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Abstract

The Arrow’s impossibility theorem, proposed by Kenneth J. Arrow in 1950, is a cornerstone
of modern social choice theory that has sparked many proofs since its formulation. In this
thesis, we present a generalization of this theorem to a class of preference domains that we call
the class of polarization and diversity over triples, denoted DPT ∩DDT. Any domain in this
class involves preference profiles in which there is strong polarization among some partition of
the society (two coalitions of voters) over some triple of alternatives. That is, profiles in which
society is divided into two coalitions of voters which agree on how to rank the alternatives
in two pairs of alternatives, which belong to some triple of distinct alternatives {a, b, c},
and differ on how to rank the alternatives in the remaining pair of alternatives in {a, b, c}.
Furthermore, when there are at least three voters, any domain in DPT∩DDT also has at least
one profile that is not value-restricted, a condition proposed by Sen in 1966. A profile that is
not value-restricted is such that there is at least one triple of distinct alternatives, {a, b, c},
such that every alternative x in {a, b, c} can occupy diverse places on the preference ranking
of the voters restricted to {a, b, c}; that is, some voter says that x is the best alternative in
{a, b, c}, other voter says that it is the second-best alternative in {a, b, c}, and a third distinct
voter says that x is the worst alternative in {a, b, c}. An example of a domain in DPT ∩DDT

that consists of group-separable profiles is presented. Group-separability (proposed by Inada
in the 1960s) is a property of interest to the computational social choice literature. Following
a paper published in the ACM Symposium on Principles of Distributed Computing (PODC)
by Rajsbaum and Raventós-Pujol in 2022, we prove our results in an Arrovian combinatorial
topology framework instead of the classical Arrovian framework. But in contrast to the work
of these authors in PODC 2022, we do not restrict our analysis to the case of only two voters
and only three alternatives, we allow for at least two voters and at least three alternatives.
Furthermore, we prove that the classical and the combinatorial topology frameworks are
equivalent, even in the context of domain restrictions.
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Muñoz for their highly valuable time and comments on this thesis.

Thanks to Ber Lorke for reading this work and for providing interesting feedback.
Thanks to the Consejo Nacional de Humanidades, Ciencia y Tecnoloǵıa (CONAHCYT)
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Chapter 1

Introduction

In 1950, Kenneth J. Arrow [1, 2], winner of the 1972 Nobel Prize in Economics, proved that
certain desirable properties of certain type of voting methods are logically incompatible. This
result, now known as Arrow’s impossibility theorem (or just Arrow’s theorem), gave birth
to the academic field of Social Choice (see [3, 4] for a review on this field), a whole area of
scientific inquiry which formally studies the aggregation of individual preferences to obtain
collective outcomes. In recent decades, this area, traditionally of interest to economists,
mathematicians and political scientist, has evolved to become also part of computer science
in what is known as Computational Social Choice (see [14] for a review on this field).

According to Brandt et al. [15], Computational Social Choice is roughly about the two
following endeavors:

1. Using tools and paradigms from computer science as new lens to study social choice
mechanisms (mechanisms to aggregate individual information into collective outcomes)
or to develop new ones.

2. Using social choice theory to guide the improvement or design of multi-agent systems
in which agents’ information needs to be aggregated to obtain collective outcomes.

In this thesis, following Rajsbaum and Raventós-Pujol [38], we use combinatorial topology
to study Arrow’s theorem. This area of mathematics has been very useful to study distributed
computing [see 27]. Rajsbaum and Raventós-Pujol [38] establish some analogies between
distributed computing and social choice from the point of view of combinatorial topology.

For further explaining the contents of this thesis, and in particular to present Arrow’s
theorem, we now need to introduce some notation and standard definitions, but we will
revisit the topic more formally in Chapter 2 of this thesis1. We start with a finite set of
alternatives, X, and a finite set of voters {1, . . . , n}, also denoted N . Each voter i has a
preference ranking (sometimes just preference or just ranking) over the alternatives, which
is a strict total order on X. If Pi is a preference ranking on X for some voter i and x, y ∈ X,
we can write xy ∈ Pi as xPiy and read it as “voter i ranks alternative x above alternative
y”. We denote the set of all preferences on X as W (X). A preference profile (on X) (from

now on just a profile), denoted P⃗ , is a n-tuple of the form (P1, . . . , Pn), where Pi is the

1Since we aim for Chapter 2 to be as self-contained as possible, we will repeat some definitions presented
in this Introduction in Chapter 2. Apologies to the reader.
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preference ranking for voter i. We denote the set of all profiles on X as W (X)n and call it
the unrestricted domain. A preference domain, denoted D, is a non-empty subset of W (X)n.
For example, if X = {x, y, z} and n = 2, then D = {(xyz, yzx), (zxy, zxy)} is a domain of
only two profiles out of the 36 profiles in the unrestricted domain for only two voters, i.e.
W ({x, y, z})2. To illustrate our notation (which generalizes in a straightforward manner to
more voters and more alternatives), profile (xyz, yzx) should be read as “voter 1 ranks x
over y, y over z, and x over z; and voter 2 ranks y over z, z over x, and y over x”.

We follow [35], with slight adaptations, for the definitions in this paragraph. If i ∈ N , an
individual preference domain for voter i, denoted Di, is a non-empty subset of W (X). We
say that a preference domain D is Cartesian when it can be written as the Cartesian product
of individual preference domains (including every individual). Formally, D is a Cartesian
preference domain if D =

∏n
i=1Di. We say that D is common if it can be written as D = Dn

c ,
i.e. if it is Cartesian and Di = Dc for all i ∈ N .

A social welfare function (SWF or SWFs in plural) is a function of the form f : D → W (X),
i.e. a function that associates with every profile in D a preference over the alternatives in
X, which sometimes is referred to as the social preference.

Now we present some desirable properties for a SWF to have (how desirable these prop-
erties are is also a topic of inquiry and debate in the social choice literature, but we will not
deal with that in this thesis). A SWF satisfies:

• unanimity if for all α, β ∈ X, we have that every voter ranking α over β implies that
α is ranked over β on the social preference.

• Independence of Irrelevant Alternatives (IIA) if the social ranking of any two alterna-
tives depends solely on the ranking of those two alternatives in the individual rankings.

• non-dictatorship if there is no voter whose preference is always taken by the SWF as
the social preference. If there is such a voter, he is called a dictator and the SWF in
question is called a dictatorship or it is said to be dictatorial.

Arrow’s impossibility theorem says that if there are at least three alternatives, then
any SWF defined on the unrestricted domain that satisfies unanimity and IIA must be a
dictatorship. In this thesis, following [38], we work with this strict total orders version of
Arrow’s theorem, which is one of some common versions in the social choice literature (the
original version of this theorem [2] assumes weak orders). Arrow’s theorem has been proven
in many different ways. Arrow’s proof [2] employed the concept of decisive coalitions, while
Sen’s [40] that of almost-decisive coalitions. Informally, a decisive coalition is a subset of
voters G such that whenever they agree on ranking an alternative x over and alternative
y, the social ranking places x over y, no matter the preferences of the other members of
society, i.e. voters in Gc (the complement of G with respect to N). On the other hand, an
almost-decisive coalition is a subset of voters G such that whenever every voter in G agrees
on ranking x over y and every voter in Gc agrees on ranking y over x, then the preference of
G prevails, i.e. the social ranking places x over y. Other proofs have employed the concept
of pivotal voters [see 6, 22, 46]. There are also proofs that use almost-decisive coalitions and
ultrafilters from set theory, like those of Kirman and Sondermann [32] and Hansson [24],
and are of special interest to us because, in this thesis, we present a proof that falls into this
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category (but, as we will explain in a moment, our proof incorporates other elements like the
use of combinatorial topology). Tang and Lin [43] presents an inductive proof and transforms
the base case (the case of 2 voters and 3 alternatives) into a constraint satisfaction problem
to prove the impossibility for this case with aid of a computer.

In 1993, Baryshnikov [10] presented an algebraic topology proof of Arrow’s impossibility
theorem. In order to do so, he used simplicial complexes to represent the set of all preferences
and the set of all profiles. He also represented social welfare functions through chromatic
simplicial maps. Rajsbaum and Raventós-Pujol [37, 38] used Baryshnikov’s framework, but
they provide some proofs of Arrow’s impossibility theorem using combinatorial topology,
instead of algebraic topology. These authors use the combinatorial topology approach for
the case of 2 voters and 3 alternatives and then proceed by induction on the number of voters
and alternatives to prove the general case.

In the social choice literature, Arrow’s impossibility theorem has been circumvented in
different ways. According to Barberà [7] this has been accomplished by relaxing one of the
following assumptions: transitivity of social preferences, the unrestricted domain, IIA. In this
thesis, we follow the second of these options. Therefore, we will work with non-empty sets of
the unrestricted domain, i.e. W (X)n. Following [35], we say that a domain D that does not
escape Arrow’s theorem is Arrow-inconsistent. Not escaping Arrow’s theorem means that
every SWF defined on D satisfying IIA and unanimity must be a dictatorship. If there is
a SWF satisfying IIA, unanimity and non-dictatorship, then we would say that D escapes
Arrow’s theorem or, following [35], we say that D is Arrow-consistent. Following [20], we
say that D is super-Arrovian if the next two conditions are satisfied:

1. D is Arrow-inconsistent

2. for every domain D′ such that D ⊆ D′, we have that D′ is Arrow-inconsistent.

In this thesis, we work with domain restrictions, and not only with the unrestricted do-
main. In particular, we will represent any preference domain D ⊆ W (X)n with a simplicial
complex that we will denote ND. Moreover, we will represent W (X) with a simplicial com-
plex NW (X) and any SWF satisfying IIA with a chromatic simplicial map. By using these
combinatorial topology objects, we are working with a generalization of the combinatorial
or algebraic topology framework that Baryshnikov introduced in [10] to prove Arrow’s the-
orem (recall that this theorem assumes the unrestricted domain). Therefore, we will study
Arrow’s theorem under domain restrictions with aid of combinatorial topology objects. In
the conclusions of this thesis, we comment on the advantages of doing so. In particular,
we will see that this framework, in contrast to the classical one (the one that uses profiles
of preferences, preference rankings and SWFs), provides geometric intuition to the study
of domain restrictions. This combinatorial topology framework can also yield very simple
proofs, as it was shown in [38], and as we aim to illustrate in this thesis.

Gaertner [21] says that efforts to study domains restrictions can be classified into the
following two categories:

1. Study a particular method of preference aggregation like the simple majority rule and
find out if there are domains in which such a method is a SWF satisfying IIA, unanimity
and non-dictatorship.
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2. Study particular domains and find out if there are SWFs that satisfy IIA, unanimity,
and non-dictatorship for that domain.

This thesis falls in the second of these categories. We study domains and see if there are
desirable functions that can be defined over them. But in the next paragraph, before pre-
senting our contributions, we talk a little bit about the majority rule to provide a taste of
the first of these two approaches.

The majority rule is not always a SWF. To understand it we first need to talk about
the majority relation. Our exposition of the majority relation is based on [19]. Let P⃗ be a

profile on X, the majority relation of P⃗ = (P1, . . . , Pn), ≥maj, is a relation on X defined as
follows, for any two different alternatives α and β in X:

α ≥maj β iff |i ∈ N : αPiβ| ≥ |i ∈ N : βPiα|.

If α ≥maj β and not β ≥maj α, then we write α >maj β. If D is a preference domain, the

majority rule is a function that maps any profile P⃗ in D to the majority relation associated
with P⃗ . If for every profile P⃗ in D, the majority relation associated with P⃗ is a strict total
order over X, then the majority rule over D is SWF. If the majority rule is a SWF over
D it is easy to see that it escapes Arrow’s impossibility theorem (except if D is such that
there is a voter i that, for every profile in D, voter i is on the side of the majority for every
pair of distinct alternatives). Therefore, efforts have been made to find domains in which
the majority rule is a SWF. Notably, Sen [42] introduced a property called value restriction
such that if the majority rule is defined over domains that consist of profiles satisfying this
property and the number of voters, n, is odd, then this rule is a SWF (see also [41] and
see Chapter 2 for a definition of this property). As it is reviewed by Elkind et al. [19], the
following domain restrictions, which are popular in the computational social choice literature,
are subsets of the value restriction domain when n is odd: single-peaked, single-crossing on
trees, single-crossing (see [19] for definitions of these three domain restrictions). For n odd,
also in these domains, the majority rule is a SWF.

1.1 Our Contributions

Our contributions are the following:

1. We present a detailed version of the generalization to domain restrictions of the alge-
braic topology framework that Baryshnikov used in [10] to prove Arrow’s theorem. As
we will see in the related work section of this thesis (Section 1.2), this generalization
was suggested by Baryshnikov [10], but he did not get into the technical details of
how and why would this generalization work (in the sense of providing a framework
equivalent to the classical Arrovian framework to study possibility and impossibility
results). In this thesis, we provide such details. By doing so, we hope to contribute to
further formalize Baryshnikov’s framework to domain restrictions (which we also call
the combinatory or algebraic topology Arrovian framework).

2. We introduce a class of preference domains called the class of polarization and diversity
over triples, denoted DPT ∩DDT, such that any domain in this class is super-Arrovian
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(in particular, Arrow-inconsistent). The conditions that define this class are defined
in terms of the combinatorial topology representation of domains instead of the clas-
sical (but equivalent) representation. That is, we present a generalization of Arrow’s
theorem through combinatorial topology. The class DPT ∩ DDT has intuitive appeal
because it has profiles that exhibit strong polarization over triples of alternatives, as
well as profiles where there is diversity over triples of alternatives with respect to the
places that the alternatives can take in the preferences of the voters. In Chapter 5,
we provide and example of a domain in DPT ∩ DDT that consists of group-separable
profiles (the definition of such profiles appears in Chapter 2), a condition of interest to
the computational social choice literature [see 19].

3. With the combinatorial topology approach started by [38], which uses Baryshnikov’s
constructions (but with simple combinatorial proofs instead of algebraic topology
proofs), we prove that domains in DPT ∩ DDT are super-Arrovian (Theorem 21). As
part of this proof, we formalize and generalize an heuristic argument presented by them
(we will be more specific in Chapter 4). Furthermore, to prove Theorem 21, we in-
troduce a combinatorial topology version of the definition of almost-decisive coalitions
and use it together with ultrafilters. To do so, we draw inspiration from [16, 32] which
use ultrafilters to prove Arrow’s theorem and a generalization of Arrow’s theorem (in
Section 1.2, we add more on the comparison between the use of ultrafilters in this thesis
and in [16, 32]).

1.2 Related Work

We have already mentioned some of the broader literature relevant to this thesis, but in
this section we will be more specific referring only to work closely related to ours. As
we said before, Baryshnikov [10] proved Arrow’s theorem for n ≥ 2 voters and |X| ≥ 3
alternatives in the context of the unrestricted domain. Moreover, he pointed out that his
algebraic topology approach could be used to prove a generalization of Arrow’s theorem
that instead of the unrestricted domain assumes a domain with the free triples property (a
domain D ⊆ W (X)n satisfies this property if for every Y ⊆ X, with |Y | = 3, and every

profile P⃗ ∈ W (Y )n, there is a profile in D that restricted to Y equals P⃗ . Such a Y is called
a free triple.). He pointed out that the 2-skeleton of the simplicial complex that he uses
for representing W (X)n provides relevant information for completing such a proof. Also, he
suggested that “...domain restrictions have to be formulated in terms of the topology of NW

with some deleted simplices (forbidden orders) of maximal dimension” [10, p. 414], where
NW refers to a simplicial complex that he uses to represent the set of all strict total orders
over the alternatives. He mentions an example of doing this for single-peaked domains with
only three alternatives.

Rajsbaum and Raventós-Pujol [38] provide new combinatorial topology proofs within
Baryshnikov’s framework, but only for the base case of two voters and three alternatives. In
particular, they use a generalization of the index lemma to prove the base case of Arrow’s
theorem (see [38] for more on the index lemma, which is in turn a generalization of Sperner’s
lemma). They also provide an heuristic argument to argue that the base case holds. As
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we said in Section 1.1, we formalize and generalize this heuristic argument. In particular,
we show that it can be used even when there are |X| ≥ 3 alternatives and n ≥ 2 voters by
restricting attention to the 2-skeleton of an input complex. Rajsbaum and Raventós-Pujol
[37, 38] work with domain restrictions precisely by deleting simplices of maximal dimension
from the input complex, but they do it only for the two voters and three alternatives case.

Neither in [10] nor in [37, 38] is formally specified (that is, dealing with the technical
details) how the generalization of the combinatorial topology framework to allow for domain
restrictions is defined nor why it is equivalent to the classical version of the Arrovian frame-
work that deals with domain restrictions (the one that deals with sets of profiles/preferences
and SWFs satisfying IIA, instead of simplicial complexes and chromatic simplicial maps) in
a sense that we will make precise in Chapter 3. In particular, in our endeavor to formally
define this generalized combinatorial topology framework that deals with domain restric-
tions, we allow for representing subprofiles as simplices and not only profiles as simplices of
maximal dimension. The representation of the set of all strict total orders on X, i.e. W (X),
is the same as the one established in [10]. The representation of the SWFs satisfying IIA by
chromatic simplicial complexes is a straightforward generalization of the one for the unre-
stricted domain established in [10]. Finally, via Theorem 7 and Corollary 8 in Chapter 3, we
show that the classical and the combinatorial topology versions of the Arrovian framework
(which allows for domain restrictions) are equivalent. In other words, we show that finding
impossibility and possibility results is equivalent in both versions of the Arrovian framework.

In this thesis we work within the combinatorial topology Arrovian framework and use
simple combinatorial arguments, like [37, 38] did, instead of algebraic topology, to prove our
results. Hence, the results presented in this thesis build upon the combinatorial topology
approach started in [38]. Since, we will prove a generalization of Arrow’s theorem with this
approach, namely that DPT ∩ DDT is a class of Arrow-inconsistent domains (it will be clear
that this class has as a member the unrestricted domain), we shall now mention some related
work on impossibility and possibility results in the Arrovian framework.

Kalai and Muller [30] have characterized the domain restrictions which admit a SWF that
satisfies IIA, unanimity, and non-dictatorship in the context of common domains. They show
that a common domain D admits a SWF satisfying IIA, unanimity, and non-dictatorship for
n voters if and only if D admits such a SWF for the case of 2 voters. Blair and Muller [11]
characterize the domains that admit a SWF that satisfies IIA, unanimity, and essentiality
(a stronger condition than non-dictatorship) in the context of cartisian preference domains.
Kalai et al. [31] provide a sufficient condition for a common domain to be Arrow-inconsistent.
They also proved their main results through a technique known as the local approach [see
35], which is similar in spirit to one we employ in our proof of Lemma 18. Rajsbaum and
Raventós-Pujol [37] characterize the Arrow-consistent domains for the case of two voters
and three alternatives and in the context of domains that satisfy the free pairs property (a
domain D ⊆ W (X)n satisfies this property if for every pair of distinct alternatives Y ⊆ X

and every profile P⃗ ∈ W (Y )n, there is a profile in D that restricted to Y equals P⃗ ). In an
unpublished working paper, Lara et al. [33] present an algorithm that for the case of only 2
voters and only 3 alternatives, decides if any domain given as input is Arrow-consistent and if
so, it calculates all possible SWFs satisfying IIA, unanimity and non-dictatorship (hopefully
this algorithm will be efficient). To the best of our knowledge, a complete characterization
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of the Arrow-consistent domains remains an open question.
Campbell and Kelly [16] provide a sufficient condition for a domain to be Arrow-inconsistent.

This result is closer to our work than [11, 31, 30] in the sense that [16] allows for domains
that are not cartesian. Therefore, we now define a condition called the chain property used
by [16] to then present the generalization to Arrow’s theorem that appears in [16].

A domain D has the chain property if |X| ≥ 3 and for every two ordered pairs of
alternatives (α, β) and (γ, δ) in X, there is a sequence α1, α2 . . . , αk of alternatives, where
k ≥ 1, such that {α, β, α1}, {β, α1, α2}, . . . , {αk, γ, δ} are free triples. Obviously, a domain
with the free triple property satisfies the chain property, but as it is mentioned in [16], the
implication in the other direction does not hold.

Now we want to state the generalized Arrow’s theorem presented in [16]. However, these
authors used weak orders, instead of strict total orders (as it is also the case for the original
version of Arrow’s theorem in [2]). Yet, reading the proof of [16] one can easily adapt it to
the case with strict total orders so that it becomes comparable to our own generalization of
Arrow’s theorem. Hence, we present this adaptation, not the exact version that appears in
[16].

Theorem 1 (Adapted from [16]). If |X| ≥ 3 and D is a domain having the chain property,
then every SWF with domain D that satisfies unanimity and IIA must be dictatorial.

As we will see, one way in which this generalization of Arrow’s theorem (Theorem 1)
differs from ours is that the chain property requires the existence of at least one free triple,
while there are domains in DPT∩DDT that do not any have free triple (we will see an example
of such domains in example in Chapter 5).

We said in Section 1.1, that domains inDPT∩DDT are super-Arrovian and not only Arrow-
inconsistent. Hence, we now mention some work on super-Arrovian domains. Fishburn and
Kelly [20] and Dasguptas [18] study super-Arrovian domains of minimal cardinality. In
particular, Fisburn and Kelly [20] provide a characterization of super-Arrovian domains
among Arrow-inconsistent domains. The domains of the generalization of Arrow’s theorem
that we present in Chapter 4 turn out to be super-Arrovian, but we did not prove this using
this characterization. For the case of three alternatives and two voters, there is a minimal
super-Arrovian domain presented in [20, Lemma 2 on p. 86] that belongs to the domains of
our generalization of Arrow’s theorem, we will be more specific about this in Chapter 4. For
the case of three alternatives and three voters, there is a super-Arrovian domain presented
in [20, Lemma 3 on p. 88] that is a subdomain of some domains of our generalization of
Arrow’s theorem.

Other works related to this thesis are those that employ (almost-)decisive coalitions with
ultrafilters to prove Arrow’s theorem or a generalization of this theorem to domains different
than the unrestricted domain. For the context of the unrestricted domain and negatively
transitive and asymmetric binary relations on X, Kirman and Sondermann [32] show that
the set of all almost-decisive with respect to a an arbitrary SWF satisfying IIA and unanimity
forms an ultrafilter of the set of all voters, N . Hansson [24] does the same but for preorders
on X and decisive sets. Then, both show that if N is finite, their results imply that the
SWF in question is a dictatorship.

Campbell and Kelly [16] use ultrafilters to prove the generalized version of Arrow’s theo-
rem stated as Theorem 1. Similar to [24, 32], but for domains satisfying the chain property
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(the unrestricted domain being one of them), Campbell and Kelly [16] show that the set of
decisive coalitions with respect to (w.r.t.) an arbitrary SWF satisfying IIA and unanimity
forms an ultrafilter of N . Like [24, 32], they show that this implies that there is a dictator
for the SWF in question.

In contrast to [16, 24, 32], we work with the combinatorial topology approach, so we will
prove that the set of all almost-decisive with respect to an arbitrary unanimous chromatic
simplicial map of the form f : ND → NW (X) (we will be more specific what do we mean by
chromatic and unanimous in Chapter 3), where D ∈ DPT ∩DDT, forms an ultrafilter. So we
differ from [16, 24, 32] in that we use the combinatorial topology approach (instead of the
classical) and in the domains that we use.

1.3 Organization

In Chapter 2, we present the basic definitions, results and notation that we will use in later
chapters. Most of the material in this chapter are standard concepts from social choice theory,
ultrafilters and combinatorial topology. In Chapter 3, we introduce the definitions to make
the transition from the classical Arrovian framework, which uses sets of profiles/preferences
and SWFs satisfying IIA, to the combinatorial topology version of the Arrovian framework,
which uses simplicial complexes and chromatic simplicial maps. Additionally, this chapter,
in conjunction with Appendix A, establishes the equivalence between the two frameworks.
In Chapter 4, we present domain restrictions that have intuitive appeal and use them to
prove a generalized version of Arrow’s Theorem. In Chapter 5, we present an example of a
domain that lives in a class introduced in Chapter 4. This domain consists of group-separable
profiles. Finally, in Chapter 6, we will summarize our results and present connections of this
thesis to certain topics in computational social choice and distributed computing. We will
also discuss the nature of our proofs and present open research questions.
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Chapter 2

Technical Background

In Section 2.1, we introduce the definition of domains and related definitions. In Section

2.2, we introduce the definition of social welfare functions and the relevant properties for

their study within the Arrovian framework. In Section 2.3, we present the definition of

ultrafilters and a useful theorem about ultrafilters that has been used to prove Arrow’s

impossibility theorem or generalizations of it. In Section 2.4 we provide a very brief

introduction to basic concepts of combinatorial topology. In Section 2.5 we introduce

the definition of value-restriction and group-separable preferences. We also give an

intuitive example of a group-separable profile. Finally, in this section, we comment on

the relation between group-separability, value-restriction and Arrow-consistency.

2.1 Preference Domains

Let X be a set of alternatives and {1, . . . , n} a set of voters, also denoted N . Throughout,
we assume that |X| ≥ 3 and n ≥ 2. Let Y ⊆ X. A strict total order on Y is a binary
relation P on Y that satisfies the following conditions for x, y, z ∈ Y :

1. If x ̸= y, then xPy or yPx. (totality)

2. If xPy, then yPx does not hold. (asymmetry)

3. If xPy and yPz, then xPz. (transitivity)

If P is a strict total order on a set of alternatives {x, y, z}, and yPx and xPz and yPz hold
(we are using infix notation), we will usually write P as yxz. Similarly, if (x, y) is an ordered
pair of alternatives, we denote it as xy. Let W (Y ) be the set of all strict total orders on Y .
Then, W (X) is the set of all strict total orders on X.

A preference profile (or just profile) P⃗ on Y is an n-tuple of preferences (P1, . . . , Pn),
where Pi is a strict total order (on Y ), interpreted as the stated preference of voter i at

profile P⃗ , for all i ∈ N . Let W (Y )n be the set of all preference profiles on Y . A preference
domain D (or just domain if not confusion can arise) is a non-empty subset of W (X)n.

Let P ∈ W (X). The restriction of P to Y , denoted P |Y , is a strict total order on Y

defined in the following way: for all x, y ∈ Y , we have that xP |Y y iff xPy. If P⃗ ∈ W (X)n,

the restriction of P⃗ to Y , denoted P⃗ |Y is the profile (P1|Y , . . . , Pn|Y ) ∈ W (Y )n. Let D be a
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domain. We denote by D|Y the set {P⃗ |Y : P⃗ ∈ D}. If P⃗ belongs to D|Y we say that P⃗ is a

subprofile in D. If P⃗ ∈ W (Y )n and P⃗ ′ ∈ D, we say that P⃗ is a subprofile of P⃗ ′ if P⃗ = P⃗ ′|Y ,
in which case P⃗ is a subprofile in D (w.r.t. Y ). To consult more on the standard definitions
of domains, preferences, profiles, and restricted profiles see [16, 35].

2.2 Social Welfare Functions

Let D be a preference domain. A social welfare function (SWF or SWFs for plural) is a
function of the form F : D → W (X). In words, a SWF is a function that assigns to each
profile of preferences in D a strict total order, which is commonly referred as the social
preference.

Now that we have defined the concept of SWFs, we define some desirable properties that
we would like SWFs to have. Let x, y ∈ X and P⃗ , P⃗ ′ ∈ D. A SWF F satisfies:

• unanimity if we have the following: if for all i ∈ N we have that xPiy, then xF (P⃗ )y.

• independende of irrelevant alternatives (IIA) if P⃗ |{x,y} = P⃗ ′|{x,y} implies F (P⃗ )|{x,y} =
F (P⃗ ′)|{x,y}

• non-dictatorship if there is not a voter i ∈ N such that xF (P⃗ )y whenever xPiy . Such
a voter is called a dictator. So, a SWF satisfies non-dictatorship if there is no dictator.
If there is a dictator for F , then F is a dictatorship or is said to be dictatorial.

The following proposition lists four well-known facts about dictatorships in the social
choice literature.

Proposition 2. Let D be a preference domain and F : D → W (X) a dictatorship. The
following holds:

1. F is well-defined.

2. F satisfies unanimity and IIA.

3. if P⃗ ∈ D implies that Pi = Pj for all i, j ∈ N , then every voter is a dictator of F .

4. if D = W (X)n, then F has only one dictator.

Proof. We start with 1. Let i ∈ N be a dictator of F . Notice that F is in fact a SWF since
it assigns to every profile in D the preference of i, which is a strict total order on X.

Now we proceed with 2. Let x, y ∈ X and P⃗ , P⃗ ′ ∈ D and i ∈ N be a dictator of F . Notice
that F satisfies unanimity because if xPjy for all j ∈ N , it holds that xPiy, which implies

xF (P⃗ )y since i is a dictator of F . Now let us see that F satisfies IIA. If P⃗ |{x,y} = P⃗ ′|{x, y},
then Pi|{x,y} = P ′

i |{x,y}, but since i is a dictator of F , we have that F (P⃗ )|{x,y} = F (P⃗ ′)|{x, y}.
Part 3 follows directly from the definition of dictator.
Finally, for part 4, suppose D = W (X)n. Let i, j ∈ N be two dictators of F . To show:

i = j. Let P⃗ ∈ W (X)n such that xPiy and yPjx for some x, y ∈ X, x ̸= y. Since i and j

are dictators of F , we have that xF (P⃗ )y and yF (P⃗ )x, a contradiction to the asymmetry of

F (P⃗ ).
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Corollary 3. If D is a preference domain, there exists a unanimous SWF with D as its
domain and satisfying IIA.

Theorem 4 (Arrow’s impossibility theorem). If |X| ≥ 3, every SWF with domain W (X)n

that satisfies unanimity and IIA must be dictatorial.

As we mentioned in the introduction, one way of escaping Arrow’s theorem is by allowing
for SWF defined on preference domains other than the unrestricted one. We also mentioned
that there are domain restrictions that do not escape Arrow’s theorem. Following [35], we
put a name to those domains that escape Arrow’s theorem and those that do not. Let D be a
domain and remember that |X| ≥ 3. Following [35], we say that D is an Arrow-inconsistent
domain if we have that any SWF defined on D satisfying unanimity and IIA must be a
dictatorship. Also following [35], We say that D is an Arrow-consistent domain if there exists
a SWF defined on D such that it satisfies unanimity, IIA and non-dictatorship. Following
Fishburn and Kelly [20], D is super-Arrovian if it is Arrow-inconsistent and satisfies that for
every domain D′ such that D ⊆ D′ ⊆ W (X)n, D′ is Arrow-inconsistent.

2.3 Ultrafilters

As we said in the introduction, some of the proofs of Arrow’s theorem mix decisive or
almost-decisive coalitions with ultrafilters. Since we plan to provide a proof that does this,
we introduce the concept of ultrafilter.

Definition 1. An ultrafilter is a non-empty collection U of subsets of a set A that satisfies
three conditions:

1. The empty set, ∅, does not belong to U .

2. If B ⊆ A, then B ∈ U or Bc ∈ U .

3. If B,B′ ∈ U , then B ∩B′ ∈ U .

The following result has been used in proofs that use ultrafilters to prove Arrow’s theorem
or some generalization of it, like those of [32] and [16], respectively. We will also use it to
prove some of our results.

Theorem 5. If U is an ultrafilter of a finite set A, then there is some a ∈ A such that
U = {B ⊆ A : a ∈ B}

The proof is omitted but can be found in [16]. This proof in [16] uses a fourth property
of ultrafilters, but it is not hard to show that this property is implied by the three properties
in Definition 1. For a reference on ultrafilters see [12].
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2.4 Simplicial Complexes and Simplicial Maps

For the definitions in this section, we mostly follow [27] with some slight adaptations.
A collection K of finite and non-empty subsets of a set V is an (abstract) simplicial

complex if the following condition is satisfied: if s ∈ K and t is a non-empty subset of s,
then t ∈ S.

Let K be a simplicial complex w.r.t. a set V . A vertex is an element of V . The set
of all vertices of K, i.e. V , can also be denoted V (K). A simplex is an element of K.
The dimension of a simplex s, dim(s), is the number |s| − 1. A k-simplex is a simplex of
dimension k. A simplex t is a face of s if t ⊆ s. A simplex s in K is a facet if it is maximal
w.r.t. inclusion, i.e. if there is no simplex t of K such that s is strictly contained in t. The
dimension of K, dim(K), is the maximum dimension among the dimensions of all its facets.
The simplicial complex K is pure if all its facets are of the same dimension.

A simplicial complex C is a subcomplex of K if every simplex of C is a simplex of K. Let
l be a non-negative integer. The l-skeleton of K, skell(K), is the set of simplices of K with
dimension at most l. It is not hard to see that the skell(K) is a simplicial complex.

If K and C are simplicial complexes with sets of vertices V (K) and V (C), a vertex map
is a function of the form µ : V (K) → V (C). In words: a vertex map is a function that
assigns to each vertex of K a vertex of C. A vertex map is called a simplicial map if it maps
simplices to simplies. Formally, a vertex map µ : V (K) → V (C) is a simplicial map if for all
simplices s of K, we have that µ(s) is a simplex of C. If µ : V (K) → V (C) is a simplicial
map, we will always abuse notation and denote it µ : K → C. A simplicial map µ : K → C
is rigid if for each simplex s ∈ K it holds that |s| = |µ(s)|. Informally, simplicial map is
rigid if it preserves the cardinality of simplices.

If K is a simplicial complex, a m-labeling (also labeling) is a function of the form
l : V (K) → A, where A is a set of cardinality m. An m-coloring (also coloring), denoted
χ, is a m-labeling such that if u and v are two different vertices in some simplex t of K,
then χ(u) ̸= χ(v). A chromatic simplicial complex is a simplicial complex K together with
a coloring χ. If K and C are two chromatic simplicial complexes with m-colorings χK and
χC , respectively, then a simplicial map ϕ : K → C is chromatic if for every v ∈ V (K), we
have that χK(v) = χC(ϕ(v)). Informally, a simplicial map is chromatic if it preserve colors.

2.5 Value-restriction and Group-separable Preferences

We follow [19] in this section. The domain restrictions we are about to introduce are relevant
for our results in Chapter 4 and 5.

The notion of value-restricted preferences was introduced by Sen [42] in 1966.

Definition 2. A profile P⃗ on X is value-restricted over Y ⊆ X if for every triple of distinct
alternatives α, β, γ ∈ Y , at least one of the three alternatives is never placed as the most-
preferred, the middle-preferred or the least-preferred in the individual rankings of {α, β, γ}
induced by P⃗ .

We now aim to present the idea of group-separable preferences introduced by Inada [28,

29], but to do so, we first provide a piece of notation. If P⃗ = (P1, . . . , Pn) is a profile on a
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subset Y of X, and Y ′ and Y ′′ are non-empty subsets of Y , we write Y ′PiY
′′ to denote that

for all α ∈ Y ′ and all β ∈ Y ′′, we have αPiβ. We read Y ′PiY
′′ as “voter i ranks Y ′ over Y ′′”.

Definition 3. A profile P⃗ on X is group-separable if for every Y ⊆ X such that |Y | ≥ 2,
there exists a proper subset Z of Y such that ZPi(Y \ Z) or (Y \ Z)PiY for all i ∈ N .

In words, P⃗ is group-separable if every subset Y of at least two alternatives can be
partitioned in Z and Y \ Z such that every voter ranks Z over Y \ Z or viceversa (not all
voters have to rank Z relative to Y \ Z in the same way).

For example, let X = {curry, pasta, cake, ice cream} and n = 3. Consider a profile P⃗
defined as follows:

• curryP1pastaP1cakeP1ice cream

• pastaP2curryP2ice creamP2cake

• ice creamP3cakeP3curryP3pasta

Notice that voters 1 and 2 prefer any savory dish (curry and pasta) over any sweet dish (ice

cream and cake), while voter 3 prefers any sweet dish over the savory ones. To see that P⃗
is group-separable fix Y ⊆ X such that |Y | ≥ 2. We need to find a partition (Z, Y \ Z),
where Z is a proper subset of Y , such that ZPi(Y \ Z) or (Y \ Z)PiY for all i ∈ N . To do
so just let Z be the subset of all the savory dishes in Y . Then Y \ Z is the subset of all the

sweet dishes in Y . Clearly, ZP1(Y \ Z) for all i ∈ {1, 2}, and (Y \ Z)P3Z. Therefore, P⃗ is
group-separable.

As it can be seen in [19], if a profile P⃗ is group-separable, then it is value-restricted.
Hence, if n is odd and D is a domain that consists of group-separable profiles, the majority
rule is a SWF that satisfies unanimity and IIA.
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Chapter 3

The Combinatorial Topology
Representation of the Arrovian
Framework

In this chapter, we introduce simplicial complexes to represent any given domain D

and the set of all preferences over X, W (X), as well as chromatic simplicial maps

that represent SWFs. In Appendix A, we present bijections that formally justify this

translation from the classical version of the Arrovian framework to the combinatorial

topology version. In Section 3.1, we define the simplicial complex that represents

W (X). In Section 3.2, for any given domain D, we define the simplicial complex

that represents D. In Section 3.3, for any given SWF F we define the chromatic

simplicial map that represents F . In this section, we also talk about the equivalence

of using the classical and the combinatorial topology frameworks to study possibility

and impossibility results.

Baryshnikov [10] used two simplicial complexes, denoted NW (X) and NW (X)n , to represent
the set of all preferences, W (X), and the unrestricted domain, W (X)n, respectively. To do
so, he established a bijection between the set of all facets of NW (X) and W (X) and another
bijection between the set of all facets of NW (X)n and W (X)n. Furthermore, he represented
SWFs satisfying IIA with chromatic simplicial maps. In this thesis, we follow Barysnikov in
representing W (X) as NW (X), but work within a framework that allow us to represent any
domain D (not only the unrestricted domain) as a simplicial complex, that we denote ND,
and any SWF satisfying IIA defined on D with a chromatic simplicial map. As we said in
the introduction, this framework was suggested by Baryshnikov [10] (and it has also been
used by [37], [38]), but we present a very detailed version of it.

In this chapter, we define NW (X), ND and the chromatic simplicial maps that represent
SWFs satisying IIA. In Appendix A, we prove that there are bijections between the subpro-
files of D and the simplices of ND, we also prove that the bijection from W (X) to the facets
of NW (X) is in fact a bijection, and that there is a bijection between the SWFs satisfying
IIA and the chromatic simplicial maps from ND to NW (X). With this last bijection, the
equivalence between the classical and the combinatorial topology versions of the Arrovian
framework is captured by Theorem 7 and Corollary 8.

18



Figure 3.1: The simplicial complex NW ({x,y,z}). This figure is adapted from Figure 1 in [38].

3.1 W (X) as a Simplicial Complex

We introduce some notation needed to define the simplicial complex NW (X). Let σ ∈ {+,−}.
We define −σ ∈ {+,−} as follows: −σ = + iff σ = −. Let α, β ∈ X and Uσ

αβ be the set
{P ∈ W (X) : αPβ iff σ = +}. It is easy to see that U+

αβ = U−
βα.

Definition 4. Let NW (X) be the simplicial complex defined as follows:

• its set of vertices, denoted V (NW (X)), is⋃
σ∈{+,−}

α,β∈X,α ̸=β

{Uσ
αβ}

• a non-empty subset S ⊆ V (NW (X)), where S = {v1, . . . , vk}, is a (k − 1)-simplex of
NW (X) iff

k⋂
i=1

vi ̸= ∅

Checking that NW (X) is in fact a simplicial complex is easy.
If X = {x, y, z}, a depiction of NW (X) is shown in Figure 3.1. In this figure, the triangle

(2-simplex) {U−
xy, U

+
yz, U

−
zy} represents the strict total order yxz. Notice that this triangle

shares an edge (a 1-simplex) with the yzx triangle since yxz and yzx coincide in two pairwise
comparisons of alternatives, i.e. they coincide on how they rank x relative to y and y relative
to z, however they differ in how they rank x relative to z.

3.2 D as a Simplicial Complex

We want to represent each profile (or even better, any subprofile) with a simplex of a sim-
plicial complex that we denote ND. To illustrate how this representation works, suppose
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Figure 3.2: The simplicial complex NW ({x,y,z})2 . The torus (the drawing on the right side
of this figure) is obtained by identifying the vertices according to the patterns of the edges.
The cylinders (the drawing on the left side of this figure) are connected by the torus by
identifying vertices according to the patterns of the edges. This figure and its description
are adapted from Figure 3 in [38].

X = {w, x, y, z} and D is a domain that has (xyz, xzy) as a subprofile. It is not hard
to see that the profile (xyz, xzy) is a subprofile of at most 16 profiles in D (one of them
(wxyz, xwzy) if this profile is in D). We represent (xyz, xzy) with a triangle (a 2-simplex)
which is a face of at most 16 different tetrahedra, one for each of the 16 profiles possibly
in D having (xyz, xzy) as a subprofile. This way of representing subprofiles and simplices
defines bijections between collections of these objects, to see these bijections and the proofs
that they work, see Appendix A.

Before giving the formal definition of ND, let’s see how this simplicial complex looks
if X = {x, y, z}, n = 2 and D = W (X)n. This is depicted in Figure 3.2. The complex
NW ({x,y,z})2 has a triangle representing each of the (3!)2 = 36 profiles in NW ({w,y,z})2 . It
consists of two cylinders and a torus glued to the cylinders in a certain way (see the figure’s
description). One of these cylinders consists of all the profiles of complete agreement (w.r.t.
the pairwise comparisons of the alternatives), and the other one of those of complete dis-
agreement. The torus consists of all the profiles that has some degree of disagreement (but
not complete). A closer look to some of these triangles is provided by Figure 3.3. Before
proceeding with the formal definition of ND, we introduce some notation (similar, but not
exactly analogous, to the one introduced for NW (X)).

Let σ⃗ ∈ {+,−}n, i.e. σ⃗ is an n-tuple whose components are + or − signs. For example,
σ⃗ = (−,+,−,−). The i-component of σ⃗ is denoted σ⃗i. We define −σ⃗ as follows: for all i ∈ N ,
we have that (−σ⃗)i = + iff σ⃗i = −. For example if σ⃗ = (+,−,+), then −σ⃗ = (−,+,−).
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Figure 3.3: A closer look to some 2-simplices in NW ({x,y,z})2 . This figure is inspired by Figure
2 in [38].

If D is a preference domain, let L denote the following set of labels:⋃
σ⃗∈{+,−}n
α,β∈X,α̸=β

{U σ⃗
αβ}.

For every label U σ⃗
αβ ∈ L, let sD(U

σ⃗
αβ) denote the set

{P⃗ ∈ D : for all i ∈ N, αPiβ iff σ⃗i = +}.

Notice that for every σ⃗ and every α, β ∈ X, α ̸= β, we have sD(U
−σ⃗
βα ) = sD(U

σ⃗
αβ). For our

purposes, this fact allows us to treat the element U σ⃗
αβ of L and the element U−σ⃗

βα of L as if

they were the same element and write U σ⃗
αβ = U−σ⃗

βα . For a formal justification of this, see
Appendix A.

Definition 5. Let ND denote the simplicial complex defined as follows:

• its set of vertices, denoted V (ND), is

{u ∈ L : sD(u) ̸= ∅}

• a non-empty subset S ⊆ V (ND), where S = {v1, . . . , vk}, is a (k− 1)-simplex of ND iff

k⋂
i=1

sD(vi) ̸= ∅

As with NW (X), checking that ND is in fact a simplicial complex is easy. The construction
of ND is a generalization of the way NW (X)n is constructed in [10], but for technical reasons
related to allowing for domain restrictions, we introduced a distinction between a label U σ⃗

αβ

and the set sD(U
σ⃗
αβ).
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3.3 Social Welfare Functions as Chromatic Simplicial

Maps

We want to represent any social welfare function defined on a given domain D and satisfying
IIA with simplicial maps that are chromatic w.r.t. the labels involving the alternatives. To
be more precise, whenever we say a simplicial map of the form f : ND → NW (X) is chromatic
we mean that f(U σ⃗

αβ) = Uσ
αβ. Informally, f preserves the αβ’s labels. Let FD be the set of all

social welfare functions defined on D satisfying IIA and let MD be the set of all chromatic
simplicial maps of the form f : ND → NW (X). The following construction is a straightforward
generalization of the bijection from FN(W )n and to MN(W )n established by Baryshnikov [10].

Definition 6. Let B : FD → MD such that B(F ) is the chromatic simplicial map defined
as follows: B(F ) assigns any vertex U σ⃗

αβ of ND to the vertex Uσ
αβ of NW (X), where σ = + iff

we have the following: αF (P⃗ )β, for every P⃗ ∈ sD(U
σ⃗
αβ).

Proposition 6. If F ∈ FD, then B(F ) is well-defined.

The proof is an easy generalization of the arguments that appears in [38] for the case of
the unrestricted domain, but we write it for completeness.

Proof. Let U σ⃗
αβ be a vertex of ND. Let P⃗ , P⃗ ′ ∈ sD(U

σ⃗
αβ). To show: αF (P⃗ )β iff αF (P⃗ ′)β.

Since P⃗ , P⃗ ′ ∈ sD(U
σ⃗
αβ), for all i ∈ N , αPiβ iff σi = + and αP ′

iβ iff σi = +. Hence, for all

i ∈ N , αPiβ iff αP ′
iβ. Then, since F satisfies IIA, we get αF (P⃗ )β iff αF (P⃗ ′)β.

It is not hard to show that B is in fact a chromatic simplicial map. Its existence allows
us to talk interchangeably about SWFs satisfying IIA and their corresponding chromatic
simplicial maps.

We introduce some useful definitions and notation. A coalition is a subset of N . If G is
a coalition, let σ⃗G denote the element of {+,−}n such that σG

i = + iff i ∈ G. For instance,
if N = {1, 2, 3} and G = {1, 3}, then σ⃗G denotes (+,−,+). In particular, σ⃗N denotes the
element of {+,−}n such that σN

i = + for all i ∈ N . Analogously, σ⃗∅ denotes the element of
{+,−}n such that σ∅

i = − for all i ∈ N .
Now we define unanimity and dictatorship in the context our chromatic simplicial maps.

Definition 7. Let f : ND → NW (X) be a chromatic simplicial map. We say that f satisfies

unanimity if, for all α, β ∈ X, we have that if U σ⃗N

αβ is a vertex of ND, then f(U σ⃗N

αβ ) = U+
αβ.

We say that f is dictatorial if there is a voter i ∈ N such that: for all α, β ∈ X, if U σ⃗
αβ is a

vertex of ND, then f(U σ⃗
αβ) = U σ⃗i

αβ. Such a voter is called a dictator for f.

Theorem 7. Let F ∈ FD and f ∈ MD. Let B−1 be the inverse function of the bijection B.
The following hold:

1. B−1(f) satisfies IIA.

2. B(F ) is unanimous iff F is unanimous.

3. B(F ) is dictatorial iff F is dictatorial.
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The proof of Theorem 7 is in Appendix A.

Corollary 8. A domain D is Arrow-inconsistent iff any chromatic simplicial map of the
form f : ND → NW (x) satisfying unanimity is dictatorial.

The proof of Corollary 8 is in Appendix A.
Corollary 8 can be intuitively interpreted as saying that finding possibility and impossi-

bility results in the combinatorial topology framework is equivalent to finding them in the
classical framework.
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Chapter 4

A Generalization of Arrow’s
Impossibility Theorem

In Section 4.1, we define a combinatorial topolgy version of almost-decisiveness in the

context of domain restrictions. Our goal in this chapter is to define a class of domains

D such that if f : ND → NW (X) is a unanimous chromatic simplicial map with D ∈ D,

then the set of all almost-decisive coalitions w.r.t. f is an ultrafilter w.r.t. N . In

Sections 4.2, 4.3, and 4.4 we find classes of domains that guarantee property 1, 2 and

3 of the definition of ultrafilters, respectively. Finally, in Section 4.3, by using the

class of domains that guarantees property 2 we prove a generalized version of Arrow’s

theorem.

4.1 Almost-decisiveness in the Combinatorial Topol-

ogy Framework and Ultrafilters

The following definition is the combinatorial topology version of the notion of almost-
decisiveness (to consult definition of almost-decisiveness within the classical framework see
[16]).

Definition 8. Let f : ND → NW be a chromatic simplicial map, Y ⊆ X, and G a coalition.
If ab is a ordered pair of distinct alternatives a and b in X, we say that G is almost-decisive
over ab w.r.t. f if f(U σ⃗G

ab ) = U+
ab whenever U

σ⃗G

ab is a vertex of ND. We say that G is almost-

decisive over Y w.r.t. f if for all a, b ∈ Y such that U σ⃗G

ab is a vertex of ND, we have that
f(U σ⃗G

ab ) = U+
ab. If G is almost-decisive over X w.r.t. f , we just say that it is almost-decisive

w.r.t. f .

In words, if G is almost-decisive then when everyone in G agrees on ranking a over b and
everyone not in G agrees on ranking b over a, then society ranks a over b.

Now we present a useful lemma that follow easily from Definition 8.

Lemma 9. Let G be an almost-decisive coalition over Y ⊆ X and β, α ∈ X, where α ̸= β.

If U σ⃗Gc

αβ is a vertex of ND, then f(U σ⃗Gc

αβ ) = U−
αβ.

Proof. Observe that:
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• U σ⃗G

βα = U σ⃗Gc

αβ .

• U+
βα = U−

αβ.

• The almost-decisiveness of G over Y implies that

f(U σ⃗G

βα ) = U+
βα.

Taking these observations together yields the desired result.

The following lemma will be used in Section 4.5 to prove our generalization of Arrow’s
theorem.

Lemma 10. Let f : ND → NW (X) be a chromatic simplicial map and G the set of all
almost-decisive coalitions w.r.t. f . If G is an ultrafilter of the set of all voters N , then f is
dictatorial.

Proof. Suppose G is an ultrafilter of N . Since N is finite, by Theorem 5 there exists a voter,
call it d, such that G = {B ⊆ N : d ∈ B}.

Let U σ⃗
αβ be a vertex of ND. Since U σ⃗

αβ is an arbitrary vertex of ND, by Definition 7 we

have that d is a dictator for f if f(U σ⃗
αβ) = U σ⃗d

αβ. Clearly, there exists a coalition G of N such

that σ⃗ = σ⃗G. Therefore, it suffices to show that f(U σ⃗G

αβ ) = U
σ⃗G
d

αβ .
By property 3 of the definition of an ultrafilter, G or Gc is an element of G, i.e. one of

them is an almost-decisive. We proceed by checking the two possible cases.
Case 1: G ∈ G. Then by definition of almost-decisiveness f(U σ⃗G

αβ ) = U+
αβ. Also, since

G ∈ G, voter d is in G, so σ⃗G
d = +. Therefore, we have f(U σ⃗G

αβ ) = U
σ⃗G
d

αβ .

Case 2: Gc ∈ G. Then by Lemma 9, we have f(U σ⃗G

αβ ) = U−
αβ. Also, since G ∈ G, voter d

is in Gc, we have that σ⃗G
d = −. Therefore, we have f(U σ⃗G

αβ ) = U
σ⃗G
d

αβ .
Therefore, d is a dictator for f , so f is dictatorial.

4.2 Unanimity Vertices and the First Ultrafilter Prop-

erty

Definition 9. If G is a coalition and Y ⊆ X, then let DGY be the class of domains defined
as follows: D ∈ DGY iff there exist α, β ∈ Y such that U σ⃗G

αβ is a vertex of ND.

In particular, if G = N and Y = X, DNX denotes the class of domains that consists of all
domains D for which there exist α, β ∈ X such that U σ⃗N

αβ is a vertex of ND. In words, DNX

consists of the domains that have at least one unanimity vertex in their associated simplicial
complex.

Proposition 11. Let f : ND → NW (X) be a chromatic simplicial map and Y ⊆ X such that
|Y | ≥ 2. We have that D ∈ DGY iff G or Gc is not almost-decisive over Y w.r.t. f .
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Proof. We start with the ⇒ direction. Suppose D ∈ DGY . We proceed by contradiction
assuming that G and Gc are almost-decisive over Y (w.r.t. f). Since D ∈ DGY , there exist
α, β ∈ Y such that U σ⃗G

αβ is a vertex of ND. Since G is almost-decisive over Y , we have

that f(U σ⃗G

αβ ) = U+
αβ, but since Gc is also almost-decisive over Y , by Lemma 9 we have that

f(U σ⃗G

αβ ) = U−
αβ, a contradiction.

Now we prove the ⇐ direction. We show that the contrapositive statement holds. Sup-
pose D ̸∈ DGY . Then, for every α, β ∈ Y , the element U σ⃗G

αβ of L is not a vertex of ND.Then
G and Gc are almost-decisive over Y w.r.t. f by vacuity.

Corollary 12. Let f : ND → NW (X) be a chromatic simplicial map and Y ⊆ X such that
|Y | ≥ 2. We have that D ∈ DNX iff G or Gc is not almost-decisive w.r.t. f .

Proposition 13. Let f : ND → NW (X) be a chromatic and unanimous simplicial map and G
the set of all almost-decisive coalitions (over X) w.r.t. f . We have that ∅ ̸∈ G iff D ∈ DNX .

Proof. First, we prove the ⇒ direction. Suppose ∅ ̸∈ G. For contradiction, suppose D ̸∈
DNX . Then, by Corollary 12, N and ∅ are almost-decisive (w.r.t. f). But then ∅ ∈ G, a
contradiction.

Finally, we prove the ⇐ direction. Suppose D ∈ DNX , by Corollary 12, N or ∅ is not
almost-decisive. But by unanimity of f , N is almost-decisive, therefore ∅ is not almost-
decisive, i.e. ∅ ̸∈ G.

4.3 Polarization and the Third Ultrafilter Property

Our objective in this section is the following: given a unanimous chromatic simplicial map
f : ND → NW (X), and denoting the set of all almost-decisive coalitions w.r.t. f by G, we
want to define a class of preference domains D such that if D ∈ D, then G satisfies the third
property of the ultrafilter definition w.r.t. the set of all voters, N . That is, we want a D
such that if D ∈ D, the following holds:

if G is a coalition, then G ∈ G or Gc ∈ G

We will introduce a class of domains that we call the class of polarized over triples,
denoted DPT that achieves the objective stated in the previous paragraph. In order to define
this class and prove that it guarantees that the third ultrafilter property holds, we introduce
some definitions as well as some lemmas.

At this point, we want to introduce the notion of polarized profiles. Such profiles are
explicitly used in a proof by [18, Lemma 7 on p. 527], although not with that name.

Definition 10. A profile P⃗ on Y ⊆ X is polarized if there exist P, P ′ ∈ W (Y ), and a
non-empty coalition G distinct from N , such that Pi = P for all i ∈ G and Pj = P ′ for all

j ∈ Gc. We denote such a P⃗ as (G : P,Gc : P ′).

For example, if n = 5, X = {x, y, z} and G = {1, 4}, the profile (xyz, yzx, yzx, xyz, yzx)
is a polarized profile and can be denoted as (G : xyz,Gc : yzx), the idea being to communicate
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that every voter in G has xyz as their ranking and every voter outside G has yzx as their
ranking.

Certain polarized profiles over triples of alternatives are relevant to our results. These
profiles are called critical profiles by [37], but we will call them strongly polarized profiles.

Definition 11. Let Y ⊆ X, such that |Y | = 3, and P⃗ = (G : P,Gc : P ′) a polarized profile

on Y . The profile P⃗ is strongly polarized if P and P ′ differ on how they rank two different
pairs of alternatives and coincide on how they rank the remaining pair of alternatives.

Remark 1. For a given coalition G and set Y ⊆ X, such that |Y | = 3, there are exactly 12
strongly polarized profiles on Y .

Now we define two sets of profiles that are going to be the basis to construct the class
DPT of domains. These sets appeared in [20, Lemma 2 on p. 87] for the case of 3 alternatives
and n ∈ {2, 3} voters.

Definition 12. Let G be a non-empty coalition distinct from N and {α, β, γ} ⊆ X, α ̸=
β ̸= γ ̸= α. Let D1(G, {α, β, γ}) denote the set of preferences

{(G : βγα,Gc : αβγ), (G : βαγ,Gc : αγβ), (G : αβγ,Gc : γαβ),

(G : αγβGc : γβα), (G : γαβ,Gc : βγα), (G : γβα,Gc : βαγ)}.

Let us comment on D1(G, {α, β, γ}). It is easy to check that each of the six profiles
in D1(G, {α, β, γ}) is strongly polarized. Also, observe that for every strict total order
P on Y , there exists a unique profile in D1(G, {α, β, γ}) such that every voter in G has
P as her preference. Denoting the simplicial complex associated with D1(G, {α, β, γ}) as
ND1(G,{α,β,γ}) is quite cumbersome, so let us denote it as B1(G, {α, β, γ}). This simplicial
complex is depicted in Figure 4.1.

Figure 4.1: The simplicial complex B1(G, {α, β, γ}).
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Remark 2. Given a polarized profile (G : P,Gc : P ′) w.r.t. a coalition G and Y ⊆ X, such
that |Y | = 3, we have that (G : P ′, Gc : P ) is a polarized profile w.r.t. G and Y .

Observe that we can take each of the polarized profiles in D1(G, {α, β, γ}) and apply
Remark 2 to obtain another polarized profile. We define a set of profiles whose members are
those profiles obtained in this manner.

Definition 13. Let G be a non-empty coalition distinct from N and {α, β, γ} ⊆ X. Let
D2(G, {α, β, γ}) denote the domain

{(G : αβγ,Gc : βγα), (G : αγβ,Gc : βαγ), (G : γαβ,Gc : αβγ),

(G : γβαGc : αγβ), (G : βγα,Gc : γαβ), (G : βαγ,Gc : γβα)}.

Clearly, like in the case of D1(G, {α, β, γ}), for every strict total order P on Y , there
exists a unique profile in D2(G, {α, β, γ}) such that every voter in G has P as her preference.
The simplicial complex ND2(G,{α,β,γ}), also denoted B2(G, {α, β, γ}), is depicted in Figure
4.2. Notice that D1(G, {α, β, γ}) ∩D2(G, {α, β, γ}) = ∅, hence by Remark 1, we have that
D1(G, {α, β, γ}) ∪D2(G, {α, β, γ}) consists of the total 12 strongly polarized profiles w.r.t.
G and {α, β, γ}.

Figure 4.2: The simplicial complex B2(G, {α, β, γ})

Remark 3. The simplicial complex Bi(G, {α, β, γ}), for all i ∈ {1, 2}, contains all the edges
of the form {U σ⃗G

ab , U σ⃗Gc

ca } for some a, b, c ∈ {α, β, γ}.

To provide additional details, if a profile P⃗ in a domain D, i.e. a facet of ND, has an edge

of the form {U σ⃗G

ab , U σ⃗Gc

ca } as a face, that means that in that profile any voter in G disagrees
with any voter in Gc on at least two pairs of alternatives: {a, b} and {a, c}. Notice, in Figures
4.1 and 4.2, that every profile of Bi(G, {α, β, γ}), for all i ∈ {1, 2}, has an edge of this form.
Moreover, every profile of Bi(G, {α, β, γ}) has a unanimity vertex, i.e. a vertex for which
everyone at N agrees on the pair in question. Therefore, as we already said before, every
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triangle in Bi(G, {α, β, γ}) represents a profile in which G and Gc disagree on two pairs of
alternatives and agree on the remaining pair.

Definition 14 below is relevant to prove some subsequent lemmas. Lemmas 15, 16 and 17
formalize and generalize an heuristic argument made by [37, 38]. We will explain more about
this once we present the proofs of the three lemmas and the geometric intuition of Lemmas
16 and 17. Furthermore, in the context of only 3 alternatives and only n ∈ {2, 3} voters,
the proof of these Lemmas taken together is very similar to a proof carried out by Fishburn
and Kelly [20, Lemma 2 and Lemma 3 on pp. 87–88] to show that certain domain is super-
Arrovian. However, the proofs in [20] use the classical approach instead of the combinatorial
topology approach and decisive coalitions instead of almost-decisive coalitions.

Definition 14. An edge of NW (X) is called a determined by transitivity edge (DbT edge, for
short) if it is of the form {U+

αβ, U
+
βγ} for some α, β, γ ∈ X. An edge of NW (X) is a non-DbT

edge if it is not a DbT edge.

To motivate our definition, notice that a DbT edge {U+
αβ, U

+
βγ} represents the strict total

orders on X ranking α over β and β over γ. Then {U+
αβ, U

+
βγ} is a face of exactly one 2-

simplex of NW (X) among the 2-simplices of NW (X) that only involve alternatives in {α, β, γ},
namely, it is a face of the 2-simplex {U+

αβ, U
+
βγ, U

+
αγ} (in contrast, notice that {U+

αβ, U
+
βγ, U

+
γα}

is not a 2-simplex since it represents the intransitive ranking αβγα)1.
Notice that an edge of NW (X) of the form {U−

αβ, U
−
γα} is a DbT edge since it can be

rewritten as {U+
βα, U

+
αγ}. Of course, DbT edges live in the 1-skeleton of NW (X). Fix three

different alternatives, α, β, γ ∈ X. Figure 4.3 depicts the part of the 1-skeleton of NW (X)

that involves only alternatives in {α, β, γ}. In this figure, DbT edges are represented with
dashed-lines and non-DbT edges with solid-lines.

Figure 4.3: DbT edges (in dashed-lines) and non-DbT edges (in solid-lines) living in the part
of the 1-skeleton of NW (X) that only involves alternatives in {α, β, γ}.

1When |X| = 3, it can be shown that an edge of NW (X) is a DbT edge iff it is a 1-simplex in the
boundary of NW (X). The boundary of a pure simplicial complex K is the simplicial complex induced by the
(dim(K)− 1)-simplices that each is the face of a unique facet of NW (X).
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Lemma 14. Let f : ND → NW (X) be a unanimous chromatic simplicial map. If {U σ⃗
bc, U

σ⃗′
ca , U

σ⃗N

ab }
is a triangle of ND, then the edge {U σ⃗

bc, U
σ⃗′
ca} cannot by mapped by f to {U+

bc , U
+
ca}.

Proof. Suppose {U σ⃗
bc, U

σ⃗′
ca , U

σ⃗N

ab } is a triangle of ND and denote it T . We proceed by con-
tradiction: suppose {U σ⃗

bc, U
σ⃗′
ca} is mapped by f to {U+

bc , U
+
ca}. By unanimity, f(U σ⃗N

ab ) = U+
ab.

Then T is mapped by f to {U+
ab, U

+
bc , U

+
ca}, which is not a simplex (since it corresponds to

the intransitive ranking abca).

Lemma 15. Let G be a non-empty coalition distinct from N ; Y ⊆ X, such that |Y | = 3;
and f : ND → NW (X) a unanimous chromatic simplicial map. If B1(G, Y ) (resp. B2(G, Y ))
is a subcomplex of ND, then

1. Any edge of the form {U σ⃗G

ac , U σ⃗Gc

ba }, for some a, b, c ∈ Y , cannot be mapped to {U−
ac, U

−
ba}

(resp. {U+
ac, U

+
ba}).

2. Any edge of the form {U σ⃗Gc

ac , U σ⃗G

ba }, for some a, b, c ∈ Y , cannot be mapped to {U+
ac, U

+
ba}

(resp. {U−
ac, U

−
ba}).

Proof. Suppose B1(G, Y ) (resp. B2(G, Y )) is a subcomplex of ND. Then the triangles

{U σ⃗G

ac , U σ⃗Gc

ba , U σ⃗∅
cb } and {U σ⃗Gc

ac , U σ⃗G

ba , U σ⃗N

cb } (resp. {U σ⃗G

ac , U σ⃗Gc

ba , U σ⃗N

cb } and {U σ⃗Gc

ac , U σ⃗G

ba , U σ⃗∅
cb })

are triangles of ND. The desired results follow by applying Lemma 14.

Lemma 16. Let G be a non-empty coalition distinct from N ; Y ⊆ X, such that |Y | = 3;
and f : ND → NW (X) a unanimous chromatic simplicial map. If Bi(G, Y ) is a subcomplex

of ND for some i ∈ {1, 2}, then any edge of the form {U σ⃗G

βγ , U
σ⃗Gc

αβ } or {U σ⃗Gc

βγ , U σ⃗G

αβ }, for some
α, β, γ ∈ Y , is mapped by f to an non-DbT edge; in particular, to {U+

βγ, U
−
αβ} or {U−

βγ, U
+
αβ}.

Proof. W.l.o.g. suppose B1(G, Y ) is a subcomplex of ND (the other case is analogous). Let

α, β, γ ∈ Y , α ̸= β ̸= γ ̸= α. We will only prove the case of an edge of the form {U σ⃗G

βγ , U
σ⃗Gc

αβ }
since the other case is analogous. Denote {U σ⃗G

βγ , U
σ⃗Gc

αβ } by e. Since f is a chromatic simplicial
map, to get the desired result it suffices to show that e cannot be mapped to a DbT edge.

By part 1 of Lemma 15, the edge e cannot be mapped to {U−
βγ, U

−
αβ} under f , so let us

show that it cannot be mapped to the other DbT edge: {U+
βγ, U

+
αβ}.

We proceed by contradiction: suppose e is mapped by f to {U+
βγ, U

+
αβ}. Since f is

chromatic,

f(U σ⃗Gc

βγ ) = U+
βγ. (4.1)

Observe the following three things:

• By chromaticity of f , we have that f(U σ⃗Gc

αβ ) = U+
αβ.

• By Remark 3, we have that {U σ⃗Gc

αβ , U σ⃗G

γα } is an edge in B1(G, Y ).

• By part 2 of Lemma 15, we have that {U σ⃗Gc

αβ , U σ⃗G

γα } cannot be mapped to {U+
αβ, U

+
γα}

under f .

30



Taking these three observations together as well as the chromaticy of f , we get that {U σ⃗Gc

αβ , U σ⃗G

γα }
is mapped to {U+

αβ, U
−
γα}. Now observe the following three things:

• By chromaticity of f , we have that f(U σ⃗G

γα ) = U−
γα.

• By Remark 3, we have that {U σ⃗G

γα , U
σ⃗Gc

βγ } is an edge in B1(G, Y ).

• By part 1 of Lemma 15, we have that {U σ⃗G

γα , U
σ⃗Gc

βγ } cannot be mapped to {U−
γα, U

−
βγ}

under f .

Taking these three observations together as well as the chromaticy of f , we get that {U σ⃗G

γα , U
σ⃗Gc

βγ }
is mapped to {U−

γα, U
+
βγ}. Now observe the following three things:

• By chromaticity of f , we have that f(U σ⃗Gc

βγ ) = U+
βγ.

• By Remark 3, we have that {U σ⃗Gc

βγ , U σ⃗G

αβ } is an edge in B1(G, Y ).

• By part 2 of Lemma 15, we have that {U σ⃗Gc

βγ , U σ⃗G

αβ } cannot be mapped to {U+
βγ, U

+
αβ}

under f .

Taking these three observations together as well as the chromaticy of f , we get that {U σ⃗Gc

βγ , U σ⃗G

αβ }
is mapped to {U+

βγ, U
−
αβ}. Now observe the following three things:

• By chromaticity of f , we have that f(U σ⃗G

αβ ) = U−
αβ.

• By Remark 3, we have that {U σ⃗G

αβ , U
σ⃗Gc

γα } is an edge in B1(G, Y ).

• By part 1 of Lemma 15, we have that {U σ⃗G

αβ , U
σ⃗Gc

γα } cannot be mapped to {U−
αβ, U

−
γα}

under f .

Taking these three observations together as well as the chromaticy of f , we get that {U σ⃗G

αβ , U
σ⃗Gc

γα }
is mapped to {U−

αβ, U
+
γα}. Now observe the following three things:

• By chromaticity of f , we have that f(U σ⃗Gc

γα ) = U+
γα.

• By Remark 3, we have that {U σ⃗Gc

γα , U σ⃗G

βγ } is an edge in B1(G, Y ).

• By part 2 of Lemma 15, we have that {U σ⃗Gc

γα , U σ⃗G

βγ } cannot be mapped to {U+
γα, U

+
βγ}

under f .

Taking these three observations together as well as the chromaticy of f , we get that {U σ⃗Gc

γα , U σ⃗G

βγ }
is mapped to {U+

γα, U
−
βγ}. Since f is chromatic, we have that f(U σ⃗G

βγ ) = U−
βγ, a contradiction

to equation 4.1.
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Next we present the geometric intuition behind this proof. By hypothesis, B1(G, Y )
is a subcomplex of ND. Let α, β, γ ∈ Y such that α ̸= β ̸= γ ̸= α. Then we can rep-
resent B1(G, Y ) as it is depicted in Figure 4.1. Let C1 denote the dashed line cycle of
B1(G, {α, β, γ}) in this figure 2. With the goal of reaching a contradiction, we assume that

the edge {U σ⃗G

βγ , U
σ⃗Gc

αβ } ∈ C1 is mapped by f to the DbT edge {U+
βγ, U

+
αβ}. This is indicated

in Figure 4.4 by labelling edge {U σ⃗G

βγ , U
σ⃗Gc

αβ } in C1 and labelling with the same number the

edge of NW (X) to which {U σ⃗G

βγ , U
σ⃗Gc

αβ } is mapped under f . By chromaticity of f we know
that every edge in C1 is mapped to some edge in the part of skel1(NW (X)) only involving
alternatives in {α, β, γ}. This is why only this subcomplex of NW (X) is depicted in Figure
4.4. Applying, succesively, chromaticity of f and the relevant part of Lemma 15 implies that
C1 has to be mapped over skel1(NW (X)) as indicated by the numbers that act as labels. As

it can be seen, f(U σ⃗G

βγ ) = U+
βγ and f(U σ⃗G

βγ ) = U−
βγ, a contradiction.

Figure 4.4: Geometric intuition behind the proof of Lemma 16

Lemma 17. Let G be a coalition; Y = {α, β, γ} ⊆ X, such that |Y | = 3; and f : ND →
NW (X) a unanimous chromatic simplicial map. If Bi(G, Y ) is a subcomplex of ND for some
i ∈ {1, 2} whenever G is non-empty and distinct from N , then (either) G or Gc is almost-
decisive over Y .

Proof. Suppose Bi(G, Y ) is a subcomplex of ND for some i ∈ {1, 2} whenever G is non-empty
and distinct from N .

If G = ∅ or G = N , then G or Gc equals N , but then by unanimity of f , G or Gc is
almost-decisive over Y .

Suppose then G ̸= ∅ and G ̸= N . Hence, there is i ∈ {1, 2} such that Bi(G, Y ) is a
subcomplex of ND. Let α, β, γ ∈ Y with α ̸= β ̸= γ ̸= α. We begin by asking: where could

f map edge {U σ⃗G

βγ , U
σ⃗Gc

αβ } of Bi(G, Y )? By Lemma 16, there are only two options: {U+
βγ, U

−
αβ}

or {U−
βγ, U

+
αβ}. We proceed by cases.

Case 1: f({U σ⃗G

βγ , U
σ⃗Gc

αβ }) = {U+
βγ, U

−
αβ}. Then, by chromaticity of f , it holds that

f(U σ⃗G

βγ ) = U+
βγ and f(U σ⃗Gc

αβ ) = U−
αβ. (4.2)

2Formally, C1 is subcomplex of B1(G, {α, β, γ}) of dimension 1
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But then by Lemma 16, we have that f({U σ⃗Gc

αβ , U σ⃗G

γα }) = {U−
αβ, U

+
γα}. Then, by chromaticity

of f , it holds that

f(U σ⃗G

γα ) = U+
γα. (4.3)

But then by Lemma 16, we have that f({U σ⃗G

γα , U
σ⃗Gc

βγ }) = {U+
γα, U

−
βγ}. Then, by chromaticity

of f , it holds that

f(U σ⃗Gc

βγ ) = U−
βγ. (4.4)

But then by Lemma 16, we have that f({U σ⃗Gc

βγ , U σ⃗G

αβ }) = {U−
βγ, U

+
αβ}. Then, by chromaticity

of f , it holds that

f(U σ⃗G

αβ ) = U+
αβ. (4.5)

But then by Lemma 16, we have that f({U σ⃗G

αβ , U
σ⃗Gc

γα }) = {U+
αβ, U

−
γα}. Then, by chromaticity

of f , it holds that

f(U σ⃗Gc

γα ) = U−
γα. (4.6)

Taking 4.2 to 4.6, we obtain that G is almost-decisive over Y .

Case 2: f({U σ⃗G

βγ , U
σ⃗Gc

αβ }) = {U−
βγ, U

+
αβ}. Analogously to case 1, successively applying

chromaticity of f and Lemma 16 we get:

f(U σ⃗G

βγ ) = U−
βγ, f(U

σ⃗Gc

αβ ) = U+
αβ, f(U

σ⃗G

γα ) = U−
γα, (4.7)

f(U σ⃗Gc

βγ ) = U+
βγ, f(U

σ⃗G

αβ ) = U−
αβ, and f(U σ⃗Gc

γα ) = U+
γα. (4.8)

Therefore, for case 2, it holds that Gc is almost-decisive over Y .

Let us proceed with the geometric intuition behind the proof of Lemma 16. Let C2 denote
the cycle that consists of the non-DbT edges that are represented in solid-lines in Figure
4.3. Cycle C2 is represented on the right of Figure 4.5, along with cycle C1 represented on
the left of this figure. By Lemma 17, C1 has to be mapped over C2 under f . So we can

start by asking where could edge {U σ⃗G

βγ , U
σ⃗Gc

αβ } by mapped under f . There are two options:
{U+

βγ, U
−
αβ} or {U−

βγ, U
+
αβ}. So let us see both cases.

Case 1 (resp. 2): f({U σ⃗G

βγ , U
σ⃗Gc

αβ }) = {U+
βγ, U

−
αβ} (resp. f({U σ⃗G

βγ , U
σ⃗Gc

αβ }) = {U−
βγ, U

+
αβ}) .

In this case, by chromaticity, C1 has to be mapped as follows: if e is an edge of C2 and x is
the number that acts as a label for e, then f maps e to the edge in C1 that has x as the first

(resp. second) number appearing in its label. For example, edge {U σ⃗Gc

βγ , U σ⃗G

γα }, with label 3,
gets mapped to {U−

βγ, U
+
γα} (resp. {U+

βγ, U
−
γα}), with label 3, 6 (resp. 6, 3). Looking at how

the vertices are mapped, we can see that G (resp. Gc) is almost-decisive over Y .
For the case of only two voters and three alternatives, Rajsbaum and Raventós-Pujol

[37, 38] say that the cycle that we call C1 has to be mapped over the cycle C2 due to the
unanimity edges in dashed-lines in Figure 3.2, but they do not go into the details of why. We
formalized this via 15 and 16. Furthermore, we generalized their argument because we do
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not need the unanimity edges, only the unanimity vertices. Moreover, we showed that this
same argument can be applied when there are n ≥ 2 voters and |X| ≥ 3 alternatives if we
have the structure provided by the Bi(·, ·)’s and focus on the relevant part of the 2-skeleton
of ND. Finally, [37, 38], like us, say that C1 can be mapped over C2 in two ways, one of
which makes voter 1 the dictator and the other makes voter the dictator. In our case, since
we are dealing n ≥ 2 voters and |X| ≥ 3 alternatives, we can only conclude that G or Gc is
almost-decisive over the triple of alternatives Y .

Figure 4.5: Geometric intuition behind the proof of Lemma 17.

We are now ready to define the class DPT of domains.

Definition 15. The class of preference domains of polarized over triples, denoted DPT, is
defined as follows: DPT iff for every coalition G that is non-empty and distinct from N , and
every triple {α, β, γ} ⊆ X, α ̸= β ̸= γ ̸= α, we have that B1(G, {α, β, γ}) is a subcomplex of
ND or B2(G, {α, β, γ}) is a subcomplex of ND (or equivalently: D1(G, {α, β, γ}) is a subset
of D|{α,β,γ} or D2(G, {α, β, γ}) is a subset of D|{α,β,γ}).

The following lemma says that, given a domain in DPT, the almost-decisiveness of a
coalition over an ordered pair of alternatives spreads to all ordered pairs of alternatives.
This sort of “contagion” result has been used in other ultrafilter proofs. For instance, for
the case of the unrestricted domain, [32] shows that this contagion of almost-decisiveness
occurs. As another example, [16] has a contagion lemma for the case of domains satisfying
the chain property.

Lemma 18. Let f : ND → NW be a unanimous chromatic simplicial map, where D ∈ DPT,
let G be a non-empty coalition distinct from N , and α and β two different alternatives in X
such that f(U σ⃗G

αβ ) = U+
αβ, then G is almost-decisive.

Proof. Suppose there are two different alternatives α and β in X such that f(U σ⃗G

αβ ) = U+
αβ.

Let γ, δ ∈ X \ {α, β} with γ ̸= δ. To show:

1. f(U σ⃗G

γδ ) = U+
γδ

2. f(U σ⃗G

αγ ) = U+
αγ

3. f(U σ⃗G

γα ) = U+
γα
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4. f(U σ⃗G

βγ ) = U+
βγ

5. f(U σ⃗G

γβ ) = U+
γβ

6. f(U σ⃗G

βα ) = U+
βα

We focus on proving 1 and we will prove 2-6 along the way.
Let Y1 = {α, β, γ}. Since f(U σ⃗G

αβ ) = U+
αβ, by Lemma 9 Gc cannot be almost-decisive over

Y1. Then by Lemma 17, G is almost-decisive over Y1. Therefore, 2-6 hold. In particular,
f(U σ⃗G

αγ ) = U+
αγ.

Let Y2 = {α, γ, δ}. Since f(U σ⃗G

αγ ) = U+
αγ, by Lemma 9 Gc cannot be almost-decisive over

Y2. Then by Lemma 17, G is almost-decisive over Y2. Then f(U σ⃗G

γδ ) = U+
γδ, i.e. 1 holds.

Now we give the geometric intuition of this proof. Observe that Y1 and Y2 are triples
that share exactly two alternatives, i.e. α and γ. Moreover, since we are working with an
arbitrary domain in DPT, we have that:

• B1(G, Y1) or B2(G, Y1) exist as a subcomplex of ND, and

• B1(G, Y2) or B2(G, Y2) exist as a subcomplex of ND

Let B(G, Y1) = Bi(G, Y1), where i ∈ {1, 2}, and such that Bi(G, Y1) exist in ND. Let
B(G, Y2) = Bi(G, Y2), where i ∈ {1, 2}, and such that Bi(G, Y2) exist in ND. It is easy
to see that B(G, Y1) and B(G, Y2) share exactly two non-unanimous vertices, namely U σ⃗G

αγ

and U σ⃗G

γα , as depicted in Figure 4.8. So intuitively, the fact f(U σ⃗G

αβ ) = U+
αβ is spreading

almost-decisiviness along the cycles depicted in Figure 4.8 until it reaches all the target
vertices.

This argument is similar in spirit to the local approach of Kalai et al. [31]. To read more
on the local approach check [35].

Figure 4.6: Geometric ntuition behind the proof of Lemma 18.

The subsequent theorem states that membership to DPT provides a sufficient condition
for the set of all almost-decisive coalitions (w.r.t. a given f) to satisfy the third property of
ultrafilters.

Theorem 19. Let f : ND → NW be a unanimous chromatic simplicial map, where D ∈ DPT

and let G be a coalition. We have that G or Gc is almost-decisive.
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Proof. If G = ∅ or G = N , then G or Gc equals N , but then by unanimity of f , G or Gc is
almost-decisive. Suppose then G ̸= ∅ and G ̸= N .

Let α, β ∈ X, α, β ∈ X. Then f(U σ⃗G

αβ ) = U+
αβ or f(U σ⃗G

αβ ) = U−
αβ (equivalently, f(U σ⃗Gc

βα ) =

U+
βα). In the first case, Lemma 18 implies that G is almost-decisive. In the second case,

Lemma 18 implies that Gc is almost-decisive.

4.4 Diversity and the Second Ultrafilter Property

In this section, given a unanimous chromatic simplicial map f : ND → NW (X) we want to
define a class D such that if D ∈ D, then the set of all almost-decisive coalitions G satisfies
the second property of ultrafilters w.r.t. N , i.e.

if G,G′ ∈ G, then (G ∩G′) ∈ G.

We will present a class of preference domains that we will call the class of diversity
over triples, denoted DDT, that is going to fulfill the requirement stated in the previous
paragraph. Then we will use D ∈ DPT ∩ DDT, which we call the class of polarization and
diversity over triples, to obtain the second property of ultrafilters, allowing us to obtain a
generalized version of Arrow’s theorem.

Definition 16. The class of diversity over triples, denoted DDT, is a class of preference
domains defined as follows: D ∈ DDT iff for every two coalitions G and G′ such that G ̸⊆ G′

and G′ ̸⊆ G, there exists three alternatives α, β, γ ∈ X such that {U σ⃗G

αβ , U
σ⃗G′

βγ , U σ⃗(G∩G′)c

γα } is a
2-simplex of ND.

To reflect upon Definition 16, consider the following equivalent way to define DDT: D ∈
DDT iff for every two coalitions G and G′ such that G ̸⊆ G′ and G′ ̸⊆ G, there exists three
alternatives α, β, γ ∈ X such that there is a profile P ∈ D such that:

• if i ∈ G \G′, then Pi = γαβ;

• if i ∈ G ∩G′, then Pi = αβγ; and

• if i ∈ G′ \G, then Pi = βγα.

• if i ∈ N \ (G ∪G′), then Pi = γβα

If G ∩ G′ is non-empty, then then such a profile P⃗ has the property that there is a voter
whose preference in P⃗ restricted to {α, β, γ} is γαβ; another voter with αβγ; and a third
voter βγα. In other words, for any alternatives a, b, c ∈ {α, β, γ}, a ̸= b ̸= c, there exists a

voter in N that, in P⃗ , ranks a on top of b and c; another voter that ranks a in the middle of
b and c; an yet a third voter that ranks a below b and c. Therefore such a profile P⃗ is not
value-restricted.

If n ≥ 3, there exists coalitions G and G′ satisfying G ̸⊆ G′ and G′ ̸⊆ G such that
G ∩ G′ ̸= ∅. For example, G = {1, 2} and G′ = {2, 3}. Therefore, for n ≥ 3, if D ∈ DDT,
then D has at least a profile that is not value-restricted.
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Observe that if n = 2, then the only pair of coalitions satisfying G ̸⊆ G′ and G′ ̸⊆ G is
{{1}, {2}}. In that case, Definition 16 requires the existence of a profile with a subprofile of
the form (γαβ, βγα) or (βγα, γαβ), which are strongly polarized profiles on {α, β, γ} (see
Definition 11).

Now we show that DPT ∩ DDT is sufficient to induce the second property of ultrafilters.

Theorem 20. Let f : ND → NW (X) be a unanimous chromatic simplicial map such that
D ∈ DPT∩DDT. If G and G′ are two almost-decisive coalitions (w.r.t. f), then the coalition
G ∩G′ is almost-decisive.

Proof. Suppose G and G′ are two almost-decisive coalitions (w.r.t f). If G or G′ is empty.
Then G ∩G′ is empty and we are done. Suppose then G and G′ are non-empty.

If G ⊆ G′ or G′ ⊆ G then G ∩G′ is G or G′ and we are done. Suppose then G ̸⊆ G′ and
G′ ̸⊆ G.

So let us assume that G ̸⊆ G′ and G′ ̸⊆ G. We proceed by contradiction, suppose G∩G′

is not almost-decisive. Then, since D ∈ DPT, by Theorem 19, (G ∩ G′)c is almost-decisive.
Since D ∈ DDT, G ̸⊆ G′ and G ̸⊆ G′, there exists alternatives α, β, γ ∈ X such that

{U σ⃗G

αβ , U
σ⃗G′

βγ , U σ⃗(G∩G′)c

γα } is a 2-simplex of ND, denote it T .
Since, G, G′ and (G∩G′)c are almost-decisive, T is mapped to U+

αβ, U
+
βγ, U

+
γα, but this is not

a simplex of NW (X) (since it corresponds to the intransitive ranking αβγα), a contradiction.

4.5 Arrow-inconsistency on DPT ∩ DDT

Now we present the generalized version of Arrow’s theorem:

Theorem 21. If D ∈ DPT ∩ DDT, then D is Arrow-inconsistent.

Proof. Let D ∈ DPT∩DDT, f : ND → NW (X) be a unanimous chromatic simplicial map, and
G the set of all almost-decisive coalitions w.r.t. f .

By Lemma 10, if we show that G is an ultrafilter w.r.t. N , we are done.
Since D ∈ DPT, we have that ND has a unanimity vertex. Therefore, by Proposition 13,

∅ ̸∈ G. Hence, property 1 of ultrafilters hold.
Also, since D ∈ DPT, Theorem 20 guarantees that property 3 of ultrafilters holds.
Finally, having D ∈ DPT∩DDT guarantees, by Theorem 19, that property 2 of ultrafilters

hold.
Therefore, G is an ultrafilter w.r.t. N .

We finalize this chapter proving that the property of belonging to DPT ∩ DDT is closed
upward under inclusion.

Proposition 22. Let D and D′ are domains such that D ∈ DPT ∩ DDT and D ⊆ D′. We
have that D′ ∈ DPT ∩ DDT

Proof. Since D ⊆ D′, it is easy to see that ND is a subcomplex of ND′ , we denote this fact
as ND ⊆ ND′ .
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Firstly, let us see that D′ ∈ DPT. To see this, let G be a non-empty coalition distinct
from N and Y ⊆ X such that |Y | = 3. Since D ∈ DPT, there exists an i ∈ {1, 2} such that
Bi(G, Y ) ⊆ ND. Since ND ⊆ ND′ , we have that Bi(G, Y ) ⊆ ND′ . Hence, D′ ∈ DPT.

Secondly, let us prove that D′ ∈ DDT. To see this, let G and G′ coalitions such that
G \ G′ and G′ \ G are non-empty. Since D ∈ DDT, there exists α, β, γ ∈ X, all different

from each other, such that {U σ⃗G

αβ , U
σ⃗G′

βγ , U σ⃗(G∩G′)c

γα } is a 2-simplex of ND. Since ND ⊆ ND′ ,

the set {U σ⃗G

αβ , U
σ⃗G′

βγ , U σ⃗(G∩G′)c

γα } is a 2-simplex of N ′
D. Hence, D′ ∈ DDT. Therefore, D′ ∈

DPT ∩ DDT.

Proposition 23. If D ∈ DPT ∩ DDT, then D is super-Arrovian.

Proof. Follows from combining Theorem 7 and Proposition 22.

For the case of 3 alternatives and 2 voters, super-Arrovian domain “D∗” in the proof of
Lemma 2 in [20, p. 87] is clearly a member of DPT ∩ DDT. For the case of 3 alternatives
and 3 voters, it is easy to see that the super-Arrovian domain that appears in the proof
of Lemma 3 in [20, pp. 88–89] is a subdomain of some domains in DPT ∩ DDT. For the
case of |X| ≥ 3 alternatives and n ≥ 2 voters, the unrestricted domain clearly belongs to
DPT ∩DDT. For the case of 4 alternatives and 2 voters, in the next chapter, we will present
a domain in DPT ∩ DDT that consists of group-separable profiles.

38



Chapter 5

An Example of a Domain in
DPT ∩ DDT

In this chapter, we work under the assumption that there are only two voters and only

four alternatives. In Section 5.1, we present a domain, called DB,4, different from the

unrestricted domain, that belongs to the class DPT ∩ DDT defined in Chapter 4. In

Section 5.2, we show that this domain in fact belongs to this class and prove that every

profile in DB,4 is group-separable.

5.1 The Domain DB,4

Suppose there are only two voters, n = 2, and only four alternatives, X = {w, x, y, z}. Let

DB,4 be the domain defined as follows: P⃗ ∈ DB,4 iff P⃗ is of the form (G : αβγδ,Gc : γδαβ) for
some α, β, γ, δ ∈ X, all distinct from each other. For example: (xywz, wzxy), (yxwz, wzyx),
and (zwxy, xyzw) are all members of DB,4. Notice that once you fix the preference ranking
of everyone in G or everyone in Gc to be a ranking of the form αβγδ for some α, β, γ, δ ∈ X,
then the rankings of the complementary coalition must be γδαβ (and this is a also a sufficient
condition for the resulting profile to be in DB,4). Therefore, it is not hard to see that there
are 4! profiles satisfying this property, so |DB,4| = 4! = 24.

In order to study DB,4 we are going to analyze its 2-skeleton. We start doing that in the
next proposition.

Proposition 24. The 2-skeleton of NDB,4
, denoted skel2(NDB,4

), is⋃
j∈{1,2}
G⊆N

{α,β,γ}⊆X

Bj(G, {α, β, γ}),

where Bj(G, {α, β, γ}) is the simplicial complex associated with the domain in Definition 12
if j = 1 and Definition 13 if j = 2.

Proof. Let G be a coalition. To show:
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1. If P⃗ ∈ DB,4 and Y ⊆ X, with |Y | = 3, then any subprofile of P⃗ on Y is a strongly
polarized profile (G : P,Gc : P ′) for some P, P ′ ∈ W ({α, β, γ}). Proving this, shows
that

skel2(NDB,4
) ⊆

⋃
j∈{1,2}
G⊆N

{α,β,γ}⊆X

Bj(G, {α, β, γ}).

2. Let Y = {α, β, γ} ⊆ X. Any profile strongly polarized profile (G : R,Gc : P ′) for some

P, P ′ ∈ W ({α, β, γ}) is a subprofile of some profile P⃗ ∈ DB,4. Due to Definitions 12
and 13, this shows that ⋃

j∈{1,2}
G⊆N

{α,β,γ}⊆X

Bj(G, {α, β, γ}) ⊆ skel2(NDB,4
).

Let us start with 1. Let P⃗ ∈ DB,4. Then P⃗ can be written as (G : abcd,Gc : cdab) for some
a, b, c, d ∈ {w, x, y, x} = X, all different from each other. We have that (G : abcd,Gc : cdab)

• restricted to {a, b, c} is (G : abc,Gc : cab), note that abc and cab coincide in how they
rank exactly one pair of alternatives;

• restricted to {a, b, d} is (G : abd,Gc : dab), note that abd and dab coincide in how they
rank exactly one pair of alternatives;

• restricted to {a, c, d} is (G : acd,Gc : cda), note that acd and cda coincide in how they
rank exactly one pair of alternatives;

• restricted to {b, c, d} is (G : bcd,Gc : cdb), note that bcd and cdb coincide in how they
rank exactly one pair of alternatives.

Clearly, these are all the possible restrictions of (G : abcd,Gc : cdab) to a subset of three
different alternatives (all different from each other) of {w, x, y, z}. This completes the proof
of 1.

Now let us prove 2. It is not hard to see that there are 12 profiles W ({α, β, γ})n satisfying
the required condition. Do to symmetries it suffices to show that (αβγ, γαβ), (αβγ, βγα),

(αγβ, βαγ) and (αγβ, γβα) are subprofiles of some profile P⃗ ∈ DB,4. Let δ ∈ {w, x, y, z} \
{α, β, γ}. We have the following:

• (αβγ, γαβ) is a subprofile of (αβγδ, δγαβ) ∈ DB,4.

• (αβγ, βγα) is a subprofile of (αδβγ, βγαδ) ∈ DB,4.

• (αγβ, βαγ) is a subprofile of (αγδβ, δβαγ) ∈ DB,4.

• (αγβ, γβα) is a subprofile of (δαγβ, γβδα) ∈ DB,4.
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Remark 4. Clearly, DB,4 ∈ DPT.

Remark 5. DB,4 does not satisfy the chain property mentioned in Chapter 1 because there
are no free triples in X w.r.t. DB,4.

By remark 4, at least for the case of n = 2 and four alternatives, the unrestricted domain
is not the only domain in DPT.

In Figure 5.1, we have depicted skel2(NDB,4
) schematically (omitting making explicit

what vertices and edges are shared between the Bi(G, ·)’s).

Figure 5.1: Schematic (not accurate) drawing of skel2(NDB,4
).

5.2 Arrow-inconsistency and Group-separability of DB,4

In this section, we will prove important properties of DB,4 using Proposition 24.

Proposition 25. DB,4 belongs to DPT ∩ DDT.

Proof. Clearly, by Proposition 24, DB,4 ∈ DPT.
We now prove that DB,4 ∈ DDT. As we said in our discussion of the definition of DDT

in Section 4.4, when n = 2, a domain belongs to DDT iff it has a subprofile of the form
(γαβ, βγα) or (βγα, γαβ). But as we also said in the referred section, these profiles are
strongly polarized profiles, and therefore, by Proposition 24, they live in⋃

j∈{1,2}

{α,β,γ}⊆X

Bj(1, {α, β, γ}).

. Therefore, by Proposition 24, DB,4 ∈ DDT.

Corollary 26. DB,4 is Arrow-inconsistent.
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This corollary is true by our generalization of Arrow’s theorem, i.e. Theorem 21.
Another thing that we can prove about DB,4 is that it is group-separable (see Chapter 2

for a definition).

Proposition 27. Every profile in DB,4 is group-separable.

Proof. Fix a profile P⃗ ∈ DB,4. To show: P⃗ is group-separable. By definition of DB,4 can

rewrite P⃗ as (αβγδ, γδαβ).
Let Y ⊆ X such that |Y | ≥ 2. We want to exhibit a proper subset Z of Y such that

ZPi(Y \ Z) or (Y \ Z)PiY for all i ∈ N .
We define Z as follows: for all x ∈ Y , x ∈ {α, β}.
We will show that ZP1(Y |Z) and (Y \ Z)P2Z (to understand this notation, see Chapter

2).
Let z ∈ Z and z′ ∈ Y \ Z. By definition, z ∈ Z implies z ∈ {α, β}, and z′ ∈ Z ′ implies

z ∈ {γ, δ}.
Since P1 = αβγδ and P2 = γδαβ, we have zP1z

′ and zP2z
′. But then, since z and z′

were chosen arbitrarily, ZP1(Y |Z) and (Y \ Z)P2Z.
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Chapter 6

Conclusion

In this thesis, we generalized, allowing for n ≥ 2 voters and |X| ≥ 3 alternatives, the
combinatorial topology approach of [37, 38], which only dealt with two voters and three
alternatives. Using this approach, we showed that if a preference domain belongs to the
class of polarization and diversity over triples, DPT ∩ DDT, it is Arrow-inconsistent, i.e.
DPT ∩ DDT provides a generalization of Arrow’s theorem. Also, our proofs show that the
ultrafilter technique can be used in yet another domain restriction. Finally, we provided
DB,4 as an example of a domain in DPT ∩DDT (other than the unrestricted domain), which
has the interesting property of being group-separable.

6.1 Connecting our Contributions to some Topics in

Computational Social Choice and Distributed Com-

puting

To explain how our contributions might be relevant to some topics in computational social
choice and distributed computing, we should start by saying that SWFs are not the only
voting rules that are important in social choice. In particular, a very relevant kind of
voting rule is the so-called social choice function that we define now. If D ⊆ W (X)n is
a preference domain, a social choice function (SCF and SCFs for plural) is a function of
the form f : D → P(X) \ {∅}, where P(X) is the power set of the set of alternatives
X. In other words, a SCF maps a profile in D to a non-empty subset of the alternatives.
Following [47], if f is a SCF such that |f(P⃗ )| = 1, for all P⃗ in its domain, then f is
called resolute. For resolute SCFs defined on the unrestricted domain W (X)n, there is a
very famous impossibility result, the Gibbard-Satterthwaite theorem, by Gibbard [23] and
Satterthwaite [39]. Informally, this theorem says that when there are |X| ≥ 3 alternatives,
a surjective and resolute SCF whose outcome is immune to misrepresentation of preferences
on behalf of voters must be a dictatorship (see [47] for a formal version of this statement).
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6.1.1 Complexity Aspects of Voting Rules

According to Brandt et al. [15], prior to the late 1980s, the social choice literature was mainly
concerned with normative appealing impossibility and possibility results, like Arrow’s and
Gibbard-Satterthwaite’s impossibility theorems, and the computational aspects related to
voting rules were largely ignored. In particular, the computational cost of determining the
winner of an election (the winner determination problem as it is called in [19]) was not taken
into account. A rule that takes too long to compute a winner might be unusable in real
applications. In 1989, Bartholdi III et al. [8] showed that, for the Dodgson voting rule and
the Kemeny winner rule (both SCFs), the problem of determining if a given alternative is the
winner of the election is NP-hard. These authors also showed that, for the Kemeny ranking
rule (a SWF), determining the winner ranking is also NP-hard. In 1997, Hemaspaandra
et al. [25] showed that the winner determination problem for the Dodgson voting rule is
parallel access to NP complete, Θp

2-complete. In 2005, Hemmaspaandra et al. [26] proved
that this same problem but for the Kemeny winner and ranking rules is also Θp

2-complete.
Our goal now is to explain how the topic of this thesis relates to the winner determination

problem. Elkind et al. [19] say that domain restrictions that help escape impossibility
theorems like those of Arrow and Gibbard-Satterthwaite tend to be useful in making hard
winner determination problems computationally easier on the restricted inputs. According
to [19], the idea of relating complexity problems with domain restrictions that work for
escaping impossibility theorems was started by Walsh [45]. As it is reviewed in Elkind et al.
[19], for preferences satisfying being single-peaked on a tree (see [19] for a definition), single-
crossing on a tree (see [19] for a definition), and group-separable preferences, the winner
determination problem of the Kemeny winner rule and Young rule (a SCF whose winner
determination problem is also hard for the unrestricted domain) can be decided in polynomial
time [see also 13]. As it is also reviewed in Elkind et al. [19], preferences single-crossing on a
tree and group-separable preferences make the strict part of the majority relation transitive,
for n odd (so they can help us escape Arrow’s theorem). However, as it is also said in [19],
preferences single-peaked on a tree does not necessarily make the majority relation transitive.
Since in this thesis we propose new techniques to discover domain restrictions for Arrow’s
theorem such techniques can eventually lead to finding new domain restrictions that make
hard complexity problems, related to voting rules, easier.

6.1.2 Combinatorial Topology and Distributed Computing

The contributions of this thesis also relate to the intersection of computational social choice
and distributed computing. This latter field studies how n computing processes can commu-
nicate with each other (for instance, by writing in a shared memory or by message passing) to
solve tasks (for precise definitions of the basic concepts of distributed computing see [5, 27]).
Combinatorial topology has been very useful in distributed computing [see 27]. Rajsbaum
and Raventós-Pujol [38] draw interesting analogies in the way that combinatorial topology
has been used in distributed computing and how it is starting to be used in social choice. A
future research question would be to see whether this thesis can contribute to establishing
new analogies between the use of combinatorial topology in these fields.

We now explain a second way in which this thesis might relate to distributed computing.
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So far we have discussed scenarios where there is an implicit trusted central entity that
takes a profile of preferences and computes the result of the vote according to a voting
rule. In 2013, Chauhan and Garg [17] moved beyond centralized voting procedures to study
distributed ones, i.e., procedures in which n computational processes (the voters in this
context), each starting with a preference ranking, have to communicate with each other to
reach an agreement over the outcome of the election. In particular, these authors study how
to implement SWFs and SCFs in a distributed manner, in a synchronous system (a system
in which processes’ massages take at most certain constant units of time to reach other
processes) and allowing for byzantine failures (arbitrary failures of some processes). They
require termination and agreement among the correct voters (that is, every non-byzantine
voter has to output some winner, a ranking for distributed SWFs and an alternative for
distributed SCFs, and any two non-byzantine voters have to have the same output), and they
tried different validity requirements. So the problem of a distributed election is very similar
to byzantine agreement (sometimes the word “consensus” is used instead of “agreement”),
except maybe for some different validity requirements (for a reference on byzantine agreement
and on a standard validity requirement see [5]). For instance, Chauhan and Garg [17]
considered the following validity requirement: if an alternative x is the top-ranked alternative
for a majority of correct voters, then x must be the outcome of the election. They show that
when there are n ≥ 2 voters, |X| ≥ 2 alternatives, and f ≥ n

4
, where f is the maximum

number of byzantine failures that can occur in any run, implementing a distributed SCF
satisfying this validity condition is impossible. See [17] for additional impossibility and
possibility by these authors.

Melnyk et al. [36] focus on distributed SWFs. In particular, they assume that the inputs
of each process are preference rankings and the output is also a ranking. These authors look
for protocols that solve agreement and termination, plus a validity requirement tailored to
the context of voting. For a synchronous system, they propose two distributed algorithms
to solve this problem satisfying the following validity requirement called Pareto-validity : for
any pair of alternatives x and y, if all correct voters rank x over y, then the consensus ranking
has to rank x over y. Furthermore, one of these algorithms is also optimal with respect to
approximating some fairness condition.

In [36], it is argued that distributed preferential voting has applications in distributed
machine learning. Moreover, Tseng [44] says that distributed voting is also relevant for
masking faults in safety-critical systems. It would be interesting to see how different domain
restrictions (for the correct processes) provide impossibility and possibility results in different
distributed voting environments.

6.2 A Note on the Nature of our Proofs

Notice that, in contrast to [10] (which uses algebraic topology) and the generalized index
lemma proof by [38] for Arrow’s theorem, we obtained the proof of our main theorem,
i.e. Theorem 21, without a topology result or topological reasoning beyond the use of the
simplicial complexes and simplicial maps. So a question is, to what extent is algebraic or
combinatorial topology playing a role in Arrow’s theorem or its generalizations? Related to
this question is the fact that Rajsbaum and Raventós-Pujol [38] showed that contractability
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of ND does not characterize Arrow-consitency as it was suggested in the topological social
choice literature [see 34]. But independently of the answer to this question, the combinatorial
topology objects we used were useful in at least two ways.

Firstly, our results contribute to the idea that one can successfully learn about domains
through their 2-skeleton. This was already illustrated by Baryshnikov [10] for the case of
the unrestricted domain and domains that satisfy the free triples property. The 2-skeleton
corresponds to subprofiles over triples, and studying domains or profiles from the subprofiles
is standard in the social choice literature. However, the combinatorial topology objects give
us a geometric tool to do that, i.e. the 2-skeleton. We believe that this geometric view can
be useful in designing algorithms like the one in [33].

Secondly, when working with the combinatorial topology objects we do not have to invoke
IIA, since it is already somehow embedded in the construction of the chromatic simplicial
maps. This leads to very simple proofs by contradiction by invoking the simplicial nature of
the map.

6.3 Additional Future Work

Now we mention some additional questions for future research. By Remark 5 in Chapter
5, DB,4 does not belong to the domain restriction assumed in Theorem 1. Actually, in
contrast to the chain property, domains in DPT ∩ DDT not necessarily have a free triple. It
would also be interesting to compare all the domains that appear in [18, 20] with domains
in DPT ∩ DDT. More broadly, a future line of research might be to study the relation of
domains in DPT ∩ DDT with other domains in the social choice literature.

A major part of the social choice literature deals with SCFs (instead of SWFs). As we
said before, the Gibbard-Satterthwaite theorem is a very important impossibility theorem
for these functions. It could be interesting to mention that Gibbard proved his theorem as
a corollary to Arrow’s theorem. An algebraic topology proof of the Gibbard-Satterthwaite
theorem by Baryshnikov and Root is already available in [9]. An open problem is to prove
this theorem with combinatorial topology. Another question is how does the Gibbard-
Satterthwaite impossibility behave over DPT ∩ DDT or over other domain restrictions but
through a combinatorial topology framework.

Finally, as we said in the Introduction, Lara et al. [33] present an algorithm to compute all
the SWF that escape Arrow for any given domain for the case of 2 voters and 3 alternatives.
This algorithm was also designed under the combinatorial topology approach, so can we
combine it with the techniques exposed in this thesis to get an algorithm that help us obtain
unanimous and non-dictatorial SWFs satisfying IIA for higher dimensions through the use of
the 2-skeletons of the input domains? Can this get us closer to a complete characterization
of Arrow’s theorem in the context of strict total orders?
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Appendix A

Equivalence between the Classical and
the Combinatorial Topology
Approaches

In Section A.1, given a domain D, we formally construct the chromatic simplicial
complex ND. In Section A.2, we show that for all Y ⊆ X, such that |Y | ≥ 2, there
exist a bijection between the set of all subpreferences of D on Y , denoted D|Y , and
the set of all (

(|Y |
2

)
− 1)-simplices that only involve alternatives in Y , denotes S(Y ).

These bijections allow us to talk about subprofiles and their corresponding simplices
interchangeably. In Section A.3, we prove that there is a bijection between W (X) to
the set of facets of NW (X). This, together with any other result in Section A.3, were
already proven by Baryshnikov [10], but we present them in this appendix for it to be
a self-contained reference for the equivalence between the classical and combinatorial
topology approaches. In Section A.4, we prove that the bijection B : FD → MD

introduced in Chapter 3 is in fact a bijection. Finally, in Section A.5 we provide the
missing proofs of Theorem 7 and Corollary 8.

A.1 Constructing ND from Scratch

Let Y ⊆ X such that |Y | ≥ 2. Let L′ be the following set:⋃
σ⃗∈{+,−}n
α,β∈X,α̸=β

{U σ⃗
αβ}.

Let D ⊆ W (X)n such that D ̸= ∅. If U σ⃗
αβ ∈ L′, we define

sD(U
σ⃗
αβ) = {P⃗ ∈ D : for all i ∈ N, αPiβ iff σi = +}.

Let ∼sD be a binary relation on L′ defined as follows: U σ⃗
αβ ∼sD U σ⃗′

γδ iff sD(U
σ⃗
αβ) = sD(U

σ⃗′

γδ).

Clearly, ∼sD is an equivalence relation. It is not hard to see that if U σ⃗
αβ ∈ L′ the equivalence

class [U σ⃗
αβ] induced by ∼sD is {U σ⃗

αβ, U
−σ⃗
βα }. Abusing notation, we drop the brackets from [U σ⃗

αβ]
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and just write U σ⃗
αβ or U−σ⃗

βα to refer to this equivalence class. Hence, if L is the partition of
L′ induced by ∼sD , we simply write L as

⋃
σ⃗∈{+,−}n
α,β∈X,α̸=β

{U σ⃗
αβ}.

Therefore, it makes sense to write U σ⃗
αβ = U−σ⃗

βα . We also abuse notation in defining sD(U
σ⃗
αβ)

as

{P⃗ ∈ D : for all i ∈ N, αPiβ iff σi = +}.

where U σ⃗
αβ is interpreted as an equivalence class in L (instead of an element of L′).

Let ND is a simplicial complex defined as follows:

• Its set of vertices, denoted V (ND) is

{u ∈ L : sD(u) ̸= ∅}.

• a non-empty subset S ⊆ V (ND), where S = {v1, . . . , vk}, is a (k− 1)-simplex of ND iff

k⋂
i=1

sD(vi) ̸= ∅

Proposition 28. If D is a domain, the simplicial complex ND together with a labeling
χ : V (ND) → {Y ⊆ X : |Y | = 2} defined as

χ(U σ⃗
αβ) = {α, β}

is a chromatic simplicial complex.

Proof. It is easy to show that ND is a simplicial complex, so we only have to prove that the
χ labeling is a coloring, i.e. we have to show that if t is a simplex of ND, for all U

σ⃗
αβ, U

σ⃗′

γδ ∈ t

such that U σ⃗
αβ ̸= U σ⃗′

γδ , we have that χ(U σ⃗
αβ) ̸= χ(U σ⃗′

γδ).
By definition of χ, notice that is suffices to show that (α ̸= γ and α ̸= δ) or (β ̸= γ and

β ̸= δ).

Since t is a simplex of ND there exists P⃗ ∈ D such that P⃗ ∈ sD(U
σ⃗
αβ) ∩ sD(U

σ⃗′

γδ).
Suppose α = γ or α = δ. To show: β ̸= γ and β ̸= δ. We proceed by contradiction

supposing that β = γ or β = δ. We proceed by cases.
Case 1: β = γ. Then α = δ. This leads to U σ⃗′

γδ = U σ⃗′

βα = U−σ⃗′

αβ . We proceed by subcases.

Subcase 1.1: σ⃗ = −σ⃗′. Then U σ⃗
αβ = U σ⃗′

γδ , a contradiction.

Subcase 1.2: σ⃗ ̸= −σ⃗′. Then since P⃗ ∈ sD(U
σ⃗
αβ) ∩ sD(U

σ⃗′

γδ) = sD(U
σ⃗
αβ) ∩ sD(U

−σ⃗′

αβ ), there
is a voter i ∈ N such that αPiβ and βPiα, a contradiction to the asymmetry of Pi.

Case 2: β = δ. Then α = γ. This leads to U σ⃗′

γδ = U σ⃗′

αβ. We proceed by subcases.

Subcase 2.1: σ⃗ = σ⃗′. Then U σ⃗
αβ = U σ⃗′

γδ , a contradiction.

Subcase 2.2: σ⃗ ̸= σ⃗′. Then since P⃗ ∈ sD(U
σ⃗
αβ)∩ sD(U

σ⃗′

γδ) = sD(U
σ⃗
αβ)∩ sD(U

σ⃗′

αβ), there is a
voter i ∈ N such that αPiβ and βPiα, a contradiction to the asymmetry of Pi.
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A.2 A Bijection from D|Y to S(Y )

Let S(Y ) be the set of all (
(|Y |

2

)
− 1)-simplex of ND that only involve alternatives of Y , i.e.

if U σ⃗
αβ ∈ S(Y ), then α, β ∈ Y .
Our objective is to define a bijection between D|Y and S(Y ) to talk about subprofiles

of D and simplices in an interchangeably way. Consider then a function gY : D|Y → S(Y )
defined as follows:

for all P⃗ ∈ D|Y , gY (P⃗ ) = {U σ⃗
xy ∈ L : x, y ∈ Y ;x ̸= y; for all i, σ⃗i = + iff xy ∈ Pi}.

Proposition 29. For all P⃗ ∈ D|Y , we have that gY (P⃗ ) is indeed in S(Y ).

Proof. Let P⃗ ∈ D|Y . By construction,

P⃗ ∈
⋂

gY (P⃗ )

sD(v).

Therefore, gY (P⃗ ) is a simplex of ND. Also by construction, it only involves alternatives in Y ,

i.e. if U σ⃗
αβ ∈ gY (P⃗ ), then α, β ∈ Y . We still have to prove that gY (P⃗ ) is a (

(|Y |
2

)
−1)-simplex,

i.e. that it has cardinality
(|Y |

2

)
.

Observe that P⃗ is an n-tuple of strict total orders on Y , which in particular are asym-
metric and total. Then for all x, y ∈ Y , x ̸= y there exists a unique σ⃗ ∈ {+,−}n such that
for all i ∈ N , σ⃗i = + iff xy ∈ Pi. Since there are

(|Y |
2

)
different pairs of alternatives in Y , we

have that gY (P⃗ ) is of cardinality
(|Y |

2

)
. Therefore, gY (P⃗ ) ∈ S(Y ).

We will show that the function that we define next is the inverse function of gY . Let
hY : S(Y ) → D|Y defined as follows:

for all {v1, v2, . . . , v(|Y |
2 )

} ∈ S(Y ), hY ({v1, v2, . . . , v(|Y |
2 )

}) = P⃗ |Y for all P⃗ ∈
(|Y |

2 )⋂
i=1

sD(vi).

Proposition 30. h is well-defined.

Proof. Firstly, notice that
⋂(|Y |

2 )
i=1 sD(vi) is non-empty since {v1, v2, . . . , v(|Y |

2 )
} ∈ S(Y ).

Finally, notice that if P⃗ , P⃗ ′ ∈
⋂(|Y |

2 )
i=1 sD(vi), then P⃗ |Y = P⃗ ′|Y .

Proposition 31. gY is a bijection with inverse function hY .

Proof. To show: hY (gY (x)) = x for all x ∈ D|Y and gY (hY (x)) = x for all x ∈ S(Y ).

Let P⃗ ∈ D|Y . We have that

hY (gY (P⃗ )) = P⃗ ′|Y for all P⃗ ′ ∈
⋂

u∈gY (P⃗ )

sD(u).

To show: P⃗ = P⃗ ′|Y . Let i ∈ N . Since Pi and P ′
i |Y are strict total orders on Y , it suffices

to show that for all x, y ∈ Y , if xy ∈ Pi, then xy ∈ P ′
i |Y . Let xy ∈ Pi. Since gY (P⃗ ) ∈ S(Y )
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and ND is chromatic, there exists U σ⃗
xy such that for all j ∈ N , σ⃗j = + iff xy ∈ Pj. Hence,

the fact that xy ∈ Pi implies σ⃗i = +. On the other hand, notice that P⃗ ′ ∈ sD(U
σ⃗
xy). Hence,

xy ∈ P⃗ ′
i . Finally we get xy ∈ P ′

i |Y due to the fact that x, y ∈ Y .
Let {v1, v2, . . . , v(|Y |

2 )
} ∈ S(Y ). We have that

gY (hY ({v1, v2, . . . , v(|Y |
2 )

})) = {U σ⃗
xy ∈ L : x, y ∈ Y ;x ̸= y; for all i, σi = + iff xy ∈ Pi|Y }

for all P⃗ ∈
(|Y |

2 )⋂
i=1

sD(vi).

To show: {v1, v2, . . . , v(|Y |
2 )

} = g(h({v1, v2, . . . , v(|Y |
2 )

})).
Notice that both {v1, v2, . . . , v(|Y |

2 )
} and gY (hY ({v1, v2, . . . , v(|Y |

2 )
})) belong to S(Y ) and

remember that ND is chromatic. Therefore, for all distinct x and y in Y , there exists a
unique σ⃗ ∈ {+,−}n and a unique σ⃗′ ∈ {+,−}n such that U σ⃗

xy ∈ {v1, v2, . . . , v(|Y |
2 )

} and

U σ⃗′
xy ∈ gY (hY ({v1, v2, . . . , v(|Y |

2 )
})). Clearly, if we show that σ⃗ = σ⃗′ we are done. Fix P⃗ ∈⋂(|Y |

2 )
i=1 sD(vi) and observe the following three things:

1. Since U σ⃗′
xy ∈ gY (hY ({v1, v2, . . . , v(|Y |

2 )
})), we have that, for all i ∈ N , σ⃗′

i = + iff xy ∈
Pi|Y .

2. Since P⃗ ∈
⋂(Y2)

i=1 sD(vi) and U σ⃗
xy ∈ {v1, v2, . . . , v(|Y |

2 )
}, we have P⃗ ∈ sD(U

σ⃗
xy). Then, for

all i ∈ N , σ⃗i = + iff xy ∈ Pi.

3. Since x, y ∈ Y , for all i ∈ N , xy ∈ Pi iff xy ∈ Pi|Y .

Taking these three facts together, we obtain, for all i ∈ N , σ⃗i = + iff σ⃗′
i = +. Therefore,

σ⃗ = σ⃗′.

A.3 A Bijection from W (X) to the facets of NW (X)

All the results in this section were already proven (or implicitly implied in an obvious way)
in [10], but we will be more explicit about certain details and omit others. We as well use
some different terminology than [10].

Proposition 32. The simplicial complex NW (X) together with a labeling χ : V (NW (X)) →
{Y ⊆ X : |Y | = 2} defined as

χ(Uσ
αβ) = {α, β}

is a chromatic simplicial complex.

The proof of this proposition can be easily adapted from the proof of Proposition 28,
hence it is omitted.
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Corollary 33. If t is a simplex of NW (X), then dim(t) ≤
(|X|

2

)
− 1.

Let A(NW (X)) be the set of simplices of maximum dimension among the simplices of
NW (X) (we will later show that NW (X) is pure, so we will see that A(NW (X)) coincide with
the set of facets of NW (X)). We introduce a function between W (X) and the set of all facets
of A(NW (X)). Let ḡ : W (X) → A(NW (X)) defined as follows:

ḡ(P ) = {U+
xy : xy ∈ P}.

Proposition 34. ḡ is well-defined and ḡ(P ) is a (
(|X|

2

)
− 1)-simplex for all P⃗ ∈ W (X)

Proof. Let P ∈ W (X). By totality and asymmetry of P , we have |P | =
(|X|

2

)
− 1. Then

|g(P )| =
(|X|

2

)
. Then by construction, P belongs to the intersection of the elements of g(P ).

So g(P ) is a (
(|X|

2

)
− 1)-simplex. Finally, by Corollary 33, g(P ) is of maximum dimension

among the simplices of NW (X).

Consider a function h̄ : A(NW (X)) → W (X) defined as:

h̄({v1, . . . , v(|X|
2 )

}) = P such that P ∈
(|X|

2 )⋂
i=1

vi.

It is not hard to see that h̄ is well-defined (observe that
⋂(|X|

2 )
i=1 vi has to have a unique

element).
We want to show the following:

Proposition 35. ḡ is a bijection with inverse function h̄.

Proof. Let P ∈ W (X). We have that h̄(ḡ(P ))) = h̄({U+
xy : xy ∈ P}) = P ′ such that

P ′ ∈
⋂

u∈ḡ(P ) u, then, it is easy to see that that P = P ′.

Let {v1, . . . , v(|X|
2 )

} ∈ A(NW (X)). We have that

ḡ(h̄({v1, . . . , v(|X|
2 )

})) = {U+
xy : xy ∈ P}

such that P ∈
⋂(|X|

2 )
i=1 vi. Invoking chromaticity of NW (X), it is not hard to see that the

desired result holds.

So we have shown that there is a bijection between the strict total orders on X and the
set of simplices of maximum dimension of NW (X). Finally, if we show that NW (X) is pure,
A(NW (X)) is also the set of facets of NW (X), and so g could then be thought as a bijection
between the strict total orders on X and the set of facets of NW (X). So let us prove it.

Proposition 36. The simplicial complex NW (X) is pure.
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Proof. Let t be a facet of NW (X). Since this facet was chosen in an arbitrary way, to prove

that the simplicial complex NW (X) is pure, it suffices to show that dim(t) =
(|X|

2

)
− 1.

Observe that we can write t as {u1, . . . , udim(t)+1}. Also, since t is a simplex of NW (X),

there exists a strict total order P on X in ∩dim(t)+1
i=1 ui. Clearly, P is of cardinality

(|X|
2

)
.

Since we have seen that simplices of maximum dimension of NW (X) are of dimension(|X|
2

)
− 1, we have that dim(t) ≤

(|X|
2

)
− 1. Hence, if we show that dim(t) <

(|X|
2

)
− 1 leads to

contradiction we are done. Let us do it. Suppose that dim(t) <
(|X|

2

)
− 1. Since |P | =

(|X|
2

)
,

the hypothesis dim(t) <
(|X|

2

)
−1 implies the existence of a pair of alternatives x, y ∈ X such

that xy ∈ P and U+
xy ̸∈ t. Observe that P ∈ (∩dim(t)+1

i=1 ui)∩U+
xy. But then t′ = t∪ {U+

xy} is a
simplex of NW (X) with t as a face. But then t is not a facet of NW (X), a contradiction.

A.4 A Bijection from FD to MD

We already introduced B : FD → MD in Chapter 3. Here we prove that it is in fact a
bijection, whose inverse function,

B−1 : MD → FD,

is defined as follows: for every f ∈ MD, we have that B−1(f) : D → W (X) is a func-

tion defined as (B−1(f))(P⃗ ) = h̄(f(gX(P⃗ ))), where the functions gX : D → S(X) and
h̄ : A(NW (X)) → W (X) are defined in Sections A.2 and A.3, respectively. Notice that gX(p)

lives in S(X), and since f is rigid and ND is of dimension
(|X|

2

)
− 1 (these things are easy to

check), f(gX(p)) is a facet of NW (X), i.e. it belongs to A(NW (X)).
Before showing that B is a bijection, we first show the following:

Proposition 37. Let f ∈ MD. The SWF B−1(f) satisfies IIA.

Proof. Let α, β ∈ X, α ̸= β, and P⃗ ′, P⃗ ′′ ∈ D such that for all i ∈ N , αβ ∈ P ′
i iff αβ ∈ P ′′

i .

To show: αβ ∈ (B−1(f))(P⃗ ′) iff αβ ∈ (B−1(f))(P⃗ ′′).
By definition,

(B−1(f))(P⃗ ′) = h̄(f(gX(P⃗ ′))) = P ′ such that P ′ ∈
⋂

v∈f(gX(P⃗ ′))

v,

where f(gX(P⃗
′)) = {f(U σ⃗

xy) : x, y ∈ X;x ̸= y; for all i, σ⃗i = + iff xy ∈ P ′
i}. Also,

(B−1(f))(P⃗ ′′) = h̄(f(gX(P⃗ ′′))) = P ′′ such that P ′′ ∈
⋂

v∈f(gX(P⃗ ′′))

v,

where f(gX(P⃗
′′)) = {f(U σ⃗

xy) : x, y ∈ X;x ̸= y; for all i, σ⃗i = + iff xy ∈ P ′′
i }.

By chromaticity of NW (X) and f , there exist U σ⃗′

αβ ∈ gX(P⃗
′) and U σ⃗′′

αβ ∈ gX(P⃗
′′) such

that (for all i ∈ N , σ⃗′
i = + iff αβ ∈ P ′

i ) and (for all i ∈ N , σ⃗′′
i = + iff αβ ∈ P ′′

i ). But
by hypothesis, for all i ∈ N , αβ ∈ P ′

i iff αβ ∈ P ′′
i . But then, for all i ∈ N , σ⃗′

i = + iff

σ⃗′′
i = +. Therefore, U σ⃗′

αβ = U σ⃗′′

αβ . Hence, f(U
σ⃗′

αβ) = f(U σ⃗′′

αβ ). Therefore, αβ ∈ (B−1(f))(P⃗ ′) iff

αβ ∈ (B−1(f))(P⃗ ′′).
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Proposition 38. B is a bijection with inverse function B−1.

Proof. First, we have to show that for all f ∈ MD, it holds that B(B−1(f)) : ND → NW (X)

is such that B(B−1(f)) = f .
Let U σ⃗

αβ ∈ V (ND). To show: B(B−1(f))(U σ⃗
αβ) = f(U σ⃗

αβ).

By definition of B, we have that B(B−1(f))(U σ⃗
αβ) = Uσ

αβ such that σ = + iff αβ ∈
(B−1(f))(P⃗ ) for all P⃗ ∈ sD(U

σ⃗
αβ).

This is well-defined since B−1(f) satisfies IIA by Proposition 37. So we can fix P⃗ ∈
sD(U

σ⃗
αβ) and we have that

(B−1(f))(U σ⃗
αβ) = Uσ

αβ such that (σ = + iff αβ ∈ (B−1(f))(P⃗ )).

Then,

(B−1(f))(U σ⃗
αβ) =Uσ

αβ such that (σ = + iff αβ ∈ P ′ such that P ′ ∈
⋂

v∈f(gX(P⃗ ))

v), (A.1)

where f(gX(P⃗ )) = {f(U σ⃗
xy) : x, y ∈ X;X ̸= y; for all i, σ⃗i = + iffxy ∈ Pi} On the other hand,

if f(U σ⃗
αβ) = Uσ′

αβ, since P⃗ ∈ sD(U
σ⃗
αβ), we have the following:

f(U σ⃗
αβ) = Uσ′

αβ ∈ f(gX(P⃗ )). (A.2)

We proceed by contradiction supposing σ ̸= σ′. We now proceed by cases.
Case 1: σ = + and σ′ = −. Since σ = +, by A.1, αβ ∈ P ′. Also notice that by A.2,

U−
αβ ∈ f(gX(P⃗ )), then, by definition of (B−1(f))(P⃗ ), we have βα ∈ P ′, a contradiction to

the asymmetry of P ′.
Case 2: σ = − and σ′ = +. This case leads to a contradiction in an analogous way.
The second part of this proof consists on proving that

B−1(B(F )) : D → W (X)

is such that B−1(B(F )) = F , for all F ∈ FD.

Let P⃗ ∈ D. To show: (B−1(B(F )))(P⃗ ) = F (P⃗ ).
By definition of our functions,

(B−1(B(F )))(P⃗ ) = h̄((B(F ))(gX(P⃗ ))) = P such that P ∈
⋂

v∈(B(F))(gX(P⃗ ))

v,

where (B(F))(gX(P⃗ )) = {(B(F ))(U σ⃗
xy : for all i, σ⃗i = + iff xy ∈ Pi}.

So, we want to prove that P = F (P⃗ ). Let αβ ∈ X, α ̸= β. To show: αβ ∈ P iff

αβ ∈ F (P⃗ ).

Since (B(F ))(gY (P⃗ )) is a facet of the chromatic simplicial complex NW (X) and since B(F )

is chromatic, there exists a unique σ⃗′ ∈ {+,−}n such that U σ⃗
αβ ∈ gY (P⃗ ). Then,

P⃗ ∈ sD(U
σ⃗
αβ). (A.3)
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On the other hand, by definition of B,

(B(F ))(U σ⃗′

αβ) = Uσ
αβ such that (σ = + iff αβ ∈ F (P⃗ ′) for all P⃗ ′ ∈ sD(U

σ⃗′

αβ)). (A.4)

Combining A.3 and A.4, we get that

(B(F ))(U σ⃗′

αβ) = Uσ
αβ such that (σ = + iff αβ ∈ F (P⃗ )). (A.5)

First we show that P ⊆ F (P⃗ ). Suppose αβ ∈ P . Then since P ∈ Uσ
αβ, we have that

σ = + (otherwise, we would contradict the asymmetry of P ). But then, by A.5, αβ ∈ F (P⃗ ).

Finally, we show that F (P⃗ ) ⊆ P . Suppose αβ ∈ F (P⃗ ). Then by A.5, we have σ = +, so
(B(F ))(U σ⃗′

αβ) = U+
αβ. Then P ∈ U+

αβ. But then αβ ∈ P .

A.5 Missing Proofs

A.5.1 Proof of Theorem 7

Proof. Part (1) was already proven as Proposition 37.
Let us prove (2). By definition of B, for every vertex of ND of the form U σ⃗N

αβ , we have

that (B(F ))(U σ⃗N

αβ ) = U+
αβ iff αF (P⃗ )β for all P⃗ ∈ sD(U

σ⃗N

αβ ).

We start with the ⇒ direction. Suppose B(F ) is unanimous. Then (B(F ))(U σ⃗N

αβ ) = U+
αβ.

Hence, αF (P⃗ )β for all P⃗ ∈ sD(U
σ⃗N

αβ ). Hence, F is unanimous.

Now we prove the ⇐ direction. Suppose F is unanimous. Then for all P⃗ ∈ sD(U
σ⃗N

αβ ), we

have that αF (P⃗ )β, then (B(F ))(U σ⃗N

αβ ) = U+
αβ. Therefore, B(F ) is unanimous.

Finally, we want to prove (3). Remember that for every vertex U σ⃗
αβ of ND, we have that

(B(F ))(U σ⃗
αβ) = U+

αβ iff αF (P⃗ )β for all P⃗ ∈ sD(U
σ⃗
αβ).

We begin with the ⇒ direction. Suppose B(F ) is dictatorial. Let i ∈ N be a dictator. If

P⃗ ∈ D, we want to show that αPiβ implies αF (P⃗ )β. Suppose P⃗ ∈ D. Let σ⃗P⃗ ∈ {+,−}n be

such that for all j ∈ N , (σ⃗P⃗ )j = + iff αPjβ. Then P⃗ ∈ sD(U
σ⃗
P⃗

αβ ). On the other hand, since

B(F ) is dictatorial, (B(F ))(U
σ⃗
P⃗

αβ ) = U+
αβ. Hence, since P⃗ ∈ sD(U

σ⃗
P⃗

αβ ), it holds that αF (P⃗ )β.
We now show that ⇐ direction. Suppose F is dictatorial. Let i ∈ N be a dictator. Let

U σ⃗
αβ be a vertex of ND. To show: f(U σ⃗

αβ) = U σ⃗i
αβ. For every P⃗ ∈ sD(U

σ⃗
αβ), we have that F

being dictatorial implies that αF (P⃗ )β iff σ⃗i = +. But then f(U σ⃗
αβ) = U σ⃗i

αβ.

A.5.2 Proof of Corollary 8

Proof. We start with the ⇒ direction. Suppose D is Arrow-inconsistent. Let f : ND →
NW (X) be a chromatic simplicial map, i.e. f ∈ MD, satisfying unanimity. To show: f is
dictatorial.

Notice that by part 1 of Theorem 7, we have that B−1(f) ∈ FD. Also, since B−1 is the
inverse function of the bijection B, we have B(B−1(f)) = f . Therefore, by part 2 of Theorem
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7, f being unanimous implies that B−1(f) is unanimous. Then, sinceD is Arrow-inconsistent,
B−1(f) is dictatorial. Then, by part 3 of Theorem 7, f is dictatorial.

Let us prove the ⇐ direction. Suppose that for all f ∈ MD, f unanimous implies that
f is dictatorial. We want to show that D is Arrow-inconsistent. Let F ∈ FD satisfying
unanimity. To show: F is dictatorial.

Observe that B(F ) ∈ MD. Since F is unanimous, by part 2 of Theorem 7 we have that
B(F ) is unanimous. Then applying our hypothesis, B(F ) is dictatorial. Then by part 3 of
Theorem 7, F is dictatorial.
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