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Resumen

En los ultimos anos, nuestras actividades en linea realizadas a través de Internet han sido
cada vez mas susceptibles de interceptacion, recopilaciéon y manipulacién. Esta suscepti-
bilidad se debe principalmente a los modelos de negocio emergentes y a las estrategias de
marketing empleadas por terceras empresas. En consecuencia, el analisis de las biisquedas
en Internet, en particular de las buisquedas en la web, ha permitido extraer valiosos datos
sobre las preferencias individuales.

Para abordar este problema, nuestra investigacién introduce un enfoque innovador.
Proponemos, disenamos y aplicamos una serie de algoritmos que, cuando se despliegan en
un unico nodo dentro de una red, disminuyen eficazmente la precisiéon de los algoritmos de
aprendizaje automatizado comtinmente atribuidos como entidades maliciosas. Este proceso
introduce posteriormente ofuscaciéon en la huella DNS de los usuarios finales, mejorando
asi las medidas de privacidad y seguridad asociadas a nuestras actividades en linea.
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Abstract

In recent years, our online activities conducted over the Internet have been increasingly
susceptible to interception, collection, and manipulation. This susceptibility primarily
arises from emerging business models and marketing strategies employed by third-party
companies. As a result, the analysis of Internet searches, particularly web searches, has
enabled the extraction of valuable insights into individual preferences.

To address this potential security concern from the user’s perspective, our research pro-
pose, design, and implement a series of algorithms that effectively diminish the accuracy of
machine learning algorithms commonly attributed as malicious entities when deployed on
a single node within a network. The proposed algorithms subsequently introduce obfus-
cation to the re-identification of user’s traffic (e.g., DNS fingerprint), thereby enhancing
the privacy and security associated with our online activities.
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Chapter 1

Problem definition

1.1 Online-activity and privacy

In recent years, the world has witnessed an extraordinary surge in the number of Internet
users, transforming it into a crucial part of everyday life for millions worldwide. Several
factors, such as the widespread availability of mobile devices and the rise of social media
and online platforms, have driven the rapid growth in the density of Internet users. The
development of faster and more efficient Internet infrastructure and the increasing afford-
ability of devices and data plans have further fueled this expansion. As more and more
individuals utilize the Internet, there has been a fundamental shift in how people access
information, communicate with one another, and conduct business. A statistical report
from Kepios [1] has revealed a significant and stabilizing increase in the number of Internet
users worldwide, as illustrated in Figure 1.1.

Over the past few decades, the exponential growth in Internet usage has emphasized
the increasing importance of online privacy protection. With more and more people joining
the online community each year, safeguarding personal information and ensuring privacy
becomes even more crucial. As the user base expands, so does the potential risk of privacy
breaches and unauthorized access to sensitive data.

As our online activity has become an integral part of our lives, it offers a window into
our preferences and behaviors. Through various online interactions such as web searches,
social media engagements, and online shopping habits, every click and scroll leaves a digital
footprint, creating patterns unique to each online user. These online activity patterns
have become increasingly valuable in today’s digital landscape. The vast amount of data
generated by our online interactions serves as a goldmine for businesses, marketers, and
researchers, offering insights into our preferences, behaviors, and interests. Companies can
tailor advertisements and content by analyzing these patterns to cater to our needs and
desires. Additionally, researchers can utilize these patterns to gain a deeper understanding
of societal trends and preferences, providing valuable information for various fields, such
as psychology, sociology, and economics.

This large amount of information is a critical resource for machine learning algorithms
to uncover these patterns and gain insights into our individual preferences [4, 5, 6]. By
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Figure 1.1: Number of Internet users by year.
from: Digital 2023 Global Overview Report, Kepios [1]

thoroughly analyzing our online activities, these algorithms can identify recurring trends,
recognize correlations, and generate predictive models that aid in understanding user be-
havior and preferences. A well-known business model strategy: "behavioral-targeting,"
involves monitoring an individual’s online activity |7, 4], and using this information to
direct targeted advertising towards specific users.

The development of behavioral targeting [7| has led to more attention being focused
on the privacy of people’s online activities and the potential risks of being constantly
tracked and identified by this type of artificial intelligence. Moreover, individuals should
be aware of the various online tracking methods, such as cookies, device fingerprinting, and
browser fingerprinting, and take actions to limit their exposure to these methods. While
this practice can be advantageous for advertisers, it also raises concerns about the privacy
of users’ online activities.

According to a survey conducted by the independent research agency Toluna and high-
lighted by Kaspersky [8], many people need to gain the knowledge and skills to protect
their online privacy effectively. The survey showed that 34% show interest in learn how to
fully safeguard their privacy online. Furthermore, the survey revealed a troubling trend
that over one in ten people (10%) have lost interest in learning how to improve their pri-
vacy further. For instance, when end-users accept cookies without reading the policies,
terms, and conditions, they unknowingly grant permission to big-tech companies such as
Facebook, Google, etc., to track their browsing habits, interests, and preferences. This
vast amount of data enables these third-party companies to build comprehensive user
profiles, which they then utilize to deliver tailored advertisements that align with the in-
dividual’s preferences and behavior. Consequently, this practice raises legitimate concerns
about the privacy and security of individuals’ data, exposing them to potential misuse or
unauthorized access.
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Thus, it is evident that our online activity holds valuable information that machine
learning algorithms can harness to better understand our preferences and enhance various
aspects of our digital lives, but on the other hand it also represents a security breach that
can potentially have harmful consequences for the the end user.

1.2 User re-identification and DNS fingerprinting

The Domain Name System (DNS) is a protocol used on the Internet to translate human-
readable domain names (such as www.example.com) into IP addresses that computers use
to identify each other on the network. It acts like a "phonebook" for the Internet, allowing
users to access websites and services using user-friendly names.

In the context of online activities, the "user re-identification" paradigm [5, 3| plays
an essential role in the behavioral-targeting strategy. Online interests are a subset of a
person’s overall interests. To clarify, if someone is interested in basketball, that interest
can be represented online when visiting sports websites, online stores such as Amazon
or eBay that sell basketball-related items; or even when searches for basketball players’
names are made. The user re-identification paradigm aims to accumulate as many sessions
as possible, enabling more precise targeting of advertising campaigns. A session refers to
the time a user spends online, similarly searching for items or loading websites, Etc. This
study defines a session as a day (24 hours) of Domain Name System (DNS) traffic.

Furthermore, behavioral targeting is a widespread technique that can utilize the DNS
protocol, and leveraging DNS traffic can yield valuable insights about the devices and
software users utilize. DNS is a critical element in this context because each query made by
a user is typically associated with one or more DNS requests, making DNS traffic effective
to identify users based on their manifested online interests. A DNS fingerprint can be
generated by analyzing this DNS traffic, translating it into a user’s online preferences and
activities.

1.3 Concerns about online activity

As previously mentioned, our online activities generate a digital footprint that can be
collected and analyzed, revealing patterns. One such pattern is the Zipf-like popularity
distribution [9], which has implications for DNS fingerprinting. Zipf’s law observed in
DNS suggests that a small subset of domain names will be more popular than others,
indicating that specific domains receive a significant number of requests. In contrast, most
domain names receive relatively fewer requests. By analyzing this distribution pattern
in our online activity, we can better understand DNS fingerprinting and its potential
impact on privacy. This analysis helps identify online users’ preferences and also raises
implications for privacy concerns. By recognizing the logic behind the relationship between
DNS fingerprinting and user preferences, we can collectively work towards creating a safer
and more privacy-conscious online ecosystem.

Over the last years, several works have been done to avoid this re-identification. Impor-
tantly, it should be noted that among the various strategies proposed, certain approaches
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focus on either anonymization or obfuscation to improve the privacy. Anonymization in-
volves the privacy technique of dissociating the data from personal identity. In other
words, the goal is to ensure that the available information does not reveal our specific
identity. In contrast, obfuscation allows for a partial unveiling of someone’s identity. For
instance, it might enable the prediction of a user’s identity with a certain level of proba-
bility. We can categorize the proposed strategies in the literature as "Single-Node-Based"
and "Intermediary" /"Relay-Based" techniques.

Single-node-based strategies might include solutions that implement cryptographic al-
gorithms, such as DNS over HTTPS (DoH) [10], DNS over TLS (DoT) [11], and DoQ[12].
However, since the data is encrypted and relies on tunneling, the DNS recursive resolver
can still gather the information since it is being sent through single ports. In addition,
there are solitary strategies such as range query [13|, which involve sending dummy or
fake queries that can be easily ignored by machine learning algorithms, thus reducing the
effectiveness of these countermeasures.

On the other hand, techniques that employ intermediaries or relays as actors of anonymiza-
tion for each DNS query have also been implemented. Proposed solutions such as NQA
[3], ODNS [14], ©ODNS [15], and Onion Routing (Tor) [16] aim to prevent this problem
collaboratively. However, it should be noted that these implementations require either a
partial or full level of trust in intermediaries within the network. Furthermore, in the case
of Tor, there is a noticeable latency and longer response time for retrieving answers to
requests, typically around 4.1 seconds [17]. This extended response time poses a potential
drawback for end-users, significantly reducing the overall user experience. More detailed
strategies are mentioned in Section 3.

Hypothesis

The accuracy of attackers using DNS fingerprinting employing machine learning algo-
rithms can be significantly reduced through the selective modification of a minor fraction
of a user’s DNS traffic. By strategically introducing alterations to specific domain name
frequencies, the attackers’ capacity to re-identify an online user and discern its online
activities is anticipated to experience a significant disruption.

1.4 General goals

The overall goal of this thesis is to bring anonymity and privacy to end-users based on
their online activity, with a focus on achieving the below-mentioned objectives:

e Design and implement algorithms to obfuscate the DNS fingerprint.

e Quantify the efficacy of our proposed algorithms against re-identification attacks,
such as machine learning classifiers.

e Measure and quantify the impact of the proposed algorithms on the user experience
(UX).
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1.5 Methodology

The research was conducted in two stages. In the initial phase, we performed compre-
hensive data preprocessing on a DNS dataset of eight real users. This preprocessing laid
the groundwork for applying various machine learning classifiers. We designed, developed,
and tested our algorithms in the second stage. These algorithms were subsequently sub-
jected to the same threat models used previously, enabling us to measure and evaluate the
effectiveness of our strategies. Our primary goal was to minimize the accuracy of threat
models. Moreover, we conducted an in-depth analysis to assess these strategies’ real-world
implications and impact in various scenarios.

1.6 Contribution

Specifically, we diverged from the distributed strategies and put forth an alternative ap-
proach in our research. Our approach differs from conventional distributed architectures,
as we opted for an single-node-based approach that does not rely upon any intermedi-
ary and/or third party to function effectively. The details are elaborated in Chapter 5,
where we explore fresh opportunities and innovative solitary strategies to enhance user
confidentiality on the Internet.

We conducted experiments that leveraged relevance metrics and stochastic-based al-
gorithms to investigate these possibilities. These experiments were designed to evaluate
and validate the effectiveness of our proposed strategies. In general terms, our research
contributed in the following ways:

e A comprehensive collection of real DNS traffic traces was conducted to gather diverse
parameters and relevant data, (e.g., domain names, IP adress of the source and the
destination,etc.)

e The prediction accuracy of traditional machine learning algorithms was thoroughly
evaluated, and the findings confirmed an accuracy rate of over 95% when identifying
users based on DNS traffic.

e We have employed two approaches to propose multiple techniques for obfuscating the
DNS fingerprint. To be more precise, these techniques involve utilizing stochastic
processes and relevance metrics.

e The proposed algorithms were successfully implemented and achieved accuracy re-
ductions greater than 50%. However, this achievement presents a trade-off between
privacy and Internet browsing (user experience), demonstrating the substantial value
of the results obtained.

e An exhaustive study was carried out to evaluate the impact of our strategies on real
users.
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1.7 Thesis Organization

The thesis is structured as follows: Chapter 2 provides an overview of the DNS protocol.
This is followed by Chapter 3, which includes a literature review and an examination of
the state-of-the-art methodologies in identification techniques, focusing on machine learn-
ing algorithms for DNS fingerprinting and their countermeasures. Chapter 4 presents our
main threat models, consisting of three machine learning classifiers. Chapter 5 presents
the proposed strategies to minimize these threat models’ accuracy. Next, Chapter 6 covers
the simulations and results of our proposed strategies. Chapter 7 explores the real-life im-
plications of our algorithms, analyzing their impact in practical scenarios. Then, Chapter
8 offers potential directions for future research. Finally, in Chapter 9, our conclusions of
this thesis.



Chapter 2

Domain Name System (DNS)
background

DNS is a hierarchical, and distributed system, forming the foundation for almost all com-
munication on the Internet, starting with a DNS lookup. The DNS infrastructure com-
prises distributed databases accessible throughout the network, providing information re-
lated to requests made by hosts or users within the network. In most simple terms, it
translates a domain name to an IP address; For instance, when users such as Internet
browsers or mobile devices issue DNS queries, they are essentially seeking the IP address
of the server containing the information they requested initially. This ensures that the
content requested by the end user can be displayed correctly on web browsers or mobile
devices.

The stability, consistency, and efficient management of DNS are crucial for the smooth
operation of Internet. Properly functioning DNS ensures that applications can be accessed
and used reliably, making it a vital aspect of the configuration of any Internet node.
DNS can be managed locally, allowing for adding, removing, or modifying information for
specific hosts. DNS ensures the Internet works smoothly, loading content we ask through
HTTP/HTPPS requests quickly and efficiently. It is an essential component of how the
Internet works. With DNS, it would be easier for users to remember and access the vast
amount of content available on the Internet.

2.1 DNS architecture

DNS is divided into three main parts: the namespace, the resolver, and the servers. The
namespace is the system section containing the domain names and their corresponding IP
addresses. It is organized like a tree structure, starting from the root domain and branching
out to specific subdomains. The resolver, also known as the recursive resolver, functions as
an intermediary responsible for processing DNS queries initiated by the client (end-user)
and for receiving DNS responses. By Utilizing the DNS namespace, the resolver navigates
the hierarchical structure and accurately locates the essential information. Consequently,
the resolver plays a pivotal role as a crucial link in the process of translating domain names
into IP addresses.
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The DNS servers are machines distributed all over the Internet and provide DNS infor-
mation. They are responsible for answering the resolvers” DNS queries and providing the
necessary information to translate domain names to IP addresses and vice versa. These
three components work together to create a functionally delegated system that resolves
domain names to IP addresses and vice versa, allowing the end-user to access the desired
website or service by simply typing its domain name in the web browser.

DNS hierarchy

The entire collection of DNS administrative domains worldwide is organized in a hierarchy
known as the DNS namespace. This section explains how the organization of the names-
pace impacts local domains and the Internet. The DNS hierarchy, the domain name space,
can be visualized as an inverted tree structure. At the top of this structure is a single do-
main called the root domain, denoted by the symbol ".". Like the UNIX file system, DNS
domains are organized as descending branches, resembling the roots of a tree. As shown in
Figure 2.1, each branch represents a domain, and each subbranch represents a subdomain.

DNS hierarchy

Rootlevel —» /
o

Top Level
Domains )

amazon.com
dailyweb
solutions.com

google.com

Second Level > wikipedia.org
yahoo.com

Domains paho.org insite.net

finance.yahoo aws.amazon mail.dailyweb
.com -com solutions.com

Sub Domains — R TR [ERT ] blog.insite.net

Figure 2.1: DNS hierarchy example

It is important to note that the terms "domain" and "subdomain" are relative. A
specific domain is considered a subdomain to the domains above it in the hierarchy, while
it acts as a parent domain to the subdomains beneath it.

Under the root domain are the top-level domains that divide the DNS hierarchy into
segments containing second-level domains, sub-domains, and hosts. Hence, the DNS hier-
archy is comprised of the following five levels:

e Root Level Domain
e Top Level Domains (TLD)
e Second Level Domains (SLD)
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e Subdomains

e Hosts

While FQDN stands for Fully Qualified Domain Name, it is essential to note that
FQDNs are used in data processing for this work. It represents a complete and unam-
biguous domain name that specifies the precise location of a specific host within the DNS
hierarchy. An FQDN consists of multiple parts, separated by dots, with the most specific
information appearing on the left and the root domain on the right. It comprises the
hostname (or subdomain), the domain name, and the top-level domain (TLD). FQDNs
play a crucial role in uniquely identifying and locating specific resources, such as websites
or network devices, on the Internet.

The example of the elements of an FQDN can be best described in Figure 2.2

FQDN components

FQDN
o ds

. . 0
dpl.aws.amazon.com.
host SLD TLD root

L J
T

subdomain

Figure 2.2: Fully qualified domain name
from:[2]

2.2 Elements of the DNS protocol

The DNS protocol encompasses various elements that work together to ensure accurate
name resolution for end users. These elements are integral to translating domain names
into IP addresses, enabling seamless communication over the Internet.

2.2.1 Type of DNS Servers

The most common and essential DNS server types are used to resolve hostnames into IP
addresses.

DNS Resolver, a recursive resolver, or DNS recursor, acts as an intermediary between
a client and DNS nameservers. Figure 2.3 depicts the process in steps 1 and 2. Upon
receiving a DNS request from the client, the resolver checks its cache for the requested
domain information. If the necessary information is already cached, the resolver sends the
response back to the client. However, if the required information is not found within the
cache, the resolver proceeds to step 3. During this stage, the DNS resolver initiates the
corresponding sequence of request(s), starting with the root nameserver. The DNS Root
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Server serves as the initial step in the process of mapping a hostname to its corresponding
[P address. The DNS Root Server extracts the Top Level Domain (TLD) from the query,
such as "www.example.com." It then forwards the request to the TLD Name Server respon-
sible for that specific TLD (step 5), for instance, the .com TLD Name Server. This TLD
Name Server is responsible for providing information related to domains within the .com,
like "example.com.". Which in turn guide the resolver to the authoritative nameservers
responsible for the specific subdomain. Upon reaching the authoritative nameservers, the
resolver obtains the corresponding IP address. Subsequently, the resolver provides the
resolved IP address to the client (steps 8 and 9).

Client/User

Query Request "

Query Response

Root Name Server

Local Cache |_
. ‘::5::I E i
«—> : ;
5 i : TLD Name Server

Recursive DNS : |
resolver Authoritative
: : Name Server

‘Resolver iName Server

Figure 2.3: DNS architecture

2.2.2 Types of DNS Records

The DNS system uses a set of resource records, each with a specific purpose. These records
are used to store information about a domain name and its associated IP address. Some
of the most common resource records are:

e A: It holds the IPv4 address for a domain name. It maps a domain name to its
corresponding IP address.

e AAAA: It holds the IPv6 address for a domain name; it is similar to the A record
but is used for IPv6 addresses.

e CNAME: It is used to forward one domain or subdomain to another domain. It
does not provide an IP address but allows a domain to have multiple names.
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In the context of this work, our focus is directed towards A records. Although CNAME
records provide an alternative method for domain resolution, their function of forwarding
domains is not well-suited for the precise IP address association required by classifiers. On
the contrary, A records assume a significant role in shaping the outcomes of our machine
learning classifiers. They play a crucial part as they signify the final step in the resolution
process, returning the IP addresses associated with particular domain names.

2.3 Caching

Caching [18] is also essential to DNS resolution. Once a DNS resolver has looked up the
IP address for a domain name, it will cache that information for a certain amount of time,
called the Time to Live (TTL), so that it can quickly return the IP address in the event
of a subsequent request for the same domain name. This reduces the load on the DNS
hierarchy and speeds up the resolution process.

The TTL is a critical component in the DNS protocol. This value sets the duration
for which a particular DNS record will remain in the DNS resolver’s cache [19]. The TTL
value significantly impacts DNS performance and can directly affect a website’s availabil-
ity and user experience. Understanding the importance of TTL values and their role in
DNS caching is crucial for website operators and network administrators. "This value is
controlled by the original (authoritative) DNS server and represents the length of time that
other DNS servers and applications are allowed to store the given DNS Record before they
must discard it and, if needed, request its new copy. In practical terms, the TTL value de-
termines the validity period of the provided ’symbolic-name to IP-address’ mapping" |20,
p. 467].

According to RFC 6195, [21] when a requested resource record R is not found in the
cache, the client initiates a request to a bottom-level DNS server, usually belonging to
the Internet Service Provider (ISP). If the record R is not found in the local cache, the
request is forwarded to a higher-level server in the hierarchy. This process continues until
the requested record R is obtained from either a cache or the disk of an authoritative
server. Once the server providing R is located, it is sent back to the client via the reverse
path between the answerer and the client, leaving a copy of R at each cache on this path.
The time-to-live (TTL) value assigned to each copy of R by the answerer determines the
duration for which the copy may be cached. This TTL value ensures that all copies of the
record along the path are cached for a similar duration. This is called TTL rule in the
literature.

Caches that adhere to this rule are referred to as traditional DNS caches, while those
that ignore the TTL value and choose a locally defined value instead are known as modern
DNS caches [22].

Traditional DNS caches were designed to minimize the time it takes to look up a domain
name by storing the results of recent queries. These caches are typically implemented as
part of the DNS server software, and they work by storing the results of previous DNS
queries in memory. This approach is efficient, but it has some limitations. For instance,
traditional DNS caches can quickly become overwhelmed by the sheer number of DNS
queries that are processed by modern Internet networks. Furthermore, traditional DNS
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caches can be prone to certain types of attacks, such as DNS cache poisoning, which can
compromise the integrity of the cache and cause it to return incorrect results.

Modern DNS caches, on the other hand, are designed to address these limitations by
utilizing sophisticated algorithms and data structures that can handle large volumes of
DNS queries while maintaining high levels of performance and security. For example,
modern DNS caches are often implemented as standalone applications that run on special-
ized hardware or virtual machines. These caches are optimized to handle a wide variety
of query types and are designed to adapt to changing network conditions and DNS traffic
patterns. Modern DNS caches often employ advanced security features, such as secure
communication protocols and Domain Name System Security Extensions (DNSSEC) val-
idation, which help protect against DNS-based attacks. Overall, modern DNS caches are
more efficient, secure, and scalable than traditional DNS caches, making them an essential
part of today’s Internet infrastructure.

Figure 2.3 shows the immediate interaction between the resolver and the local cache
in step number 2. This means that if a requested domain by the client is in the cache,
the response will be immediate since the query is already stored in the cache, and the
query does not have to be forwarded to a higher-level DNS server. The process of query
forwarding continues until a result is returned to the user program. Therefore, caching
allows the best user experience in the website/application and decreases the DNS traffic
network’s flow.



Chapter 3

State of the art

3.1 Identification techniques

Machine learning algorithms have been extensively studied and proven to be a powerful
tool in various fields. These mathematical models demonstrate their efficacy in diverse
applications, including DNS fingerprinting, where they can predict classes with a certain
probability. These models are often employed to identify users, represented by unique
identifiers like IP addresses (classes). For instance, Herrmann et al. [5] implemented
Multinomial Naive Bayes (MNB) for re-identification attacks using DNS traffic. Although
MNB is a simple model that naively assumes conditional independence of each feature, it
is essential to acknowledge that this assumption is complex to model in real-life scenarios.
However, despite its simplifications, the efficacy of MNB has been widely proven in the
literature, making it a valuable and robust tool for various classification tasks with an
accuracy of around 90% when identifying users. Additionally, Arana et al. in [3] introduced
linear classification models such as Support Vector Machine, achieving accuracies above
96%. This demonstrates the potential of machine learning methods in accurately predicting
user identities based on DNS data.

In 2023, a group of researchers delved into the domain of bot detection and DNS
fingerprinting, as described in [23]. Their investigation highlighted the effectiveness of
ensemble learning models, such as decision trees, showcasing an accuracy of 99.5% in
making predictions. This emphasizes the significance of employing advanced algorithms
for tasks related to DNS fingerprinting and its applications.

The successes observed in these studies further reinforce the notion that machine learn-
ing algorithms play a pivotal role in DNS fingerprinting attacks, enabling precise predic-
tions of user identifiers and facilitating efficient predictions. Moreover, Vekshin et al. [24]
demonstrated that DNS over encrypted channels can also be accurately identified, achiev-
ing an impressive accuracy rate of 99%. To achieve such results, they utilized additional al-
gorithms, including K-Nearest Neighbors, AdaBoosted Decision Tree, and Random Forest.
This further exemplifies the versatility and effectiveness of machine-learning approaches
in DNS-related tasks.

The utilization of machine learning algorithms in DNS fingerprinting continues to show-
case its potential to predict user identifiers and identify DNS over encryption channels

13
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Figure 3.1: Accuracy of DNS fingerprinting by Arana et. al.|3]

accurately. This underscores the significance of these techniques in network analysis and
intrusion detection systems.

3.2 Countermeasures

As mentioned in Chapter 1, several works have been proposed to protect DNS and try to
obfuscate its fingerprint. These protocols and implementations help to secure DNS by en-
crypting/anonymizing the communication between the client and the server, reducing the
risk of tampering and eavesdropping. However, it is worth noting that adopting these secu-
rity strategies often entails high computational costs, complex implementation processes,
and, in a few cases, high latency, which can pose challenges for widespread implemen-
tation and deployment, thus harming the end-user experience. In addition, most of the
proposed strategies embrace intermediates or relays. Meanwhile, the approaches that solve
this problem in a solitary approach might leverage certain information to the recursive re-
solver that can still targeting us. Moreover, we can categorize the existing strategies as
"Single-node-based strategies" or "Intermediary/relay-based strategies" countermeasures.

3.2.1 Single-node-based strategies

Various implementations utilize encryption-based algorithms to enhance DNS security. For
instance, DNS over HTTPS (DoH) [10] ensures secure DNS communication by encapsu-
lating DNS queries and responses within HT'TPS, utilizing encryption to protect the data
in transit. Nevertheless, as mentioned earlier, in [24], this strategy can be easily detected.
EncDNS [25] takes a similar approach, emphasizing encryption to safeguard DNS traffic
from unauthorized access and tampering.

Furthermore, some solutions propose tunneling methods, such as DNS over TLS (DoT)
[11]. In DoT, clients and local or recursive resolvers establish a Transport Layer Security
(TLS) session to create a secure tunnel for sending DNS queries. Similarly, DNS over QUIC
(DoQ) [12]|, which was introduced to the IETF in 2017, offers similar privacy properties
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to DoT. DoQ aims to simplify the traditional HTTPS stack (consisting of HTTP /2, TLS,
and TCP) by multiplexing multiple HTTP connections over a QUIC tunnel operating
on top of the UDP transport layer. Thus, makes the collection of information for the
recursive resolver simpler. Although these features protect user DNS traffic from passive
eavesdropping by intermediary nodes, they may still allow DNS resolvers to collect traffic
information, which could be utilized to estimate user fingerprints. This limitation arises
because all queries are transmitted over specific ports that can be detected, potentially
compromising the privacy and security of the communication.

Furthermore, certain implementations incorporate intricate mathematical operations
to enhance DNS security. DNSCurve [26] employs elliptic curves and uses public key
cryptography, where the client and the resolver have a unique pair of public and private
keys. When the client sends a query to the resolver, it encrypts it using its public key.
The resolver can then decrypt the query using its private key, process it, and send the
response back to the client. Similarly, F. Denis and Y. Fu proposed DNSCrypt [27], which
employs cryptographic signatures to verify the authenticity of DNS responses and ensure
the integrity of DNS transactions. It is important to acknowledge that these encryp-
tion and mathematical operations may introduce additional computational overhead while
effectively improving overall security, resulting in increased response times for real-time
applications. Striking a balance between security and performance remains crucial when
implementing these protocols in real time.

Moreover, there have been proposals for strategies to send additional queries to obscure
the fingerprints. Herrmann et al. introduced a technique called "Range Query" [13]. When
a client needs to issue a DNS query to a resolver, it randomly selects (without replacement)
N —1 dummy domain names from a database. It sends a total of N queries to the resolver.
After receiving all the replies from the resolver, the responses for the dummy queries are
discarded, and the desired reply is presented to the application that initiated the query.
However, it has been observed that machine learning algorithms can learn to disregard
these dummy queries, thereby affecting the effectiveness of these solutions.

3.2.2 Intermediary/relay-based strategies

Strategies that rely on collaborative nodes or intermediaries acting as middle-man in the
network have also been proposed. Liu et al. proposed in 2020 [28] a new third-party DNS
service called T2DNS, which aims to address various privacy and trustworthiness concerns
using a hybrid solution. T2DNS consists of an agent installed on each client and a proxy
between the clients and the Internet DNS service. The communication between the agent
and the proxy uses a secure protocol, while the communication between the proxy and the
Internet DNS servers uses obfuscation techniques.

The "Never Query Alone" approach, as outlined in [3], is also centered on an intermedi-
ary /collaborative strategy. The fundamental idea behind this technique is to divide users’
queries among a trusted group of nodes rather than relying on a single node. Each node in
the group is responsible for handling a subset of the user’s queries, which are distributed
within the network. Essentially, each node belongs to a multicast group in a local network,
and they work together to minimize the risk of being tracked by DNS resolvers, sending
its queries to "neighbors" in the network.
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In addition, one of the most used strategies today is The Onion Router [16]. Regarding
DNS, when a user requests to access a website, the request is first sent to a local DNS
resolver to resolve the domain name to an IP address. However, when using Tor, the
request is sent to the circuit’s first onion router. This router acts as a local DNS resolver
and resolves the domain name to an IP address. Then, the request is encrypted and sent
to the next onion router in the circuit, and so on, until it reaches the final onion router,
called the exit node. The exit node then sends the request to the destination IP address
on behalf of the user. Nevertheless, the most noticeable drawback of this solution is the
high latency of around 4.1 s [17] per query, making it hard to use as a day-to-day solution.

In 2021, Jun Kurihara and Takeshi Kubo proposed Oblivious DNS (ODNS) [14], a
strategy that leverages an existing full-service resolver over Dob3 as a relay. This relay
acts as an intermediary, forwarding encrypted DNS messages between the ODNS resolver
and the user, hiding the user’s address from the ODNS resolver.

Additionally, various solutions have been proposed that combine encryption algorithms
with intermediaries or relays to enhance DNS privacy. Approaches like Oblivious DNS over
HTTPS (ODoH) [14, 29|, which combines the privacy benefits of DNS over HTTPS with
the obfuscation provided by ODNS. This is accomplished by encrypting the DNS query
using the HT'TPS protocol, which is commonly used for secure web browsing. The ODoH
client encrypts the DNS query and sends it to a server known as a "proxy resolver."
The proxy resolver then decrypts the query, performs the DNS lookup, and encrypts the
response before sending it back to the client.

As a modification of ODNS and ODoH [14, 29, 30|, authors in [15] aim to protect the
privacy of DNS users by hiding their DNS queries from the DNS resolver and any interme-
diate parties. The main difference between Mutualized Oblivious DNS and Oblivious DNS
is that in Mutualized Oblivious DNS, the encryption and decryption of the queries take
place at the client and server ends, respectively. Also, the queries are grouped together
with other users’ queries before being encrypted. This way, the queries are "mixed," and
it is difficult to tell which query belongs to whom. This "Mix-Net" technique is used to
increase privacy and anonymity.

Furthermore, an anonymized version of DNSCrypt [31, 32| offers a different approach
to enhancing DNS privacy. DNSCrypt anonymizes DNS queries by encrypting and routing
them through a network of relays, making it difficult for eavesdroppers to trace the origin
of the queries.

Summary

As mentioned, most strategies |28, 3, 16, 14, 15] depend on intermediaries or relays to
hide the DNS fingerprint of users. While such approaches might employ a combination
of cryptographic methods and possess a robust structure, any potential failure in these
intermediary nodes can significantly undermine the overall effectiveness of these method-
ologies. We propose shifting towards a single-node-based strategy to address this vulnera-
bility, which aims to obfuscate our DNS fingerprint without relying on intermediaries. By
adopting this approach, our solution demonstrates its efficacy through a streamlined DNS
configuration that can be implemented natively in any Unix-like system. This enhances
the system’s overall reliability and simplifies the implementation process, making it more
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accessible to users with varying technical expertise. In the upcoming chapters, we will ex-
plore the details of this strategy based on a single node. We will also highlight its benefits
in effectively achieving a secure obfuscation of the DNS fingerprint.



Chapter 4
Threat Models

As previously discussed, using machine learning classifiers in the context of DNS traffic
analysis is a growing concern for organizations and individuals. With the ability to identify
individual users with increasing accuracy, attackers can pose a significant threat to the
privacy and security of users and organizations alike. Therefore, proactive measures must
be taken to mitigate these threats and protect against these sophisticated cyber-attack
forms.

In this thesis, we evaluated three of the most commonly used machine learning classi-
fiers in the literature that can classify users based on real DNS traffic data described as
follows.

4.1 Multinomial Naive Bayes

The Multinomial Naive Bayes model is proposed based on the characteristics of the data,
as our problem involves multi-class classification (involving one class per user modeled).
Although Naive Bayes and related probabilistic classifiers naively assume independence in
the occurrence of its attributes (which is often not the case for real-world problems), it has
been employed due to its simplicity and overall performance; in addition, is it the most
commonly used model in the literature. [3, 5, 24].

For instance, each session representing a day of DNS traffic can be seen as an indi-
vidual instance denoted by ¢; belonging to a specific class C. These classes correspond to
different users in the classification task. Within each session, there is a multiset of desti-
nations denoted as (x{xl , a:é”,xgw?’, o xfi:m), where z;,7 = 1,...,m represents a particular
destination (such as a domain name) requested by a user, and f,, represents the frequency
or number of times that destination was visited during the session. These frequencies are
non-negative integers and provide information about the importance or popularity of each
destination within the session.

From this collection of destinations, an attribute vector @ = f = (f,, fugs fass s fon)
can be derived, representing the visited websites for that session. This attribute vector
captures the frequency of visits to each destination, quantitatively representing the user’s
activity during that session. To determine the probability that an instance or session
represented by the attribute vector f belongs to a particular class ¢;. By calculating the

18
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conditional probability P(f | ¢;) for each attribute vector f and each class ¢; in the training
data, we can utilize these probabilities to classify new instances or sessions based on their
observed attribute vectors. Thus, given m unique destinations the classifier evaluates the
probability given instance f belongs to some class ¢; as follows:

m

P(flc;) ~ HP = a;]e) (4.1)

Where P(X = zj|c;) describes the probablhty that a destination x; comes from the aggre-
gate multiset among all visited websites of the training class ¢;, the value of f,, describes
the number of times visited the destination z; in the test instance.

4.2 Support Vector Machines

We also introduced a more complex attacker model that involves support vector machines
(SVM). It is essential to note that in its most basic form, SVM does not inherently support
multi-class classification. Instead, it excels in binary classification, where data points are
separated into two classes. To handle multi-class classification, we employ a One-to-One
approach [33], which involves breaking down the multi-class problem into multiple binary
classification problems. The idea is to map data points to a higher-dimensional space to
achieve linear separation between each pair of classes. This involves creating a binary
classifier for each pair of classes.

SVM manipulates simple mathematical models of the form y = w- 2T +~, where z € X
represents the data domain and y € Y is the response variable. The central concept behind
SVMs is to enable the creation of linear boundaries within a domain by manipulating this
straightforward mathematical model using regression plane fitting, which serves as the
separation boundary for the given data domain. The weight vector w and the bias term ~
are obtained by solving a quadratic programming problem in its dual form.

As mentioned, the input vectors are transformed into a high-dimensional feature space
using a nonlinear mapping function of ¢(x). This transformation allows for constructing a
bounding plane function using the transformed data. The representation of the bounding
plane function is as follows:

yilw-o(X)+9] >1-6&, Viji=1,..m (4.2)

Equation 4.2 implies that for every input data point X;, the transformed feature space
is computed using p(X]!). The distance between the feature point and the hyperplane is
then calculated as w - (X)) + ~, which should be greater than or equal to 1 to meet the
criteria for correct classification. The slack variable &; is introduced to relax the constraint
when the data is not linearly separable.

The SVM model aims to find the optimal weight vector w and bias term ~ that minimize
the objective function J(w, &) while satisfying the constraints. The optimization problem
can be formulated as follows:
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N
1
MMy e (W, €) = éwTw + CZ{Z
i=1

yilwp(XD) +4] > 1 - & (4.3)
s.t.
&>0i=1,..N

In Equation 4.3, the objective function J(w, &) consists of two terms: the first term
%wTw controls the complexity of the model. The second term C' Zf\il &; penalizes the mis-
classification of training data. The parameter C' is a regularization constant determining
the trade-off between achieving a low training error and maximizing the margin. The con-
straints enforce that the transformed data points lie on the correct side of the separation
boundary.

Solving the optimization problem in Equation 4.3 typically involves using algorithms
such as the dual form of the problem with a linear cost function. By formulating the
problem in this manner and solving it using appropriate algorithms, SVMs can effectively
find the optimal separation boundary for the given data set, taking into account both the

T

complexity of the model (controlled by the first term %w w) and the misclassification of

training data (penalized by the second term C Zf\il &). This allows SVMs to balance
achieving a low training error and maximizing the margin between the data points and
the separation boundary.

The regularization constant C' plays a crucial role in SVMs. When C' is large, the
optimization algorithm prioritizes minimizing the training error, potentially leading to a
narrower margin and a higher risk of overfitting the data. On the other hand, when C' is
small, the algorithm focuses more on maximizing the margin, which can result in a larger
margin but potentially at the cost of increased training error.

The LinearSVC implementation in sci-kit-learn provides an efficient way to solve the
optimization problem in Equation 4.3 for linear SVMs. It utilizes the liblinear library
[34], which is based on the linear programming solver for large-scale machine learning
tasks. This implementation enables SVMs to handle large datasets and efficiently find the
optimal weight vector w and bias term ~ that define the linear separation boundary in the
high-dimensional feature space.

4.3 Random Forest

As a third and more robustly proposed attacker model compared to the previous ones, we
have defined an ensemble approach. Decision trees are non-parametric supervised learning
models aimed at developing a predictive model for the target variable, in this case, an IP
address. These decision trees learn straightforward rules from the domain names within
the data, enhancing the accuracy of our predictions. A tree can be considered a piecewise
constant approximation; regression and classification could be done with them. For our
attacker modeling, the classification method was employed.
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Since we are predicting the correct labeling of users with a certain probability value,
we employ the ensemble learning algorithm Random Forest from the Scikit-Learn library
[33]. Specifically, the class DecisionTreeClassifier is utilized, as it is well-suited for our
multi-class classification problem.

The Random Forest algorithm builds a collection of decision trees that partition the
feature space based on the training vectors z; € R™ and the corresponding label vector
y € RY. The goal is to group samples with the same labels or similar target values. The
feature space is recursively partitioned to form a tree structure. At each node m of the
tree, the data is represented by (),,, which consists of n,, samples. To split the data at
node m into left and right subsets, a candidate split = (j,1,,) is considered, where j
represents a feature and t,, is a threshold. The data is then divided into subsets Q'(f)
and Q" (0) based on this split.

Q' (0) = {(z,y)la; <t}
Q" (0) = Qu \ Q' (0)

When using a decision tree for classification, the quality of a potential split at a node
is determined by an impurity function denoted as H(). This function measures the level of
disorder or randomness in the samples at the node under consideration. For classification,
we utilize the impurity function:

(4.4)

left nri ght

n .
G(Qu6) = - H(QKM0)) + "2 H(Q (6)) (1.5
The decision tree selects the parameters that result in the lowest impurity level, mini-

mizing the impurity as follows:

0" = argmingG(Q,, 0) (4.6)

The process recurses for subsets Q'() and Qr#"(#) until the maximum allowable
depth is reached (n,, < mingmpies) Or n,, = 1. In this context of classification, the Gini
impurity formulation [35] is employed. Gini impurity is a metric used to determine how
the features of a dataset should be used to split nodes and create the tree. It is a value
between 0 < gini < 1 that represents the probability of misclassifying new and random
data if they were assigned a random class label based on the class distribution in the
dataset.

For a target that is a classification outcome taking values 0,1, ...,k — 1 for node m, let

b= — 3 Iy =) (4.7

m yEQm

be the proportion of class k observations in node m. The Gini impurity measure is
then defined as:

H@Qw) = po(1— o) (48)
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Additionally, the logarithmic loss or entropy can be calculated as follows:

k—1
k=0
The decision tree effectively determines the splits that best separate the classes or tar-
get values by selecting the parameters that minimize the impurity function. The Random
Forest algorithm further improves the predictive performance by aggregating multiple de-
cision trees. Each tree is trained on a random subset of the training data using a technique
called bagging, and the final prediction is obtained through majority voting or averaging
the predictions of individual trees.

Summary

This Chapter outlines the characteristics and functionalities of each attacker model,
highlighting their mathematical capacity to process and analyze DNS fingerprints based on
real data. By employing machine learning algorithms, these attacker models demonstrate
a sophisticated understanding of DNS traffic patterns, making them formidable adversaries
in DNS fingerprinting.

The subsequent Chapter describes the core focus of the research: introducing bias into
the aforementioned machine learning classifier models to make them prone to inaccurate
predictions.

The results of the experiments reveal the effectiveness of the proposed bias-inducing
algorithms. By introducing carefully crafted obfuscation techniques and perturbations to
DNS fingerprints, the machine-learning classifiers exhibit notable deviations in their pre-
dictive accuracy. This analysis highlights the importance of understanding and mitigating
biases in machine learning-based security systems.



Chapter 5

Proposed algorithms

As previously discussed in Chapter 1, our online activity generates a digital footprint that
can be analyzed using a Zipf-like popularity distribution. In addition, these patterns are
well identified by machine learning algorithms, as also previously discussed. Therefore,
it is important to create countermeasures. This Chapter focuses on two methods for
obfuscating the DNS fingerprint that implement selective domain swapping or blocking.
The first approach involves the random alteration of incoming DNS queries directed toward
the DNS recursive resolver. By employing this method, we can introduce stochastic bias
into the machine learning classifiers utilized by potential adversaries. This, in turn, enables
us to modify the patterns of DNS queries.

In addition, we adopted a more sophisticated approach to enhance our DNS obfuscation
efforts further. We implemented established relevance metrics commonly used in text
classification. This allowed us to evaluate the importance of each domain name (query)
within our dataset and gain insights into their relative significance. By leveraging this
metric, we could effectively analyze and prioritize the relevance of each domain name,
making informed decisions regarding our DNS obfuscation strategies. We could identify
each user’s most relevant domain names by applying it to DNS, enabling us to implement
effective DNS fingerprint obfuscation strategies. Thus, we can create a virtual table or
ranking of the most important domain names by each user in the dataset.

Figure 5.1 outlines the general workflow of our methodology, which primarily centers
around the defensive aspect of developing an obfuscation technique. We aim to safeguard
users from potential attackers depicted in the red-dotted box. These attackers may include
entities such as the DNS server (DNS resolver) or third-party agents seeking to exploit DNS
fingerprint data for various purposes. It is pertinent to highlight that our implementation
relies on the client-side, thus, avoiding the need of any intermediary /relay in the network.

5.1 Blocking-based algorithms

We conceptualized and developed a preliminary algorithm using stochastic process as the
core mechanism named P-Block. This implementation integrates a blocking function to
effectively handle the resolution of requested queries on a local level. By incorporating
these functions, the algorithm can efficiently process, and a local DNS resolution responds
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Figure 5.1: Block diagram of how our proposed algorithms work

to the queries.

It is worth noting that our "blocking” is defined as taking this domain from our initial
local cache with a fixed TTL. As a result, the resolution will be made locally from the OS by
a predefined and adjustable time instead of being sent to the resolver. This local resolution
mechanism allows us to efficiently retrieve the domain from the local cache, which already
contains the necessary information and thus avoids sending the query externally to a DNS
resolver. By leveraging the local cache and a predetermined TTL, we can enhance our DNS
resolution process’s overall efficiency and responsiveness for frequently accessed domains.
However, it is worthwhile to mention that a high TTL values may lead to inconsistencies
in the data.

5.1.1 P-Block

As an initial experiment, we proposed the P-Block method, considered the most straight-
forward approach. This method uses a "toss a coin” with a uniformly distributed prob-
ability for each query. A control parameter p is defined and dynamically changed for
different test cases based on the probability result in each requested domain. The decision
to block a domain name depends on the outcome of the probability, and the comparison
of the probability result with a value previously set of the control parameter. Although
this method may be considered simplistic, it serves as a fundamental starting point for
our research, by exploring into the potential of probabilistic-based obfuscation methods.
In the subsequent sections, we will explore more advanced strategies that build upon the
groundwork laid by the P-Block approach, aimed at further enhancing the efficacy of DNS
fingerprint obfuscation.

Figure 5.2 shows a general workflow of the logic behind P-Block algorithm. Where we
split the data to train the classifiers, and further, proceed with the stochastic process in the
test data, to then, make predictions. To clarify the behavior mentioned above, during the
actual algorithm testing, a random variable r is generated for each requested domain name,
following a continuous uniform distribution. This random variable r captures the element
of chance in the process. Let r; denote the random variable generated for the i-th requested
domain name during the testing phase. The probability distribution r; can be denoted as
P(r;). The static control parameter p, defined previously and adjusted for different test
cases, acts as a threshold. Therefore, the corresponding query is blocked if the generated
value falls below the established p value. On the other hand, if the generated value is
higher than the p value, the query is allowed to proceed. This approach introduces an



5.1. BLOCKING-BASED ALGORITHMS 25

P-Block

Feature Vectors
(Domain names) Sort feature vectors by TF-IDF

from higher to lower

™
DNS traffic train :{> ::> m
subset \

I Labels (IP address)

Attacker models (Machine
Learning Classifiers)

Select P
threshold value.
Generate random value rand_v

« Multinomial Naive Bayes
« Support Vector Machine
Random Forest

DNS traffic test @

subset

L

B Report accuracy of
Labels (IP address) :> ::> Pr;z'g:;/e :> each attacker model

predicted labels

Figure 5.2: Theoretical P-Block workflow

element of randomness into the decision-making process, aiming to make it more difficult
to discern the user’s identity. The control parameter p is defined as the following subset:
p € (0.1,0.99)

The random variable r has a uniform distribution in the interval (0,1) ={r e R: 0 <z <
1}, if its density function is constant in that interval, or, equivalently:

1
_f 5 a<r< b
fr) = { 0, otherwise (5.1)

5.1.2 Top-Block

Like our earlier approach with P-Block, we also incorporate a blocking mechanism in
Top-Block. However, there is a significant distinction in this methodology. In Top-Block,
we adopt a more targeted strategy, selecting only the top 10% of a fixed rank generated
through the utilization of Term Frequency Inverse Document Frequency (TF-IDF). This
entails creating a domain name ranking specific to each user, allowing us to discern the
most pertinent and crucial domains associated with each node in the network. Creating
personalized domain name ranks empowers the Top-Block system to make informed de-
cisions about blocking or permitting queries. Users can still access essential information
without compromising their privacy and identity, making Top-Block a sophisticated and
user-centric approach to network security.



5.1. BLOCKING-BASED ALGORITHMS 26

TF-IDF

Since our primary goal is to obfuscate the DNS fingerprint and minimize the accuracy
of our threat models, a well-reviewed mathematical representation of text documents was
implemented. TF-IDF [36] represents each session as a document of words without an
order. It is a statistical measure of how important a word is in a document within a
corpus, and this document represents a day of traffic for each user.

IDF is well defined as a scalar over all the datasets, but the TF definition is in terms of
the documents. To better understand, the Term Frequency can best describe how many
times a domain name appears in the document, and the Inverse Document Frequency
measures how many sessions (days) the domain name has appeared.

Formally, the algorithm aims to represent each document d as a vector d = dt, ..., d1FD
in a vector space, such that documents with similar content have similar vectors. Here,
|F'| corresponds to a set of words, and each dimension in the vector space represents a
word selected during the feature selection process. The values of the vector elements d'
for a document d are computed as a combination of the statistics of the term frequency
TF(w,d) and DF(w).

The term frequency TF(w,d) measures how often word w appears in document d,
and the document frequency DF(w) counts how many documents contain at least one
occurrence of word w. The inverse document frequency IDF(w) is derived from the
document frequency. These vectors are utilized to capture the semantic similarity between
documents, facilitating tasks like clustering or classification.

[DF:kg(D¥10> (5.2)

Here, |D| represents the total number of documents. The inverse document frequency
of a word is lower when it appears in many documents and higher when it appears in only
one. We then calculate the value d' for feature w; in document d as their product.

d" = TF(w;,d) - IDF(w;) (5.3)

To this end, a rank of each domain name can be created. Thus, we created a virtual
rank for each user corresponding to the most important domain names. More precisely,
the domain names were sorted by the sum of the TF-IDF values. This means we only
worked with the relevant queries based on this statistical metric.

Figure 5.3, shows the flow of how this approach works. Where we sort the feature
vectors (domain names) by their importance based on the value of the results of TF-IDF.
By this means, we can create the rank as previously discussed. In turn, block a small
fraction (%) of this domain names.

To achieve this, we introduce a function U;(PR;, p) for each user U;, where PR; repre-
sents the domain name visited by user U; at rank R’. This function acts as a gatekeeper,
evaluating whether a domain should be blocked or allowed based on the page’s rank vis-
ited by the respective user. To impart more flexibility and dynamism to our system, we
incorporate a range of ranks controlled by the parameter p. This parameter modifies our
previous function as follows: Let U; represent the set of users where U; = {1,2,..., N}. M
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represent the total number of domains, where P = {1,2, ..., M'}. N; represents the number
of domain names in the ranked list for user U; where R; = {1,2, ..., N;}. Meanwhile, PR;
represents the domain name visited by user U; at rank R’ where PR; € M. Thus, our
function U;(PR;) can be defined as follows:

Blocked, if R' < &5 x N; (5.4)

Allowed, otherwise

U:(DR', p) = {

It is important to remark the range of p’ within our experiments, where p’ € [1,10].
Consequently, this shift results in a reduction of the blocking range when compared to our
earlier method, P-Block, which blocking percentages ranging from 10 to 99%. This ap-
proach ensures a more refined and user-tailored blocking mechanism by introducing more
bias to the classifiers. Top-Block is a sophisticated and single-node-based approach to net-
work security regarding DNS obfuscation by allowing users to access essential information
while preserving their privacy and identity.

5.2 Swapping-based algorithms

As variations of our two previously proposed algorithms, we have developed two distinct
adaptations for each. In this approach, rather than implementing domain name blocking,
we opt for domain name "swapping." In contrast to our blocking algorithms that retrieve
the blocked domain from the local cache, these algorithms execute a "swap" operation.
Similarly, domains that are not forwarded are resolved through the local cache, while a
domain added or substituted within the local cache is directed to the recursive resolver.
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5.2.1 P-Mix-All

In addition to designing the P-Block algorithm, we have also developed an innovative ap-
proach called P-Mix. While P-Block selectively blocks domain names based on a specified
probability threshold, P-Mix takes a different approach. It introduces a "virtual table"
concept, which serves as the basis for domain swapping, setting it apart from P-Block.
This algorithm introduced the TF-IDF metric results, where a table of ranks of domain
names per user is made. Thus, we can create this virtual table or ranks it according to its
importance by each user.

More precisely, rather than blocking domains, P-Mix-All dynamically swaps the re-
quested domain names with alternate ones from the table’s remaining 1 — p data. By
replacing blocked domains with suitable alternatives.

The P-Mix-All algorithm is designed to manage the selected domain names based
on a predefined percentage, denoted as p. To facilitate this, the algorithm utilizes the
same random variable r as P-Block, representing the probability of encountering a domain
name to be blocked but swapped in this case. When a user initiates a request for a specific
domain name d from their OS, the P-Mix-All algorithm enters its decision-making process.
If the random variable r is found to be less than p (r < p), the algorithm triggers a query
replacement mechanism. In this case, it randomly selects another domain name d’' # d
from all available domain names except the original domain name d. The user’s initial
request for domain name d is then seamlessly replaced by the query for domain name d'.
This allows for the dynamic substitution of specific domain names to enhance user privacy
or control content access.

Conversely, the P-Mix-All algorithm follows a different path when the random variable
r exceeds or equals the predefined percentage p (r > p). In such scenarios, the algorithm
allows the user’s query for domain name d to be sent as usual without any substitution or
blocking. This means that when the likelihood of encountering a blocked domain name is
less than than threshold p, the P-Mix-All algorithm introduces unpredictability in query
responses, effectively obscuring the identity of requested domain names. However, when
r has a greater likelihood of accessing a non-blocked domain, the algorithm allows the
user’s request to be resolved locally, ensuring seamless and unaltered access to the desired
content.

By incorporating this probabilistic framework, the P-Mix-All algorithm effectively de-
termines which domain names are blocked and which are allowed to proceed unhindered.
Utilizing a random variable r in the decision-making process introduces an element of
randomness, enhancing the obfuscation of the DNS fingerprint. Consequently, the P-Mix-
All algorithm bolsters the overall security and privacy of the system by diversifying DNS
query patterns and making it harder for potential adversaries to discern browsing behav-
ior. Moreover, the parameter p can be adjusted to cater to specific requirements or desired
levels of obfuscation, providing users with a flexible and customizable approach to DNS
resolution.
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5.2.2 P-Mix-Bottom

As an additional algorithm and keeping the stochastic-based approach, P-Mix-Bottom has
been implemented, incorporating a similar underlying principle as the p-value. In contrast
to the previously proposed algorithms, P-Mix-Bottom rather than selecting replacement
values randomly from the entire test data subset 1 —p as P-Mix-All. It generates a specific
virtual table, as discussed before, enabling targeted domain exchanges. This algorithm is
still implementing the generation of the random variable r as described in equation 5.1
and a similar technique of the virtual table of P-Mix-All.

With the result of the sum of TF-IDF, this metric assigns a scalar importance value to
each unique domain for every user. Specifically, the lower segment of the 50th percentile is
chosen, effectively creating a virtual division within the table for each user. Consequently,
domain replacements are performed with domains with lesser importance for the user,
as determined by the corresponding importance values. Thus, based on a continuous
probability distribution, we generally swap the requested domain to the less important
ones. If the "toss coin" falls below our parameter p, the query is swapped; otherwise,
the domain goes through an ordinary DNS resolution. Therefore, with this approach we
modify the data distribution (i.e., Zipf) that the attacker is receiving. Consecuently, we
can manipulate with this stochastic process introducing bias to the threat models.

5.2.3 Top-Mix-All

As the next proposed strategy, we introduce an approach that diverges from the blocking
mechanism utilized in Top-Block. In this new method, Top-Mix-All, we maintain the
foundation of our earlier ranking algorithms, as discussed previously. However, instead
of outright blocking a requested domain, we replace it with another domain from our
importance set.

Similarly to the P-Mix-All algorithm, the fundamental principle of Top-Mix-All involves
the utilization of the complement of p’ in terms of our ranking tables by each user, specifi-
cally 1 —p/, to dictate the obfuscation. If the requested domain relies on R* < % X N;, we
randomly select a domain from 1 — p/. Similarly to the P-Mix-All approach, a requested
domain d would be swapped for a domain d’, but instead of using the random variable
r, it natively will choose a random domain of the remaining set. Thus, the domain will
be swapped rather than blocked using Equation (5.4). By incorporating this approach,
we introduce flexibility to our decision-making process. Rather than strictly blocking a
domain, we can replace the original domain with an alternative, enhancing the diversity
and randomness in the selection process.

The underlying mechanism remains anchored in using the domain ranks we meticu-
lously generated in the past. This allows us to prioritize the most relevant and influential
domains when choosing candidates for substitution.

5.2.4 Top-Mix-Bottom

Our last effort to minimize the accuracy of the machine learning classifiers relies on the
Top-Mix-Bottom algorithm. Like its counterpart, P-Mix-Bottom, this approach leverages
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the lower segment of the 50th percentile of ranks per user. Furthermore, we utilize the
identical Equation as in Top-Block (see Equation (5.4)). However, in contrast to blocking
the domain, we implement the domain swap strategy.

We remain focused on minimizing the classifier’s efficacy through strategic manipula-
tions in the Top-Mix-Bottom algorithm. We target domains that exhibit specific patterns
by harnessing the lower segment of the 50th percentile ranks assigned to each user. This
means that instead of preventing access to specific domains, we theoretically exchange
them with other less important domains according to our ranks, thus obscuring the origi-
nal domain’s identity and confounding the classifier’s predictions.

By incorporating the Top-Mix-Bottom algorithm into our investigation, we extend our
set of techniques to diminish the accuracy of the machine learning classifiers.



Chapter 6

Simulations & Results

This Chapter describes the simulations and results of our proposed strategies. The imple-
mentation phase involved bash scripting, Python 3.10, and Scikit-learn’s built-in libraries
[33]. These libraries were instrumental in the machine learning stage, as discussed in Chap-
ter 4. Furthermore, we ensured that our obfuscation algorithms were implemented and
tested on an Ubuntu 22.04.2 LTS (Jammy Jellyfish) system with an Intel(R) i7-7700 CPU
@ 3.60GHz and 64GB of RAM. Even though our evaluation was in a unix-based system,
our implementation can be migrated to any platform.

6.1 DNS traffic dataset definitions & statistical analysis

The theoretical implementation centers on analyzing and preprocessing a DNS traffic
dataset from the UNAM Telecommunications Department. This extensive dataset origi-
nally covered DNS traffic spanning 108 days. However, for this thesis, we focused on 86
days after preprocessing, which involved removing the weekends and two weeks of public
holidays. Below is a detailed description of the dataset and the statistical outcomes of the
preprocessing and data analysis.

Within our research framework, two threat models sourced from the NQA strategy [3]
serve as our baseline for comparison. In addition, we have incorporated a more robust
attacker model, known as the Random Forest, as detailed in section 4.3. Including the
Random Forest model significantly enhances the evaluation of our approach. Moreover,
it accentuates our proposed strategies’ impact on the accuracy of an ensemble such as a
random forest.

6.1.1 Attributes of the dataset

During the data preprocessing phase, an analysis revealed that only 8 IP addresses demon-
strated behavior resembling that of actual users. This observation suggests the existence
of 8 genuine users within the dataset. In contrast, the rest of the users in the trace dis-
played sporadic behavior. As a result, we have decided to exclude this sporadic behavior
data from further analysis. These eight users constitute an essential part of our analysis,
contributing to evaluating our proposed strategies. The dataset comprises 14 parameters,

31
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while 4 played a significant role in the subsequent analyses. Below, we define each of these
parameters.

1.

10.

11.

12.

13.

14.

pkl len: It defines the packet length sent or received. The packet size attribute is
an essential characteristic used to determine the amount of data in a single packet.

. s_ip: The source IP address field is an important component of the query used to

store the request’s origin. It holds the IP address of the device or the computer that
generated the query; it is essential in determining the origin of the request and can
be used to trace the source of the query.

s _port: It represents the port number originating from the DNS traffic.

. dns_query flag: This field indicates whether the DNS traffic is a query (value =

0) or a response (value = 1) by setting the appropriate flag bit.

dns query type: This field specifies the type of DNS query being sent, such as
A (address record), AAAA (IPv6 address record), MX (mail exchange record), etc.

dns_ans:This field contains the answer to the DNS query, if applicable, such as the
IP address or mail server address.

dns query: This field contains the actual DNS query being sent, such as the
domain name being looked up.

d port: Field that represents the port number to which the DNS traffic is being
sent.

dns_id: This field is a unique identifier generated by the client for each DNS query,
which matches queries with their corresponding responses.

dns rcode flag: This field indicates whether the DNS response was successful
(0) or encountered an error (non-zero), such as NXDOMAIN (no such domain) or
SERVFAIL (server failure).

d_ip: The destination IP represents the IP address of the DNS server to which the
DNS traffic is being sent.

dns query class:This field specifies the class of DNS query being sent, such as
IN (Internet) or CH (Chaosnet).

timestamp: This field represents the date and time when the DNS traffic was
captured or observed, which can help analyze patterns or trends.

dns opcode flag: This field specifies the type of DNS operation being performed,
such as QUERY (0), IQUERY (1), or STATUS (2), which can provide additional
context for the DNS traffic.
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After conducting a thorough analysis of the TF-IDF metric in our dataset, we enhanced
the data’s accuracy by modifying the relative frequency of the domain names of each user
using six different methods. In the subsequent section, we present a detailed overview
of our contributions and the benefits of each of the six previously discussed implementa-
tions. In order to establish a solid baseline, we constructed a benchmark by employing the
training data without making any alterations to the traffic to set a level of accuracy as a
starting point to minimize.

Accuracy is a metric that evaluates the overall performance of a classification model.
It represents the fraction of predictions the model got correct from the total number of
predictions. In other words, it measures how often the model makes correct predictions.
Mathematically, accuracy is defined as:

Number of correct predictions
Accuracy =

1
Total of number predictions (6.1)

For binary classification, accuracy can be calculated in terms of true positives (TP), true
negatives (TN), false positives (FP), and false negatives (FN) as follows:

Accuracy = TP+ TN (6.2)
Y= TPYTNfFP+FN ‘

In the case of multi-class classification, accuracy measures the number of times any class
was predicted correctly, normalized by the total number of data points. It represents the
overall predictive performance of the model across all classes.
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Figure 6.1: Proposed benchmark

To ensure our results were reliable, we executed each attacker model ten times using
different seeds, as demonstrated in each boxplot in Figure 6.1. This enabled us to effectively
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compare the efficacy of our techniques against the baseline. It should be highlighted that
we only kept the median value of each attacker model as a final value as our benchmark.

6.1.2 Statistical analysis and threat models evaluation

The analysis and theoretical implementation of the algorithms proposed in section 5 en-
compassed eight distinct users and their corresponding DNS primary server. The DNS
traffic of each IP address was analyzed, and the primary DNS server was determined
based on the number of responses received from the requests made by each IP. It was
observed from the dataset that each s_ip might have more than one DNS server. To this
end, we considered the primary DNS server the one that received more requests and pro-
vided more responses to each s _ip. The association of each user’s IP address with their
primary DNS server is presented in Table 6.1.

IP address (s_ip) | Primary DNS server (d_ip)
192.168.27.153 132.248.10.2
192.168.27.16 132.248.10.2
192.168.27.160 8.8.8.8
192.168.27.161 8.8.8.8
193.168.27.162 8.8.8.8
192.168.27.17 132.248.10.2
192.168.27.180 132.248.10.2
192.168.27.215 132.248.10.2

Table 6.1: Target users and primary DNS servers

Our primary focus was processing DNS queries; therefore, we primarily worked with
the parameters dns query type, d_ip, s _ip, and dns_query flag. We particularly
emphasized responses (dns_query flag = 1) that corresponded to the user’s requests,
as these responses contained valuable domain name information. To ensure precision in
our analysis, we exclusively filtered out other query types, narrowing our attention solely
to query type A (dns_query type = A, which specifically refers to the Internet Protocol
version 4 (Ipv4) address records.

When evaluating the accuracy of each attacker model proposed in section 4, we adopted
a consistent proportion ratio of 70% data for training and 30% for testing, as shown in our
benchmark 6.1. However, we tested with different ratios as depicted in Figure 6.2. This
standardized ratio (70-30) has been extensively used in related literature and accepted
within the machine learning community. Maintaining this well-established training-to-
testing data ratio throughout the experiments ensured fair and reliable assessments of the
attacker models’ performance. We must note that we only modified the testing data in
our experiments described in section 5. Thus, when training each model, it uses real,
non-modified data. By doing so, when using the testing and modified data, we can ensure
the performance and effectiveness of our algorithms.

We present a visualization depicting the frequency of accurate predictions made by the
models, associating the predicted class (IP address/user) with its corresponding actual
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Figure 6.2: accuracy for different data ratios

class by using confusion matrices. On the y-axis of the three Figures 6.3a, 6.3b, and 6.3c,
we find the True label or the actual class, while on the x-axis, we observe the predicted
class.

These confusion matrices provide a concise and insightful representation of the classi-
fiers’ performance, enabling us to assess their ability to predict and classify IP addresses
(labels) based on domain names (features). Consequently, we obtained the rank of domains
for each user by TF-IDF in our dataset, which we used to perform a detailed analysis of the
running total. This analysis allowed us to estimate each domain’s importance percentage
and the total number of domains accessed by each user. This information proved invalu-
able in gaining insights into the browsing behavior of individual users and understanding
their preferences when it comes to accessing different domains.

Figure 6.4 reveals a crucial finding regarding users’ web browsing habits in the DNS
dataset. Our analysis shows that for most users, a relatively small number of domain
names (around 2000) account for almost 80% of the total importance of the domains
visited. This implies that users frequent a select few websites more frequently than oth-
ers. To clarify this, let tf idf table, be a DataFrame for user ¢ with a column named
tf-idf sum containing n; floating-point values in descending order which is the TF-IDF
sum calculation:

2521 tf-idf sum,(j)

t odf, = =0
=0 T S A _sum, ()

Where tf-idf sum,(j) represents the j-th value in the ’tf-idf sum’ column of user i
in tf idf table, and k is the current row being considered for the cumulative sum. The
expression calculates the cumulative distribution function of the ’tf-idf sum’ column for
user ¢ by summing up all the values from the first row up to the k-th row, divided by the
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Figure 6.3: Confusion matrix of threat models in 70-30 ratio

sum of all the values in the entire "tf-idf sum’ column for user .

In the context of our research, as elaborated in Chapter 5, our primary focus re-
volved around the deliberate introduction of bias into the classifiers. Subsequently, we
present the outcomes of our practical implementations of the theoretical Blocking-based
and Swapping-based algorithms in the subsequent subsections, using genuine DNS data
for our evaluations. By analyzing these results, we aim to gain insights into the efficacy
of bias induction techniques and their impact on the classifiers’ predictions in real-world
DNS scenarios.
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Figure 6.4: Running total

6.2 Blocking-based algorithms results

In this section, we present the results of our investigation into the Blocking-Algorithms,
a set of techniques designed to address the challenge of DNS fingerprint obfuscation and
mitigate the risks posed by machine learning classifiers. The Blocking-Algorithms encom-
pass a series of the two approaches mentioned before, each contributing to the overarching
goal of enhancing user privacy and minimization of the accuracy of our threat models. In
addition, we highlighted the percentage of data manipulated in our dataset for the pro-
posed results in every plot. This provides insight into the trade-off of the data that was
either swapped or blocked, impacting the accuracy. More precisely, we can observe the
linear behavior of the data blocking/swapping in these P-based algorithms. This is due
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to the proposed probability distribution when setting our control parameter p. It is also
important to note that the accuracy of each classifier relies on the average accuracy of
each of the eight users from the dataset.

6.2.1 P-Block
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Figure 6.5: Threat models performance implementing P-Block

Among our stochastic-based algorithms, we focus on the P-Block method, which seeks
to proactively block random domain names based on our toss coin to minimize the likeli-
hood of identification and tracking.
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The accuracy results for each attacker model for the whole range (0.1 — 0.99) of our
probability parameter of blocking p in the x-axis are best shown in Figure 6.5 as blocking
methodology.

To obtain sufficient data, we conducted ten tests using three different threat models
per each p value. Each test involved evaluating the impact of a specific p value on the
domain names, where p represents the percentage of the domain names that are partially
blocked.

The plots provide a comprehensive overview of the behavior exhibited by our attacker
models while applying our theoretical algorithm, P-Block. In the plots, the initial box
positioned at 0 on the x-axis denotes the benchmark scenario where no modifications are
made to the data. Subsequently, the whisker boxes showcase the evaluations corresponding
to the implementation of this algorithm. Compared to the other two models, a distinct
contrast emerges in the accuracy minimization for Multinomial Naive Bayes, as illustrated
in Figure 6.5a. Specifically, when our parameter p is set to 0.6 and 0.7, the incremental drop
in accuracy becomes even more pronounced in the support vector machine and random
forest.

Interestingly, the accuracy minimization plot of the multinomial naive Bayes, as shown
in the figure, exhibits a distinctive pattern compared to the other two models. Specifically,
as we manipulate the parameter p to 0.6 and 0.7, the classifiers’ accuracy experiences
a less pronounced decrease compared to support vector machines and random forests.
This observation can be attributed to multinomial naive Bayes’s inherent assumption of
independence between each domain. Despite this behavior, we retained this classifier in
our further experiments to emphasize the contrasting behavior of each threat model. Doing
so highlights each approach’s unique characteristics and implications, providing valuable
insights into their performance and effectiveness.

6.2.2 Top-Block

Our first attempt to modify the relative frequencies after P-Block algorithm centers with
the Top-Block approach. With this implementation, our primary objective is to select a
specific range of top domains (1 — 10% = 0.01 — 0.1) for blocking, enabling us to
introduce controlled disruptions to the data. In a more detailed perspective, we strategi-
cally block a certain percentage of domains within our dataset based on their perceived
importance in the context of our threat models.

The outcomes of this implementation are shown in Figure 6.6, offering insights into
the dynamic behavior of our threat models within the Top-Block approach. One aspect
that captures our attention is the percentage of data due to its distinct curvature. This
phenomenon can be largely attributed to the nature of DNS traffic and our relevance
metric implied, which exhibits an exponential-like distribution. As we mentioned before,
certain domains receive higher requests than others.

By purposefully blocking these domains, we initiate a process that yields interesting
results, particularly within the lower 4% of the domains selected using TF-IDF. Remark-
ably, when employing Random Forest (as depicted in Figure 6.6¢), we observe a substantial
reduction in accuracy of approximately 60%. This finding underscores the efficacy of our
Top-Block strategy in introducing bias in ensembles such as Random Forest classifiers.
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Figure 6.6: Threat models performance implementing Top-Block

Similarly, SVM 6.6b, tends to have the same behavior of RF but with a slower rate. On
the other hand, MNB ( 6.6a) has linear-like minimization within our blocking ranges.
Reaching from 91% to 57% when blocking 10% of the most important data for each user.

It is important to note that even with just a 10% blocking rate in the Top Block, the
accuracy is significantly reduced. Herefore, exceeding this percentage yields only mean-
ingful improvements. However, in terms of total traffic, a 10% block rate corresponds to
an effective block rate of 81.5%, which is equivalent to setting a block rate of p’ = 0.8
in our P-Block algorithm. Nevertheless, the most notable distinction lies in the observed
accuracy decrease.
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6.3 Swapping-based algorithms results

Continuing with our commitment to enhancing privacy and introducing bias into our threat
models, we proceeded to deploy the second batch of functions designed to manipulate the
relative frequencies of our dataset. This strategic approach minimizes accuracy by selec-
tively blocking or swapping specific domains. Through the execution of these functions,
we aimed to strike a balance between safeguarding user privacy and effectively mitigating
the risks posed by DNS fingerprinting attacks. By introducing deliberate variations in
domain frequencies, we aimed to disrupt the conventional patterns that machine learning
classifiers typically rely on, thus rendering our threat models more resilient and less prone
to accurate identification.

For visualization purposes within the data, the x-axis of each plot described below
represents the top [%] of domain names either blocked or swapped for each user. A color-
dotted line represents the percentage either blocked or swapped among our range in the
whole test data.

6.3.1 P-Mix-All

Compared to the P-Block algorithm, the results of our proposed strategy P-Mix-All, show
a distinct behavior concerning accuracy across various percentages of swapped domains.

Notably, a pattern emerges when we attempt to swap domains based on the probability
calculation for each requested domain.

A notable increase in accuracy is observed in the initial half of the p range values for
SVM, and while in RF, it almost keeps the same as our benchmark. Specifically, in the
case of Multinomial Naive Bayes (MNB), a slight decrease in accuracy is noticeable within
the first three values, followed by a subsequent slight increase, almost reaching the mean
accuracy of our benchmark at p = 0.6. However, after this point, the accuracy begins to
be minimized considerably. In the case of SVM (6.7b), this technique favors the first half
of probability values of p, then decreases afterward.

This intriguing behavior exemplifies the efficacy of our P-Mix-All strategy, indicating
that swapping domains based on probability calculations yields advantageous outcomes,
particularly in the upper range of p values where the effect on the accuracy is notable.
In this scenario, both SVM (6.7b) and RF (6.7c) exhibit comparable behavior, yet SVM
demonstrates quicker minimization after reaching our parameter threshold of p = 0.6
when compared to RF. However, it is important to acknowledge that this is a theoretical
approach, and its real-world performance may vary depending on various factors and
datasets.

While the results are promising and highlight the potential benefits of the proposed
algorithm, it is essential to consider the limitations and challenges that may arise when
implementing it in practical scenarios. The algorithm’s effectiveness could be influenced
by factors such as the specific dataset used, the data’s nature, and the underlying distri-
butions’ complexity.
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Figure 6.7: Threat models performance implementing P-Mix-All

P-Mix-Bottom

42

Lastly, when considering our algorithms based on continuous probability distributions, our
approach involves swapping domains with those of lesser significance, as depicted in Figure
6.8. In this context, we can observe a similar pattern in both SVM (6.7b) and RF (6.7c),
as seen in our previous strategy, P-Mix-All.

Notably, there is a noticeable increase in accuracy after the initial p value of 0.1.
However, as we move towards the upper range of p, we observe a minimization of accuracy

due to domain swapping. More specifically, the lower values of p exhibit a comparable
trend in SVM and RF.
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The results show different behavior in the case of MNB (6.7a).

(c) Random Forest

Figure 6.8: Threat models performance implementing P-Mix-Bottom
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Initially, there is

an approximately 10% decrease in accuracy when swapping domains that reaches 80%.
However, based on the experimental data, we observe a promising trend where the accuracy
increases as p approaches 0.9. However, it is essential to note that a significant drop in
accuracy is observed beyond this point.

These observations generally highlight the nuanced behavior of our algorithms when
utilizing continuous probability distributions for domain swapping. While SVM and RF
demonstrate favorable accuracy improvements after an initial threshold, MNB presents a
more challenging accuracy degradation, albeit with a potential for improvement in certain
regions. This underscores the importance of considering the implications and trade-offs
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when selecting specific algorithms for domain-swapping tasks in different contexts and
datasets.

6.3.3 Top-Mix-All
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Figure 6.9: Threat models performance implementing Top-Mix-All

When we choose domain swapping as an alternative to blocking the relatively more
"critical" domain names within the data, we encounter an intriguing scenario that serves
as an excellent test case for assessing SVM'’s performance. Domain swapping involves
interchanging domain labels or features, offering a unique opportunity to evaluate the
model’s robustness.
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When we apply the swapping operation to a mere 1% of data from each user, a substan-
tial drop in accuracy, approximately 39%, becomes apparent, notably impacting SVM’s
predictive ability. This significant decrease in accuracy emphasizes the sensitivity of SVM
to domain swapping, making it a vital evaluation metric.

Conversely, the impact of domain swapping on RF becomes more pronounced within
a specific range, particularly between 2 to 4%. It is within this range that RF exhibits
noticeable variations in its predictive performance due to the domain-swapping technique.
This observation highlights the differential responses of SVM and RF to this specific data
manipulation, further illustrating the distinct behavior of both models.

6.3.4 Top-Mix-Bottom

Finally, we have made an interesting observation while implementing the swapping tech-
nique with the lower percentile of domains, explicitly targeting the less important ones,
following the same generic idea as P-Mix-Bottom. The outcomes of this approach are il-
lustrated in Figure 6.10, exhibiting behavior similar to our previous strategy, Top-Mix-All.

However, there is a slight difference in the drop of accuracy in SVM (as shown in Figure
6.10b) when compared to the swapping of only 1% in the Top-Mix-All strategy. We note a
6% difference in accuracy between the Top-Mix-Bottom approach and the swapping of 1%
in the Top-Mix-All strategy. This difference emphasizes the impact of domain selection
on SVM’s performance. On the other hand, MNB 6.10a showed slightly better overall
performance with the swapped domains when compared to its previous implementations.
This observation indicates that the MNB algorithm is less sensitive to domain swapping
and can maintain relatively better accuracy even with the less important domains being
swapped.

6.4 Blocking-based algorithms vs. Swapping-based al-
gorithms

Figure 6.11 outlines the overlap of all our proposed algorithms. In the graph, multinomial
naive Bayes is represented by the green lines, support vector machines (SVM) by the blue
lines, and random forest by the red lines.

Using color-coded lines facilitates the easy identification and differentiation of each
algorithm’s performance trends. It should be noted that only the mean values of the accu-
racy have been plotted. By focusing on the mean accuracy values, we can comprehensively
assess the overall performance of each algorithm. As depicted in both Figures, we can see
the huge difference of data-trade-off between our two sets of implementations. In contrast,
our algorithms based on a p value extend from 10 to 99% of the total data, while our
algorithms based on the top TF-IDF block or swap only 1 to 10% of the unique domains
per user. Nevertheless, in terms of total traffic, selecting 1% of the TF-IDF data from
each user represents an overall 41.6% of data. It is worth mentioning that these results
extend only to test cases of 8 users.

The performance summary of our Top-Block technique, specifically in terms of accu-
racy minimization, is documented in Table 6.2. This table provides a comprehensive and
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Accuracy %] (avg)
Attacker Normal DNS traffic | Blocking Top 1% | Blocking Top 2% | Blocking Top 3% | Blocking Top 4%
(benchmark) TF-IDF TF-IDF TF-IDF TF-IDF
Multinomial Naive 91.2 74.2 68.1 64.1 60.3
Bayes
Support Vector 95.2 81.9 60.22 50.5 43.4
Machines
Random Forest 98.8 90 75 58.9 35.75

Table 6.2: Summary of Top-Block performance



6.4. BLOCKING-BASED ALGORITHMS VS. SWAPPING-BASED ALGORITHMS 47

100
99.01%
o] X
= 60 1
S
>
@]
©
—_
3
[v]
Q
< 4]
—— MNB P-Block
~2 'BE%] —4— SVM P-Block
—— RF P-Block
201 ! —%=- MNB P-Mix-All
20.01% —4- SVM P-Mix-All
=#- RF P-Mix-All
+-%: MNB P-Mix-Bottom
-4+ SVM P-Mix-Bottom
«=#- RF P-Mix-Bottom
—8— Total % of blocked domains
0 T T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 099
P
(a) Algorithms based on P-value
100
81.5%
801
—_ 0T A2~ =
§ .......
= -
o
©
=
=
o
b
401
S MNBTopBlock | e~ e 1T
— SWMTop-Block || TRa T~ YT
—— RF Top-Block
20 7 —x- MNB Top-Mix-All
=#- SVM Top-Mix-All
== RF Top-Mix-All
--¥:  MNB Top-Mix-Bottom
-4+ SVM Top-Mix-Bottom
«+#- RF Top-Mix-Bottom
—&— Total % of blocked domains.
0

0 1 2 7 8 9

3 4 5 6
Blocked/Swapped TF-IDF [%]

(b) Algorithmss based on Top TF-IDF

Figure 6.11: P & Top-Algorithms Overlap

detailed overview of the crucial trade-off-worthy results obtained from our in-depth data
analysis, encompassing domain blocking ranging from the Top 1% to the Top 4%.

In the subsequent Chapter, we describe in detail the real implementation of this tech-
nique, providing a detailed account of its impact on end-user experience, mainly focusing
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on the implementation of the Top 1% blocking.



Chapter 7

Impact of proposed algorithms

7.1 Real-life experiment

In contrast to our previous approaches that relied solely on theoretical scenarios within the
UNAM Telecommunications Department dataset, this chapter presents a real-life scenario
along with the practical implementation of our algorithms to perform a qualitative analysis
of user experience.

We collected actual DNS traffic from a mutually agreed-upon party over approximately
three weeks to achieve this goal. This dataset provides us with authentic and fresh informa-
tion to thoroughly process and evaluate the effectiveness of our techniques. By analyzing
user behavior and observing the resulting impact using this data, we gain valuable insights
into how our algorithms function in practical, real-world situations. Understanding how
our solutions perform in actual, real-time scenarios is crucial for ensuring their effectiveness
and applicability in practical settings.

The data gathering process involved sniffing the traffic on port 53 using tcpdump,
allowing us to capture all the DNS activities during this time frame. Specifically, the
data was collected from April 20, 2023, to May 12, 2023, and originated from the new
IP address. Subsequently, we analyzed the DNS responses and created a cumulative sum
of the most significant domains, employing TF-IDF. Figure 7.1a visually represents the
total number of domains along with their respective Top 1%, 2%, and 3% occurrences.
In addition, the three sniffed weeks of data gave us enough insights and/or patterns of
user behavior; figure 7.1b shows the empirical data vs. the theoretical Zipf distribution of
domain names.

During the implementation, we focused on the top 24 domains, which constitute the
Top 1% of the data. This selection process allows us to concentrate on the most relevant
domains within the new dataset.

Testing phase
Initially, we performed a 12-hour evaluation of our Top-Block implementation. Addi-

tionally, we employed a well-known tool dnsmasq [37] to conduct local resolutions with
fixed TTL values for the 24 domains representing the Top 1% of domains sorted by TF-

49



7.1. REAL-LIFE EXPERIMENT 50

Zipf's Law
. irical

1o 1 2 e

0.81 1074
5
5
g 06 Top 3% (72) g 102
$ Top 2% (48) g
2 o
K b=
= -3
g 0.4+ §1op 1% (24) 10
o

1074
0.24
L]
6 560 ldOO 15‘00 20‘00 25‘00 160 16] 162 10
# of domain names Rank
(a) New user TF-IDF (b) Zipf’s data distribution comparison
Figure 7.1: New user’s data
IDF.

The testing process proceeded smoothly; nevertheless, to eliminate dependence on any
third-party tool, we configured the /etc/hosts file for this evaluation. Additionally, we
included our local server, "localhost," with the IP address 127.0.0.1, in the /etc/resolv.conf
file. This ensured that the resolutions were performed locally, as the /etc/resolv.conf file
natively manages the DNS resolvers on Linux-based operating systems.

Answer (IP.TTL)

letc/hosts

Jetc/dnsmasg.conf

Recursive

: Resolver
e (Ed“:: ;,F,,“DCF,,H Yroreareennn . Autoritative Name
’ o Server

. Name server / CDN
Local resolution

Figure 7.2: Implementation workflow

Any domain name present in this file (/etc/hosts) with a fixed TTL will resolve locally.
We confirmed the functionality of the implementation by monitoring the outgoing traffic
from our testbed using an open-source packet analysis framework (i.e., Wireshark). We
accomplished this by applying a basic filter to capture only the DNS protocol traffic.
Nonetheless, it’s worth noting that the requests corresponding to the top 1% are not
shown in the trace. This suggests that these particular requests might not be reaching
the resolver as intended. Figure 7.2 illustrates the general outline of the implementation
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process.

Our experiment began at 10:03 AM on Thursday, May 12, 2023, implementing Top-
Block targeting the Top 1% domains. Over the initial 12-hour period, we meticulously
observed and analyzed the behavior of three websites selected from this top subset. Figure
7.3 visually represents the critical statistical data acquired while monitoring these distinct
websites within this Top 1%: CNN news, Spotify, and Netflix.
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Figure 7.3: Bar plot of Top-Block performance

An intriguing insight that emerged pertains to the distinct variations in behavior ob-
served between the CNN news website and the other two platforms, namely Spotify and
Netflix. This difference becomes particularly evident when examining the number of re-
quests each site generates. Notably, more dynamic websites like news platforms tend to
exhibit a significantly higher volume of requests than their entertainment-oriented coun-
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terparts like Spotify and Netflix. This contrast in request frequency underscores the dis-
tinctive nature of content and user engagement across these diverse online platforms.

Analyzing the bar plots in Figure 7.3, we notice that the green bars represent elements
that remained the same compared to a previous request. Over time, these elements tend to
decrease while new ones (marked in red bars) increase. This phenomenon can be attributed
to the constant updates of content on news pages. The browser must request new elements
as the news updates, resulting in the observed trend.

This discrepancy in request patterns highlights the distinct nature of various websites
and emphasizes the importance of considering their dynamics while monitoring and opti-
mizing web performance.

For instance, we meticulously observed the end-user experience (UX) during our web
performance experiment and discerned various intriguing visual anomalies while navigating
the website. Upon successfully deploying the Top-Block feature, we initiated an analysis
and noted significant alterations in the website’s behavior. Table 7.1 provides a snapshot
of the website’s behavior within a limited window of time monitored after subsequent
implementation of the Top-Block algorithm.

eeeeee

P (e 2ot o o  svear ke, On the ey e found fove, mariad.

(a) CNN anomaly 1 (b) CNN anomaly 2
10:05 AM 10:06 AM

Russia claims it repelled
'large-scale offensive’

(c) CNN anomaly 3 (d) CNN anomaly 4
10:20 AM 4:23 PM

Table 7.1: Table of CNN anomalies implementing Top-Block w.r.t time

The initial anomalies detected are illustrated in subfigures 7.1c and 7.1b, where the
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advertisements on the CNN news site are blocked. However, we have uncovered another
intriguing anomaly, which is better depicted in subfigure 7.1c. Despite the advertisement
blocking, a duplicate of the same advertisement appeared on the page a few minutes after
we initiated our implementation, as illustrated in figure 7.1c.

Furthermore, after 6 hours, substantial alterations in the website’s data integrity be-
came visible. Specifically, two images from the legitimate domain edition.cnn.com failed
to display. These images are part of the news content, and their absence signifies a web-
site’s integrity disruption. This is more effectively depicted in Figure 7.1d. Additionally,
even though the advertisements remained blocked, the empty HTML element of the image
position (div) remained there. Usually, the developers add an alternative description with
the alt word in the HTML code in case an image/video fails to load. Nevertheless, not
even the alternative description seems to appear.

Given that the concept behind this implementation is to run indefinitely, certain anoma-
lies might arise over an extended period, including missing or even outdated information.
In the worst-case scenario, a broken link (Error 404) might occur, indicating that the server
could not locate a webpage requested by the client.



Chapter 8

Discussion and further work

As presented in the previous two chapters, our implementations have demonstrated signif-
icant effectiveness in countering machine learning algorithms. However, it is essential to
acknowledge that the limited size of our dataset, consisting of only eight users, resulted
in blocking a substantial volume of traffic for each user. Precisely, blocking a minimal
subset the TD-IDF vector that corresponds to & 41.6% of the total DNS traffic. This
considerable impact on data volume raises concerns about the scalability of our approach
in real-world scenarios. In response to this concern and to minimize any adverse effects on
our proposed solutions, we present the following approaches:

e Scaling dataset up for real-world scenarios: In real DNS server environments,
the user count can easily extend to the hundreds or even thousands. In scenarios
with many users, it is expected that blocking only a smaller fraction of DNS traffic
(much less than the 40% we require with the 8-user data set) will result in a similar
reduction in the accuracy of attacker algorithms.

¢ Reinforcement learning algorithm for anomaly detection: The possibility of
using reinforcement learning algorithms can also gain significance. This advanced
algorithms would learn from the encountered anomalies found within the website,
thereby enabling the identification of patterns that reveal aspects that may not have
functioned as expected. This learning process empowers the algorithm to avoid
repeating those aspects in future requests (e.g., solving locally a specific domain
name for a shorter time). The reinforcement learning algorithm’s adaptive nature
and ability to refine decision-making based on past experiences make it well-suited
for situations characterized by reduced variability. The algorithm can adjust its
strategies to ensure optimal results in subsequent iterations by studying anomalies
and their corresponding outcomes.

e Overwriting TTL for longer cache retention: In some scenarios, adjusting
the Time-To-Live (TTL) values can effectively control the duration for which DNS
resolutions are cached. Administrators can extend the cache retention time by over-
writing the TTL values associated with DNS records, reducing query frequency to
authoritative DNS servers. This can be particularly advantageous for frequently ac-
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cessed websites, where a longer cache retention time can significantly decrease the
query load on the DNS infrastructure and improve overall response times.

Extending TTL values does come with certain considerations. While longer cache
retention reduces the number of DNS queries and enhances the user experience, it
also introduces a potential delay in reflecting changes made to domain configurations.
Administrators need to find a balance between cache duration and responsiveness to
ensure that timely updates are propagated. Additionally, monitoring and analyzing
the impact of extended T'TL values on DNS traffic patterns and user experience is
crucial to maintaining an optimal configuration.

Optimizing Resolutions with Machine Learning: Another approach involves
employing a machine learning algorithm that analyzes the relationship between do-
mains and changes in the retrieved objects. Instead of extending or adjusting the
TTL, consideration is given to generating a set of all possible resolutions for a site
based on the pattern of changes over time. Take the example of Netflix: if we identify
that the domain resolutions for Netflix remain unchanged for a certain period, we can
gather a collection of all possible known resolutions and strategically employ them to
achieve the desired resolution. Since this set of resolutions remains constant, we can
leverage the changing dynamics of DNS queries to optimize and recycle resolutions
in a process similar to DNS query recycling.



Chapter 9

Conclusion

This thesis presents a series of algorithms based on a single-node approach to obfuscate
the DNS fingerprints through techniques such as stochastic processes and selective manip-
ulation of domain names via blocking or swapping. Notably, these techniques demonstrate
their effectiveness in minimizing the accuracy of the attacker models, thereby enhancing
privacy, all without requiring "trust" or involving any other network nodes or intermedi-
aries/relays, as suggested in prior works.

For instance, incorporating stochastic algorithms like P-Block and its various swapping
variants, such as P-Mix-All and P-Mix-Bottom, has effectively reduced the identification
accuracy of our threat models. However, it is worth noting that the domain name blocking
or swapping rate needs to exceed 70-80% to achieve a substantial reduction in accuracy.
Conversely, based on the TF-IDF metric, our second batch of algorithms strikes a more
balanced compromise between privacy and the user experience on the internet, even block-
ing /swapping the top 1% of each user domain names. These algorithms demonstrate the
potential for achieving significant minimization in identification accuracy while preserving
a more acceptable level of service quality for users.

We validated the effectiveness of our approach by employing a limited dataset from our
testbed, involving only eight users, which led to an accuracy reduction of approximately
40% with a blocking of 41.6% of DNS traffic. However, when considering a larger-scale
DNS dataset with hundreds or even thousands of users, it is reasonable to anticipate a
significant decrease in the necessary amount of DNS traffic to be blocked while achieving
the same desired privacy level. The reduction required in large-scale experiments remains
unknown but will be the focus of further studies.

The code of our implementation can be found at:
https://github.com/Geobm/0Obfuscalone
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Appendix A

Code

A.1 Data preprocessing

#imp
impo
impo
impo
impo
from
from
from
impo
from
from
from
from
from

orting libraries

rt os

rt pandas as pd

rt numpy as np

rt json
joblib import parallel_backend
sklearn.feature_extraction.text import CountVectorizer
sklearn.preprocessing import StandardScaler

rt matplotlib.pyplot as plt

matplotlib.pyplot import figure
sklearn.model_selection import train_test_split
sklearn.feature_extraction.text import TfidfVectorizer
functools import reduce
sklearn.metrics import accuracy_score, ConfusionMatrixDisplay,

classification_report, confusion_matrix

5 from

from
from
from

sklearn.naive_bayes import MultinomialNB

sklearn.svm import LinearSVC

sklearn.ensemble import RandomForestClassifier
sklearn.metrics import accuracy_score, classification_report,

confusion_matrix

from

def

functools import reduce

process_user_data(columns, s_ip_start, d_ip_target):

user = columns[columns[’s_ip’].str.startswith(s_ip_start) &
(columns[’dns_query_type’] == ’A’) &
(columns[’d_ip’] == d_ip_target) &
(columns [’dns_query_flag’] == 1)]
if len(user) == O0:
print ("Empty doc for user in:", filename)
return None
else:
user_servers = user.d_ip.value_counts ()
user = user.drop(columns=[’dns_query_type’, ’d_ip’, ’s_ip’,
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A.2. THREAT MODELS

dns_query_flag?’])

user = user.reset_index (drop=True)

return user, user_servers

def process_file(file_path, subset_list,

data = pd.read_json(file_path)
, ’dns_query’, ’dns_query_type’, ’d_ip’

columns = data.loc[:, [’s_ip’
, ’dns_query_flag’, ’dns_ans’,

users = [
("132.248.10.2", "192.168
("132.248.10.2", "192.168

’timestamp’]]

.27.153"),
.27.16"),

("8.8.8.8", "192.168.27.160"),
("8.8.8.8", "192.168.27.161"),
("8.8.8.8", "192.168.27.162"),

("132.248.10.2", "192.168
("132.248.10.2", "192.168
("132.248.10.2", "192.168

L2717,
.27.180"),
.27.215")

for s_ip_start, d_ip_target in users:
process_user_data(columns, s_ip_start,

user_data, user_servers =
d_ip_target)
if user_data is not None:
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subset_servers_list, y_list):

subset_list.append(user_datal[’dns_query’])
subset_servers_list.append (user_servers)
y_list.append(d_ip_target)

path = ’/content/drive/MyDrive/anon_dns_data/’
subset_list = []
subset_servers_list = []

y_list = []

with parallel_backend(’threading’
try:
for root, dirs, files in

, n_jobs=5):

os.walk(path):

for filename in sorted(files):

file_path = os.path. join(root,

print ("Processing
process_file(file
, y_list)
except Exception as e:
print (e)

A.2 Threat Models

def train_predict_multinomial_nb(
mnb = MultinomialNB (alpha=5,
mnb.fit (X_train, y_train)
return mnb.predict(X_test)

_path,

:", filename)

X_train, y_train,
fit_prior=False)

filename)

subset_list, subset_servers_list

X_test):
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def train_predict_linear_svm(X_train, y_train, X_test):
linear_svm = svm.SVC(C=1le-2, kernel=’linear’,
decision_function_shape=’ovr’)
linear_svm.fit (X_train, y_train)
return linear_svm.predict(X_test)

def train_predict_random_forest(X_train, y_train, X_test):

rand_forest = RandomForestClassifier(n_estimators=100, n_jobs=1,
random_state=42, verbose=0, class_weight=’balanced’, oob_score=True)
rf = rand_forest.fit(X_train, y_train)

return rf.predict(X_test)

# Tokenize the data

vect = CountVectorizer (token_pattern=r’\b(?7:[A-Za-2z0-9](7:[A-Za-20
-9\-1{0,61}[A-Za-2z0-9]1)7?\.)+[A-Za-2]1{2,6}\b’)

Xencoded = vect.fit_transform(matrix_df[’traffic’])

# Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(Xencoded, y,
train_size=0.7, test_size=0.3, random_state=42)

; benchmark_mnb, benchmark_svm, benchmark_rf = [1, [1, []

random_states = [1, 10, 25, 38, 42, 55, 70, 80, 97, 100]

for state in random_states:
X_train_split, _, y_train_split, _ = train_test_split (X_train,
y_train, train_size=0.7, test_size=0.3, random_state=state)

y_pred_mnb = train_predict_multinomial_nb(X_train_split,
y_train_split, X_test)
benchmark_mnb.append (accuracy_score(y_test, y_pred_mnb) * 100)

y_pred_svm = train_predict_linear_svm(X_train_split, y_train_split,
X_test)
benchmark_svm.append(accuracy_score(y_test, y_pred_svm) * 100)

y_pred_rf = train_predict_random_forest(X_train_split, y_train_split
, X_test)
benchmark_rf .append(accuracy_score(y_test, y_pred_rf) * 100)

# Print benchmark results

print ("Multinomial Naive Bayes benchmark:", benchmark_mnb)
print ("Linear SVM benchmark:", benchmark_svm)

print ("Random Forest benchmark:", benchmark_rf)

A.3 P-Block

def p_block(train_data, test_data, p_values, random_states):
mnb = MultinomialNB ()
linear = SVC(kernel=’linear’, decision_function_shape=’ovr’)
rand_forest = RandomForestClassifier(n_estimators=100, n_jobs=1,
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random_state=42, verbose=0, class_weight=’balanced’,
vectorizer = CountVectorizer (token_pattern=r’\b(7:[A-Za-2z0-9](7:[A-
Za-z0-9\-1{0,61}[A-Za-z0-9])7?\.)+[A-Za-z]1{2,6}\b?)

64

oob_score=True)

all_mnb_accuracies, all_svm_accuracies, all_rf_accuracies = [], [],
(]
for p in p_values:

new_test_data = test_data.copy()
mnb_accuracies, svm_accuracies, rf_accuracies =

for index, row in new_test_data.iterrows ():
traffic_list = row[’traffic’].split(’,’)
total_elements = len(traffic_list)
removed_elements = 0

#Compare rand variable here
for element in row[’traffic’].split(’,’):
rand_var = int.from_bytes(os.urandom(8),

) / ((1 << 64) - 1)

100)

100)

100)

if rand_var < p:
traffic_list.remove(element)
removed_elements += 1

a, 1, 0

byteorder="big"

new_test_data.at[index, ’traffic’] = ’,’.join(traffic_list)
X_train = vectorizer.fit_transform(train_datal’traffic’])
y_train = train_datal[’day_user’].tolist ()

X_test = vectorizer.transform(new_test_datal[’traffic’])

y_test = test_datal[’day_user’].tolist ()

for state in random_states:

X_train_split, _, y_train_split, _ = train_test_split(
X_train, y_train, random_state=state)

mnb.fit (X_train_split, y_train_split)
y_pred_mnb = mnb.predict(X_test)

linear.fit(X_train_split, y_train_split)
y_pred_svm = linear.predict(X_test)

rf = rand_forest.fit(X_train_split, y_train_

y_pred_rf = rf.predict(X_test)

mnb_accuracies.append(accuracy_score(y_test,
svm_accuracies.append(accuracy_score(y_test,
rf_accuracies.append(accuracy_score(y_test,

all_mnb_accuracies.append (mnb_accuracies)
all_svm_accuracies.append(svm_accuracies)

split)

y_pred_mnb) *
y_pred_svm) *

y_pred_rf) =
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all_rf_accuracies.append(rf_accuracies)

return all_mnb_accuracies, all_svm_accuracies, all_rf_accuracies

# Load your train_data and test_data

 p_values = [0.1, 0.2,0.3,0.,0.5,0.6,0.7,0.8,0.9,0.99] # Adjust p values

accordingly

random_states = [1, 10, 25, 38, 42, 55, 70, 80, 97, 100]

mnb_accuracies, svm_accuracies, rf_accuracies = p_block(train_data,

test_data, p_values, random_states)

for i, p in enumerate(p_values):

print (f"Results for p = {p}:")

print ("MNB:", mnb_accuracies[i])

print ("SVM:", svm_accuracies[i])

print ("Random Forest:", rf_accuracies[i])

A.4 Top-Block

def top_block(user_ip, train_data, test_data, top_per_user):

traffic_user_train = train_datal[train_data[’day_user’] == user_ip]
traffic_user_test = test_datal[test_datal[’day_user’] == user_ip]

vectorizer = TfidfVectorizer (token_pattern=r’\b(7:[A-Za-z0-9](7:[A-
Za-z0-9\-1{0,61}[A-Za-2z0-9]1)7?\.)+[A-Za-2z]1{2,6}\b?)
tfidf_vector = vectorizer.fit_transform(traffic_user_train[’traffic’
D)
tfidf _df = pd.DataFrame ({
f’queries user {user_ip}’: vectorizer.get_feature_names_out (),
’idf’: vectorizer.idf_,
>tf-idf _sum’: np.asarray(tfidf_vector.sum(axis=0)).ravel(),
’tf-idf_mean’: np.asarray(tfidf_vector.mean(axis=0)).ravel ()

1))

tf_idf_table = tfidf_df.sort_values(by=’tf-idf_sum’, ascending=False
)

tf_idf_table[’URL’] = tf_idf_table.index

tf_idf_table = tf_idf_table.reset_index(drop=True)

top_per = int(len(tf_idf_table) * top_per_user)

domains_to_remove = tf_idf_table[f’queries user {user_ipl}’][:top_per
l.tolist ()

traffic_user_test[’traffic’] = traffic_user_test[’traffic’].str.
replace(’|’.join(domains_to_remove), ’’, regex=True)
traffic_user_test[’traffic’] = traffic_user_test[’traffic’].str.

replace(’ ,+’, ’,’, regex=True)

return traffic_user_test
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5 user_ips=[’192.168.27.1537,7192.168.27.16°,7192.168.27.160°,°

192.168.27.161°,7192.168.27.162°,7192.168.27.177,°192.168.27.180°, ?
192.168.27.215°, 2172.18.41.231°]

top_percent_values = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.1]
dataframes = []

for user_ip in user_ips:
for top_per_user in top_percent_values:
user_test_df = top_block(user_ip, train_data, test_data,
top_per_user)
dataframes.append(user_test_df)

merged_df = reduce(lambda left, right: pd.merge(left, right, on=[’

day_user’, ’traffic’], how=’outer’), dataframes)
merged_df = merged_df.sample(frac=1).reset_index(drop=True)

A.5 Top-Mix-All

def top_mix_all(train_data, test_data, users, vectorizer_tmix,
top_percent_values):
dataframes_list = []

for top_percent in top_percent_values:
dataframes = []

for user in users:

traffic_user_train = train_data.loc[train_data[’day_user’]
== user]

traffic_user_test = test_data.loc[test_datal[’day_user’] ==
user]

tfidf_vector = vectorizer_tmix.fit_transform(
traffic_user_train[’traffic’])

tfidf_df = pd.DataFrame ({’queries user’: vectorizer_tmix.

get_feature_names_out (),
’idf’: vectorizer_tmix.idf_,
>tf-idf_sum’: np.asarray(
tfidf_vector.sum(axis=0)) .ravel (),
’>tf-idf _mean’: np.asarray (
tfidf_vector.mean (axis=0)) .ravel ()})
tf_idf_table = tfidf_df.sort_values(by=’tf-idf_sum?’,
ascending=False)
tf_idf_table[’URL’] = tf_idf_table.index
tf_idf_table tf_idf_table.reset_index (drop=True)
top_per_user = int(len(tf_idf_table) * top_percent)

domains_to_remove = tf_idf_table[’queries user’][:
top_per_user].tolist ()
remaining_domains = tf_idf_table[’queries user’][

top_per_user:].tolist ()
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22 domains_to_remove_mix = np.random.choice(remaining_domains,
size=top_per_user , replace=False)

24 traffic_user_test_copy = traffic_user_test.copy()

25 for i, row in traffic_user_test_copy.iterrows():

26 for j in range(len(domains_to_remove)):

27 row[’traffic’] = row[’traffic’].replace(
domains_to_remove[j], domains_to_remove_mix[j])

29 dataframes.append(traffic_user_test_copy)

31 merged_df = reduce(lambda left, right: pd.merge(left, right, on
=[’day_user’, ’traffic’], how=’outer’), dataframes)

32 merged_df = merged_df.sample(frac=1).reset_index (drop=True)

33 dataframes_list.append(merged_df)

35 return dataframes_list

37 # Define your vectorizer_tmix, users, and top_percent_values

38 vectorizer_tmix = CountVectorizer (token_pattern=r’\b(?7:[A-Za-z0-9](7:[A-
Za-z0-9\-1{0,61}[A-Za-2z0-9])?\.)+[A-Za-z]{2,6}\Db?)

30 users = [2192.168.27.153°, °192.168.27.16°, 2192.168.27.160°,
192.168.27.161°, °2192.168.27.162°, 2192.168.27.17°, 2192.168.27.180",

’192.168.27.215°]
0 top_percent_values = [0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08,
0.09, 0.11]
41
# Call the function
3 resulting_dataframes = top_mix_all(train_data, test_data, users,
vectorizer_tmix, top_percent_values)

S}

A.6 Top-Mix-Bottom

1 def top_mix_bottom(train_data, test_data, vectorizer, top_percent_values
) g

2 global user_ips

3 dataframes = []

5 for user in user_ips:

6 traffic_user_train = train_data.loc[train_datal[’day_user’] ==
user]

7 traffic_user_test = test_data.loc[test_datal[’day_user’] == user]

8 tfidf_vector = vectorizer.fit_transform(traffic_user_train[’
traffic’])

9 tfidf _df = pd.DataFrame ({’queries’: vectorizer.
get_feature_names_out (),

10 ’idf’: vectorizer.idf_,

11 ’tf-idf_sum’: np.asarray(tfidf_vector.

sum(axis=0)) .ravel (),
12 ’tf-idf_mean’: np.asarray(tfidf_vector.
mean (axis=0)) .ravel () })
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tf_idf_table = tfidf_df.sort_values(by=’tf-idf_sum’, ascending=
False)
tf_idf_table[’URL’] = tf_idf_table.index
tf_idf_table = tf_idf_table.reset_index (drop=True)
for top_percent in top_percent_values:
top_per_user = int(len(tf_idf_table) * top_percent)
top_bottom_user = int(len(tf_idf_table) * 0.5)

domains_to_remove = tf_idf_table[’queries’][:top_per_user].
tolist ()

remaining_domains = tf_idf_table[’queries’][top_bottom_user
:].tolist ()

domains_to_remove_mix = np.random.choice(remaining_domains,
size=top_per_user, replace=False)

traffic_user_test_copy = traffic_user_test.copy()

for i, row in traffic_user_test_copy.iterrows():
for j in range(len(domains_to_remove)):
row[’traffic’] = row[’traffic’].replace(

domains_to_remove[j], domains_to_remove_mix[j])

dataframes.append(traffic_user_test_copy)
merged_df = reduce(lambda left, right: pd.merge(left, right, on=[’
day_user’, ’traffic’], how=’outer’), dataframes)
merged_df = merged_df.sample(frac=1).reset_index (drop=True)

return merged_df

A.7 P-Mix-All

def p_mix_all(matrix_df, percent_to_remove=0.8):

vectorizer = TfidfVectorizer (token_pattern=r’\b(?7:[A-Za-z0-9](7:[A-
Za-z0-9\-1{0,61}[A-Za-2z0-9])?\.)+[A-Za-z]{2,6}\Db’)

train_data, test_data = train_test_split(matrix_df, test_size=0.3,
random_state=42)

vectorizer.fit_transform(train_datal[’traffic’])

domains_dict = {}

new_test_data = test_data.copy()

for user in test_datal[’day_user’].unique():

traffic_user_train = train_data.loc[train_datal[’day_user’] ==
user]

traffic_user_test = test_data.loc[test_datal[’day_user’] == user]

tfidf_vector_train = vectorizer.fit_transform(traffic_user_train

[>traffic?])

tfidf _df = pd.DataFrame ({’queries’: vectorizer.
get_feature_names_out (),
’idf’: vectorizer.idf_,
’tf-idf_sum’: np.asarray(

tfidf_vector_train.sum(axis=0)) .ravel(),
’>tf-idf_mean’: np.asarray(
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tfidf_vector_train.mean(axis=0)).ravel () })
tf_idf_table = tfidf_df.sort_values(by=’tf-idf_sum’, ascending=
False)
tf_idf_table[’URL’] = tf_idf_table.index
tf_idf_table = tf_idf_table.reset_index(drop=True)
top_percent = int(len(tf_idf_table) * percent_to_remove)
domains_to_remove = tf_idf_table[’queries’][:top_percent].tolist
O
remaining_domains = tf_idf_table[’queries’][top_percent:].tolist
O
domains_to_remove_pmix = np.random.choice(remaining_domains,
size=top_percent, replace=True)
domains_dict [user] = (domains_to_remove, domains_to_remove_pmix)
for index, row in traffic_user_test.iterrows () :
ip_address = row[’day_user’]
domains_to_remove, domains_to_remove_pmix = domains_dictl[
ip_address]
new_traffic = []
for domain in row[’traffic’].split(’,’):
rand_var = int.from_bytes (os.urandom(8), byteorder="big"
) / ((1 << 64) - 1)
if rand_var < percent_to_remove:
if domain in domains_to_remove:
idx = domains_to_remove.index (domain)
new_traffic.append(domains_to_remove_pmix[idx])

else:
new_traffic.append(domain)
else:
new_traffic.append (domain)

new_test_data.at[index, ’traffic’] = ’,’.join(new_traffic)

return new_test_data

A.8 P-Mix-Bottom

def p_mix_bottom(train_data, test_data, p_values, random_states):
vectorizer_pmix_bottom = TfidfVectorizer (token_pattern=r’\b(?:[A-Za-
2z0-91(?:[A-Za-20-9\-1{0,61}[A-Za-2z0-91)?\.)+[A-Za-2]1{2,6}\Db’)
new_test_data = test_data.copy()

domains_dict = {}

for user_ip, random_state, topOl_per in zip(test_datal[’day_user’].
unique (), random_states, p_values):
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train_user_data = train_datal[train_datal[’day_user’] == user_ip]
test_user_data = test_datal[test_datal[’day_user’] == user_ip]
tfidf _vectorizer = vectorizer_pmix_bottom.fit(train_user_datal’

traffic’])
tfidf_table = pd.DataFrame ({

f’queries {user_ip}’: vectorizer_pmix_bottom.
get_feature_names_out (),

’idf’: vectorizer_pmix_bottom.idf_,

’tf-idf_sum’: np.asarray(tfidf_vectorizer.sum(axis=0)).ravel
Q,

’tf-idf _mean’: np.asarray(tfidf_vectorizer .mean(axis=0)).
ravel ()

b

tf_idf_table = tfidf_table.sort_values(by=’tf-idf_sum’,
ascending=False)

tf_idf_table[’URL’] = tf_idf_table.index

tf_idf_table = tf_idf_table.reset_index(drop=True)

pmixbottom = int(len(tf_idf_table) * 0.5)

domains_to_remove tf_idf_table[f’queries {user_ipl}’]L[:
topO1l_per].tolist ()
remaining_domains

pmixbottom:].tolist ()

tf_idf_table[f’queries {user_ip}’]I[

domains_to_remove_pmix_bottom = np.random.RandomState (
random_state) .choice(
remaining_domains, size=topOl_per, replace=True

domains_dict [user_ip] = (domains_to_remove,
domains_to_remove_pmix_bottom)
p_values_dict = dict(zip(test_datal[’day_user’].unique(), p_values))

for index, row in new_test_data.iterrows():

ip_address = row[’day_user’]
p = p_values_dict[ip_address]
domains_to_remove, domains_to_remove_pmix_bottom = domains_dict [
ip_address]
new_traffic = []
for domain in row[’traffic’].split(’,’):
rand_var = int.from_bytes(os.urandom(8), byteorder="big") /

((1 << 64) - 1)
if rand_var < p:
if domain in domains_to_remove:

idx = domains_to_remove.index(domain)

new_traffic.append(domains_to_remove_pmix_bottom[idx
D

print (Fore.GREEN + f"This domain:"+ Fore.RED+ f"{
domain}"

+ Fore.CYAN+ " is being swapped for:"+ Fore.
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MAGENTA
+ str(domains_to_remove_pmix_bottom[idx])
)
else:
new_traffic.append (domain)
else:
new_traffic.append(domain)
new_test_data.at[index, ’traffic’] = ’,’.join(new_traffic)

return new_test_data
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