us denote the set of predicates as G. In the
worst case, we can assume that all the expressions have the same type. This will cause G to have
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a similar cardinality of E but instead of using as base the sets of variables and inputs, we use E.

Finally, we need to compute the number of labeled lines that represent a deterministic goto-
statement. Let us denote the number of the labeled lines as L. Cause we can have two possibilities
for each labeled line, the number of possible lines is the number of variables times the number of
iterations n:

|L| = |V| × n× 2

We can observe that the number of states explodes. Therefore, if we want to reduce the number
of states, we need to define some strategies so that we can improve the model checking process.
We analyze these last problems in the next chapter of the thesis.
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Chapter 4

Experiments and optimizations

”(. . . ) it is not clear than we can always select a

‘best’ algorithm (. . . ) Perhaps it is time to

abandon the ‘winner-takes-all’ mentality that

seems to pervade algorithmic research.”

Vardi, Moshe Y. (2007) [25]

The execution of reCipe basically relies on the labelling algorithm (see Algorithm 1). We can
ensure that reCipe works for complex problems, if we are able to ensure that the labelling algorithm
works for this kind of problems in spite of the state-explosion problem (see [9, 15]). We list some
experiments and projects that use variations of the labelling algorithm and have given good results:

• Burch et al. in [4] tested a µ-calculus labelling algorithm for verifying CTL properties in a
model with 1020 states. This is a classical example to show that the model checking is viable
for complex problems.

• The model checker Kratos [8] can verify properties of sequential C-programs. Kratos is built
on top of nuXmv.

We show some executions of reCipe and show that we need optimizations over the naive approach of
the previous chapter. If we want to optimize the executions of reCipe, we need to create strategies
that reduce the size of the model created by reCipe and reduce the number of nodes that occur in
the OBDD created by the labelling algorithm.

In order to show our optimizations, we present an execution of reCipe in a toy example. Be-
sides the fact that we use a toy example, the specification forces to search in the majority of states
generated by reCipe. Then, we can infer some optimizations.

For our empirical experiments, we want to synthesize the program that satisfies the following
specification: ∧

x∈V
(EF x = 0 ∧ ∀i.(x > i ∧ x > 1→ (EF x < i ∧ x > 0))) (4.1)
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where V is a set of variables and i ∈ {0, . . . , 4}. Equation 4.1 establishes the behavior of a program
P that decrements the variables that occur in V . In other words, if V = {x1, x2, x3}, then P
decrements the value of x1. After that, P decrements the value of x2. Finally, P decrements the
value of x3. For our experiments, we assume the following:

1. |V | is 1, 2, 3, 4, 5 and 8.

2. We construct candidate expressions as in Appendix A, i.e., we only construct addition and
subtraction of the form x+ n, x− n, n− x where x is a variable and n ∈ {0, . . . , 4}.

3. We construct three candidate guards x < 0, x > 0 and x = 0, where x is a variable.

The jump we make between five variables and eight variables is for showing how the number of
states blows up in spite of using our optimizations.

4.1 A first evaluation

In our first approach, we synthesize all the holes using a same nuXmv script. In other words, we
try to synthesize all the missing values in order to complete our imaginary sketch (see Chapter 3).
In Figure 4.1, red graph, and Table 4.1, we observe how easily the number of states blows up. In
fact, when we have five variables to synthesize, nuXmv takes more than three seconds to get the
desired counterexample.

4.2 Modular Synthesis

Bodik et al. in [2] define the angelic non-determinism as the operator that makes it possible for
a program to meet its specification. In other words, such non-determinism allows the program to
end and to satisfy a specification. We can use the angelic operator (*) for splitting the synthesis
procedure in two steps:

1. Synthesize the structure (deterministic goto-statements) and the holes expressions (expi
where i is the number of lines of the sketch).

2. Synthesize the guards where there were angelic non-determinism.

This partition is straightforward; it is a similar to that idea of the non-deterministic goto-statements.
We assume the existence of a guard and allow the program to take both branches of the if-
conditionals. An example of this angelic non-determinism is shown in Appendix A. In Figure 4.1,
blue graph, we show the time that reCipe takes to synthesize the first step of the modular synthesis.

4.3 Ordering the variables

As we mention in Chapter 2, one of the optimizations of the labelling algorithm is ordering the
variables. Although finding a good ordering is NP-complete [9, 15], in our particular case we can
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give a good variable ordering.

On the one hand, nuXmv has some predefined heuristics for ordering variables [5]. For example,
nuXmv offers an genetic algorithm called “genetic” or another algorithm that stores only one OBDD
at a time, i.e., a dynamic ordering called “exact”, etc. On the other hand, we know that our Kripke
structures with oracles have a search-tree-like form. We can take advantage of that form by giving
the following order:

location < cycle1 < · · · < cyclen < pc < exp0 < x0 < exp1 < x1 < · · · < expn < xn (4.2)

where each cyclei is a variable that represents the value of a deterministic goto-statement, pc is
the program counter, each expi, xi is the concrete expression that changes the value of the variable
xi.

In Figure 4.1, the black graph corresponds to the ordering exact provided by nuXmv and the
magenta graph corresponds to our ordering. The advantage of our ordering over the nuXmv is
evident. Another advantage of our ordering is that it can be applied to any number of boolean
variables.

4.4 The results

In this section, we show the results of the executions of reCipe in our toy example in two forms: a
graph and a table. All the results we show were run on a machine with a i-5 10th generation Intel
processor (4 cores of 1 GHz processor base frequency) and 4 GB RAM.

We observe that our optimizations give obvious advantages over the naive approach. In fact,
synthesizing the guards will have a similar behavior. In the next chapter, we give some ideas for
heuristics that could give better results.
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Figure 4.1: Behavior of reCipe with different optimizations. The red graph corresponds to the naive

approach. The blue graph is partitioning the variables into angelic and non-angelic variables. The black

graph corresponds to the nuXmv “exact” ordering. The magenta graph corresponds to our ordering.

Optimization
1 variable 3 variables

OBDD nodes Synthesis time OBDD nodes Synthesis time

Naive 11977 ∼79 ms 371818 ∼345 ms

Partitioned 8053 ∼75 ms 71071 ∼125 ms

nuXmv ordering 2709 ∼100 ms 8743 ∼183 ms

Our ordering 5817 ∼68 ms 14860 ∼96 ms

Optimization
5 variables 8 variables

OBDD nodes Synthesis time OBDD nodes Synthesis time

Naive 837682 ∼22427 ms - -

Partitioned 237686 ∼263 ms 954481 ∼1967 ms

nuXmv ordering 15160 ∼420 ms 24906 ∼2436 ms

Our ordering 78400 ∼151 ms 645075 ∼1887 ms

Table 4.1: reCipe statistics

50



Chapter 5

Conclusion and future work

“I do not need sleep. I need answers.”

Sheldon C. - The Big Bang Theory (2009) [16]

reCipe is an extension of the procedure given by Morgenstern and Schneider in [19]. This ex-
tension takes advantage of the semantics of CTL and the non-determinism offered by the Kripke
structures with oracles. Our evaluation showed that we can synthesize small programs from a
temporal formula. Moreover, we can make modular synthesis by replacing the guards by angelic
non-deterministic operators. Also, we fixed the correctness of the procedure originally given by
Morgenstern and Schneider and formalized the Kripke structures with oracles by adding syntactic
sugar to the formulas that represents a Kripke structure.

There are some possible future directions for the reCipe approach:

1. This thesis only synthesizes sequential programs. We believe that reCipe is capable of syn-
thesizing concurrent programs by adding new program counters for each thread, and general
properties of concurrent programs. We can add this last properties as fairness constraints.

2. If we are able to create a set of temporal constraints from the user specification and add these
constraints to the Kripke structure oracle creation, we will make the synthesis more efficient.

3. This thesis relies on the procedure of a complete an imaginary generic sketch1. Synthesiz-
ing transition machines as Strix does in [18], we could generate a sketch with the behavior
established by the user specification.

4. The labelling algorithm analyzes a CTL formula by using a fix-point characterization. This
characterization allows us to see a temporal formula as a sequence of conjunctions and
disyunctions. We think that we can add the process of the labelling algorithm (LA) to
CEGIS [23]. This extension could allow us to create sketches with assert-statements that
can have temporal operators. The interesting question of this idea is how to represent the
EX and AX operators, and whether or not CEGIS+LA converges in a reasonable time.

1Imaginary in the sense that the generic sketch does not appear in the procedure.
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Appendix A

An example of synthesis via nuXmv

Let us assume that the user gives the following specification:

ϕ = ϕ1 ∧ ϕ2 (A.1)

ϕ1 = (EF t = 0 ∧ ∀i.(t > i ∧ i > 1→ (EF t < i ∧ t > 0))) (A.2)

ϕ2 = (EF r = 0 ∧ ∀i.(r > i ∧ i > 1→ (EF r < i ∧ r > 0))) (A.3)

Following the idea of Algorithm 5, we compute the following sets:

V = {t, r}
D = {0, . . . , 5}

Let us keep the idea that we need to filling in a generic sketch. In Code A.2, we encode the
process of filling in Sketch A.1.

void f(int* x, int* y){

l1: if(*) then {goto l2;} else {goto l3;}

l2: t = exp0; goto {l1,l3};//cycle1

l3: if(*) then {goto l4;} else {goto l5;}

l4: t = exp1; goto {l3,l5};//cycle2

l5: return;

}

Sketch A.1: A sketch that we need to fill in.

The if-conditionals of lines l 1 and l 3 have a star (*). This star allows an angelic non-
determinism over our synthesis procedure. As a consequence, we can split the synthesis procedure
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A. AN EXAMPLE OF SYNTHESIS VIA NUXMV

in two steps: first, we synthesize the concrete expressions and deterministic goto-statements. Sec-
ond, we synthesize the guards that replace the stars. For further details, see Chapter 4.

Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

location = q0

pc1 = 1

t = 0

cycle1 = 1

exp0 = vt

r = 0

cycle2 = 3

exp1 = vr

-> State: 1.2 <-

location = qsel

exp0 = mvtn1

exp1 = mvrn1

Response A.1: First step of the synthesis.

Let us explain some of the notations we use in Code A.2:

• The variables cycle1 and cycle2 represent the line that replaces the non-deterministic goto-
statement.

• The variable ni, where i ∈ {0, . . . , 5}, represents the natural number i.

• The variables vt and vr represent the variables t and r, respectively.

• The variable plxy, where x and y are numbers or variables, represents the concrete expression
x+ y.

• The variable mxy, where x and y are numbers or variables, represents the concrete expression
x− y.

• We do not show all the values in exp0 and exp1. The missing expressions are combinations
of the ni’s, vt and vr for the pl and vr prefixes.
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If we input Code A.2 into nuXmv, we obtain Response A.1. Observe that the values of variables
cycle1, cycle2 of State 1.1, and the values of variables exp0, exp1 of State 1.2 are the values
that complete Sketch A.1. Now, we have to complete Sketch A.2.

void f(int* x, int* y){

l1: if(guard0) then {goto l2;} else {goto l3;}

l2: t = t - 1; goto l1;

l3: if(guard1) then {goto l4;} else {goto l5;}

l4: t = r - 1; goto l3;

l5: return;

}

Sketch A.2: A sketch where we need synthesize predicates.

To get a complete program, we fill in Sketch A.2 replacing the holes guard0 and guard1 by the
values we get from the model checker.

In Code A.2, we encode each variable behavior under a arithmetic expression. In Code A.3 we
do a similar thing, we encode all the program behavior under a guard election. The reason of the
last reasoning is that the guards can affect all the program behavior.

As the last call of nuXmv, we input Code A.3 into the model checker and get Response A.2.

As last response, we replace the holes guard0 and guard1 by the last occurrence of the variables
in Response A.2. By this last, we can generate the desired program (see Code A.3).

void f(int* x, int* y){

l1: if(t > 0) then {goto l2;} else {goto l3;}

l2: t = t - 1; goto l1;

l3: if(r > 0) then {goto l4;} else {goto l5;}

l4: t = r - 1; goto l3;

l5: return;

}

Code A.1: The desired program.
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Trace Description: CTL Counterexample

Trace Type: Counterexample

-> State: 1.1 <-

location = q0

pc1 = 1

t = 0

r = 0

guard0 = gvtn0

guard1 = gvrn0

-> State: 1.2 <-

location = qsel

Response A.2: First step of the synthesis.

MODULE main

VAR

location:{q0,qsel,q1};

pc1:{1,2,3,4,5};

t:{0,1,2,3,4,5};

cycle1:{1,3};

exp0:{vt,n0,n1,n2,n3,n4,n5,

plvtvt,plvtn0,plvtn1,plvtn2,plvtn3,...,

mvtvt,mvtn0,mvtn1,mvtn2,mvtn3,...,mn5n5};

r:{0,1,2,3,4,5};

cycle2:{3,5};

exp1:{vr,n0,n1,n2,n3,n4,n5,

plvrvr,plvrn0,plvrn1,plvrn2,plvrn3,...,
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mvrvr,mvrn0,mvrn1,mvrn2,mvrn3,...,mn5n5};

INIT

location = q0;

ASSIGN

next(location) := case

location = q0 : qsel;

location = qsel : q1;

location = q1 : q1;

TRUE : location;

esac;

next(cycle1) := case

location = q0 : {1,3};

TRUE : cycle1;

esac;

next(cycle2) := case

location = q0 : {3,5};

TRUE : cycle2;

esac;

next(pc1) := case

location = qsel : 1;

location = q1 & pc1 = 1 : {2,3};

location = q1 & pc1 = 2 : cycle1;

location = q1 & pc1 = 3 : {4,5};

location = q1 & pc1 = 4 : cycle2;

location = q1 & pc1 = 5 : 5;
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TRUE : pc1;

esac;

next(exp0) := case

location = q0 :

{vt,n0,n1,n2,n3,n4,n5,

plvtvt,plvtn0,plvtn1,plvtn2,plvtn3,plvtn4,plvtn5,

pln0vt,pln0n0,pln0n1,pln0n2,pln0n3,pln0n4,pln0n5,

--The rest of the cases of the ASSIGN ... };

TRUE : exp0;

esac;

next(exp1) := case

location = q0 :

{vr,n0,n1,n2,n3,n4,n5,

plvrvr,plvrn0,plvrn1,plvrn2,plvrn3,plvrn4,plvrn5,

pln0vr,pln0n0,pln0n1,pln0n2,pln0n3,pln0n4,pln0n5,

--The rest of the cases of the ASSIGN ... };

TRUE : exp1;

esac;

next(t) := case

location = qsel : {0,1,2,3,4,5};

location = q1 & exp0 = vt & t >= 0 & t <= 5 & pc1 = 2 : t;

location = q1 & exp0 = n0 & 0 >= 0 & 0 <= 5 & pc1 = 2 : 0;

location = q1 & exp0 = n1 & 1 >= 0 & 1 <= 5 & pc1 = 2 : 1;

location = q1 & exp0 = n2 & 2 >= 0 & 2 <= 5 & pc1 = 2 : 2;

location = q1 & exp0 = n3 & 3 >= 0 & 3 <= 5 & pc1 = 2 : 3;

location = q1 & exp0 = n4 & 4 >= 0 & 4 <= 5 & pc1 = 2 : 4;

location = q1 & exp0 = n5 & 5 >= 0 & 5 <= 5 & pc1 = 2 : 5;
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location = q1 & exp0 = plvtvt &

(t + t) >= 0 & (t + t) <= 5 & pc1 = 2 : (t + t);

location = q1 & exp0 = plvtn0 &

(t + 0) >= 0 & (t + 0) <= 5 & pc1 = 2 : (t + 0);

location = q1 & exp0 = plvtn1 &

(t + 1) >= 0 & (t + 1) <= 5 & pc1 = 2 : (t + 1);

-- The rest of cases for the plus operator and all

-- the cases for the minus operator

TRUE : t;

esac;

next(r) := case

location = qsel : {0,1,2,3,4,5};

location = q1 & exp1 = vr & r >= 0 & r <= 5 & pc1 = 4 : r;

location = q1 & exp1 = n0 & 0 >= 0 & 0 <= 5 & pc1 = 4 : 0;

location = q1 & exp1 = n1 & 1 >= 0 & 1 <= 5 & pc1 = 4 : 1;

location = q1 & exp1 = n2 & 2 >= 0 & 2 <= 5 & pc1 = 4 : 2;

location = q1 & exp1 = n3 & 3 >= 0 & 3 <= 5 & pc1 = 4 : 3;

location = q1 & exp1 = n4 & 4 >= 0 & 4 <= 5 & pc1 = 4 : 4;

location = q1 & exp1 = n5 & 5 >= 0 & 5 <= 5 & pc1 = 4 : 5;

location = q1 & exp1 = plvrvr &

(r + r) >= 0 & (r + r) <= 5 & pc1 = 4 : (r + r);

location = q1 & exp1 = plvrn0 &

(r + 0) >= 0 & (r + 0) <= 5 & pc1 = 4 : (r + 0);

location = q1 & exp1 = plvrn1 &

(r + 1) >= 0 & (r + 1) <= 5 & pc1 = 4 : (r + 1);

-- The rest of cases for the plus operator and all

-- the cases for the minus operator
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TRUE : r;

esac;

CTLSPEC

!EX AX (((EF ((t = 0))) &

((((t > 0) & (0 > 1)) - > (EF (((t < 0) & (t > 0))))) &

((((t > 1) & (1 > 1)) - > (EF (((t < 1) & (t > 0))))) &

((((t > 2) & (2 > 1)) - > (EF (((t < 2) & (t > 0))))) &

((((t > 3) & (3 > 1)) - > (EF (((t < 3) & (t > 0))))) &

((((t > 4) & (4 > 1)) - > (EF (((t < 4) & (t > 0))))) &

(((t > 5) & (5 > 1)) - > (EF (((t < 5) & (t > 0))))))))))) &

((EF ((r = 0))) &

((((r > 0) & (0 > 1)) - > (EF (((r < 0) & (r > 0))))) &

((((r > 1) & (1 > 1)) - > (EF (((r < 1) & (r > 0))))) &

((((r > 2) & (2 > 1)) - > (EF (((r < 2) & (r > 0))))) &

((((r > 3) & (3 > 1)) - > (EF (((r < 3) & (r > 0))))) &

((((r > 4) & (4 > 1)) - > (EF (((r < 4) & (r > 0))))) &

(((r > 5) & (5 > 1)) - > (EF (((r < 5) & (r > 0))))))))))));

Code A.2: SMV code for synthesizing Equations A.1-A.3.

MODULE main

VAR

location:{q0,qsel,q1};

pc1:{1,2,3,4,5};

t:{0,1,2,3,4,5};

r:{0,1,2,3,4,5};

guard0:{gvtn0,lvtn0,evtn0};
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guard1:{gvrn0,lvrn0,evrn0};

INIT

location = q0;

ASSIGN

next(location) := case

location = q0 : qsel;

location = qsel : q1;

location = q1 : q1;

TRUE : location;

esac;

next(t) := case

location = q1 &

(t - 1) >= 0 & (t - 1) <= 5 & pc1 = 2 : (t - 1);

TRUE : t;

esac;

next(r) := case

location = q1 &

(r - 1) >= 0 & (r - 1) <= 5 & pc1 = 4 : (r - 1);

TRUE : r;

esac;

next(guard0) := case

location = q0 : {gvtn0,lvtn0,evtn0};

TRUE : guard0;

esac;
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next(guard1) := case

location = q0 : {gvrn0,lvrn0,evrn0};

TRUE : guard1;

esac;

next(pc1) := case

location = qsel : 1;

location = q1 : case

guard0 = gvtn0 & guard1 = gvrn0 : case

pc1 = 1 & t > 0 : 2;

pc1 = 1 & t <= 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r > 0 : 4;

pc1 = 3 & r <= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = gvtn0 & guard1 = lvrn0 : case

pc1 = 1 & t > 0 : 2;

pc1 = 1 & t <= 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r < 0 : 4;

pc1 = 3 & r >= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = gvtn0 & guard1 = evrn0 : case

pc1 = 1 & t > 0 : 2;

pc1 = 1 & t <= 0 : 3;

pc1 = 2 : 1;
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pc1 = 3 & r = 0 : 4;

pc1 = 3 & r != 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = lvtn0 & guard1 = gvrn0 : case

pc1 = 1 & t < 0 : 2;

pc1 = 1 & t >= 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r > 0 : 4;

pc1 = 3 & r <= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = lvtn0 & guard1 = lvrn0 : case

pc1 = 1 & t < 0 : 2;

pc1 = 1 & t >= 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r < 0 : 4;

pc1 = 3 & r >= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = lvtn0 & guard1 = evrn0 : case

pc1 = 1 & t < 0 : 2;

pc1 = 1 & t >= 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r = 0 : 4;

pc1 = 3 & r != 0 : 5;

pc1 = 4 : 3;
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pc1 = 5 : 5;

esac;

guard0 = evtn0 & guard1 = gvrn0 : case

pc1 = 1 & t = 0 : 2;

pc1 = 1 & t != 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r > 0 : 4;

pc1 = 3 & r <= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = evtn0 & guard1 = lvrn0 : case

pc1 = 1 & t = 0 : 2;

pc1 = 1 & t != 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r < 0 : 4;

pc1 = 3 & r >= 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

guard0 = evtn0 & guard1 = evrn0 : case

pc1 = 1 & t = 0 : 2;

pc1 = 1 & t != 0 : 3;

pc1 = 2 : 1;

pc1 = 3 & r = 0 : 4;

pc1 = 3 & r != 0 : 5;

pc1 = 4 : 3;

pc1 = 5 : 5;

esac;

TRUE : pc1;
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esac;

TRUE : pc1;

esac;

CTLSPEC

!EX AX (((EF ((t = 0))) &

((((t > 0) & (0 > 1)) - > (EF (((t < 0) & (t > 0))))) &

((((t > 1) & (1 > 1)) - > (EF (((t < 1) & (t > 0))))) &

((((t > 2) & (2 > 1)) - > (EF (((t < 2) & (t > 0))))) &

((((t > 3) & (3 > 1)) - > (EF (((t < 3) & (t > 0))))) &

((((t > 4) & (4 > 1)) - > (EF (((t < 4) & (t > 0))))) &

(((t > 5) & (5 > 1)) - > (EF (((t < 5) & (t > 0))))))))))) &

((EF ((r = 0))) &

((((r > 0) & (0 > 1)) - > (EF (((r < 0) & (r > 0))))) &

((((r > 1) & (1 > 1)) - > (EF (((r < 1) & (r > 0))))) &

((((r > 2) & (2 > 1)) - > (EF (((r < 2) & (r > 0))))) &

((((r > 3) & (3 > 1)) - > (EF (((r < 3) & (r > 0))))) &

((((r > 4) & (4 > 1)) - > (EF (((r < 4) & (r > 0))))) &

(((r > 5) & (5 > 1)) - > (EF (((r < 5) & (r > 0))))))))))));

Code A.3: SMV code for synthesizing the guards.
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