
UNIVERSIDAD NACIONAL AUTONÓMA DE MÉXICO
POSGRADO EN CIENCIAS E INGENIERÍA DE LA COMPUTACIÓN

INSTITUTO EN INVESTIGACIONES EN MATEMÁTICAS APLICADAS Y EN
SISTEMAS

TEORÍA DE LA COMPUTACIÓN

A Study Of Concurrent Data Structures With Relaxed
Semantics

TESIS

QUE PARA OPTAR POR EL GRADO DE:

DOCTOR EN CIENCIA E INGENIERÍA EN COMPUTACIÓN

PRESENTA
MIGUEL ANGEL PIÑA AVELINO

TUTOR
DR. ARMANDO CASTEÑEDA ROJANO

INSTITUTO DE MATEMÁTICAS

COMITÉ TUTOR
DR. SERGIO RAJSBAUM GORODEZKY

INSTITUTO DE MATEMÁTICAS

DR. RICARDO MARCELÍN JIMÉNEZ
UNIVERSIDAD AUTÓNOMA METRÓPOLITANA, DEPARTAMENTO DE INGENIERÍA

ELÉCTRICA

Ciudad Universitaria, Ciudad de México, Septiembre, 2024

UNAM – Dirección General de Bibliotecas

Tesis Digitales

Restricciones de uso

DERECHOS RESERVADOS ©

PROHIBIDA SU REPRODUCCIÓN TOTAL O PARCIAL

Todo el material contenido en esta tesis esta protegido por la Ley Federal
del Derecho de Autor (LFDA) de los Estados Unidos Mexicanos (México).

El uso de imágenes, fragmentos de videos, y demás material que sea
objeto de protección de los derechos de autor, será exclusivamente para
fines educativos e informativos y deberá citar la fuente donde la obtuvo
mencionando el autor o autores. Cualquier uso distinto como el lucro,
reproducción, edición o modificación, será perseguido y sancionado por el
respectivo titular de los Derechos de Autor.

1

PROTESTA UNIVERSITARIA DE INTEGRIDAD Y

HONESTIDAD ACAOEUICA y PROFESIONAL

De conformldad con lo dispuesto en los articu los 87, fracción V, del Estatuto General, 68,
primer párrafo, del Reglamento General de Esludios Uni~ers~anos y 26, fracción 1, y 35
del Reglamento Gener:;!t da exámenes, me comprometo en todo Uempo e honrar a ala
Institución y a cumplir con los prinCipios establecidos en el Código de Etica de la
Universidad Nacional Autónoma de MéKI¡;O, especialmente con los de integridad y
honestidad académica

De il(:l)6fdo con lo antenor manifiesto que el trabajO esento "tutadO A Sludy 01
Concurrent Data Strudures Wth Relaxed SemanlK:s, que presenté para obtener el grado
de Doctor en Clenoa e Ingel'llefia de la Computación, es original, de ll'lI autoria y lo realicé
con el ngor metodológICO exogldo por mi Programa de Posgrado, CItando las fuente15,

ideas, textos, imágenes gráfic:os u otrQ tipo de obras empleadas para su desarrollo

En consecuencia acepto que la falta de cumplimiento de las disposICiones reglamentarias
y normativas de la Universidad, en particular las ya referidas en el Código de ~bca, llevará
a la nulidad e los actos de carácter academico administratiVO del proceso de
titulación/graduación

Atentamente

M"lu,,(A,ngell Piña Avelino. 30611383·3

Posgrado en Ciencia e Ingeniería de la Computación
Universidad Nacional Autónoma de México

Tesis para obtener el grado de Doctor en Ciencias e Ingeniería en Computación
Primera Edición, September 24, 2024

Acknowledgements

TO THE NATIONAL AUTONOMOUS UNIVERSITY OF MEXICO

During the last 18 years, I have been part of this University, which has
allowed me to know many people, from teachers to classmates and
coworkers, who eventually become great friends. They all contributed
to the knowledge and values that I acquired, helping in my personal
and professional formation.

TO MY FAMILY

Thank you for being with me at every moment and for your support
while I was pursuing my PhD. I especially want to thank my mother,
Reina, who is a great source of motivation and inspiration.

TO THE TUTORING COMITTEE AND SYNODALS

I am grateful to Dr. Armando Castañeda, director of this thesis, for
the support, advice, and patience provided while I was pursuing this
PhD. He has been a great advisor to me for the last few years, sharing
all his experience and knowledge. Also, I am grateful to Dr. Sergio
Rajsbaum and Dr. Ricardo Marcelin for all their advice and the time
spent in supervisor duties. Finally, I thank Dr. David Flores and Dr.
Jorge Ortega for being members of the jury in my candidacy exam and
the thesis defense.

TO MY FRIENDS

To Juan José Lopéz, Daniel Becerra, Olga Villagran, Eduardo López,
Carlos Romero, Ricardo Rivas, and Juan Camacho, thank you for all
the time you shared with me, which boosted me to be better every day.

TO CONAHCYT AND DGAPA

I am grateful to CONAHCYT for the national fellowship I received
during my PhD and to DGAPA for the financial support from UNAM
PAPIIT projects IN108720 and IN108723, which helped to buy the in-
frastructure where all the experiments of this thesis were performed.

Abstract

Concurrent computing is about the interactions between multiple com-
puting entities over shared resources. It is considered one of the most
challenging topics in computer science. Tackling the discipline requires
a good imagination. We are used to thinking sequentially, and imag-
ining multiple things happening simultaneously and randomly inter-
mixing is not easy. This thesis explores the shift from traditional to
more flexible approaches in concurrent computing for programming
concurrent algorithms. It takes a theoretical approach but with practi-
cal applications in mind, particularly focusing on how relaxation can
be applied to practical environments such as work-stealing and data
structures (FIFO queues).

The thesis covers the state-of-the-art on classical classical concurrent
computing, relaxations in concurrent computing, the problem of work-
stealing, and FIFO queues. It then presents the theoretical preliminar-
ies and the methodology used to analyze two case studies. The first
case study is the problem of work-stealing. It presents two relaxed
algorithms based on multiplicity and weak multiplicity based solely
on read/write operations where fences are not required. The second
case study delves into the problem of concurrent FIFO queues and
presents a modular approach to building queue algorithms. The work
concludes with an experimental evaluation of the different algorithms
presented in this thesis and the conclusions and future work.

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Objectives And Contribution . 4
1.3 Structure Of This Thesis . 6

2 State of the Art 9
2.1 Classic Concurrent Computing . 10
2.2 Relaxed Concurrent Computing . 12
2.3 Work-Stealing . 15
2.4 FIFO Queues . 16

3 Preliminaries and Methodology 19
3.1 Computation Model . 19
3.2 Hardware Foundations . 23
3.3 About Fences And Its Use In Concurrent Algorithms 28
3.4 After Hardware Foundations, What’s Up About Programming Lan-

guages? . 32
3.5 Experimental Methodology . 37

4 Case Study 1: Work-Stealing 47
4.1 Introduction . 48
4.2 Work-Stealing with Multiplicity . 49
4.3 Work-Stealing with Weak Multiplicity 56
4.4 Bounding the Multiplicity . 64
4.5 Coping with realistic assumptions . 66
4.6 Idempotent ̸= Multiplicity . 68

5 Case Study 2: Modular Baskets Queue 71
5.1 Introduction . 72
5.2 The Modular Basket Queue . 73
5.3 Coping with realistic assumptions . 83

6 Experimental Evaluation and Results 91
6.1 Work-Stealing with Multiplicity . 92
6.2 Modular Basket Queues . 103

7 Discussion and Conclussions 113

A Work-Stealing Results 127
A.1 Results of Zero Cost Experiments . 127
A.2 Results of Parallel Spanning Tree experiments 130
A.3 Results of SAT experiment . 193

B Queue evaluation Results 201
B.1 Results of Inner Experiments (LL/IC Evaluation) 201
B.2 Results of Inner Experiments (Module Queue Variants) 203
B.3 Results of Outer Experiments . 204

List of Figures

3.1 Graphical description of linearizability and set-linearizability. 23
3.2 Baseline model of a Multi-core Processor Chip. 24
3.3 Cache Controller . 27
3.4 (a) High-level and (b) low-level memory models. 33

4.1 A set-sequential execution of work-stealing with multiplicity. 50
4.2 WS-MULT: a MaxRegister-based set-linearizable algorithm for work-

stealing with multiplicity. 52
4.3 Schematic view and sequential execution of work-stealing with weak

multiplicity. 57
4.4 A linearizable wait-free algorithm for RangeMaxRegister. 61
4.5 WS-WMULT algorithm with the RangeMaxRegister algorithm in Fig-

ure 4.4 inlined. 63
4.6 B-WS-WMULT: algorithm obtained from modify the algorithm WS-

MULT as specified in Section 4.4. 65
4.7 Idempotent FIFO work-stealing [65]. 69

5.1 The modular basket queue algorithm. 74
5.2 Compare&Swap-based LL/IC object 77
5.3 Read/Write-based LL/IC object . 78
5.4 K-basket from Fetch&Increment and Swap. 81
5.5 N -basket from Compare&Swap. p denote the invoking process. 82
5.6 The modular baskets queue using linked-lists. Enqueue operation. . . 85
5.7 The modular baskets queue using linked-lists. Dequeue Operation . . 86

6.1 Outcome of the zero cost experiments. Time is in nanoseconds, and
red lines over bars show confidence intervals. The results of the Puts-
Takes experiment are shown in the first three charts and the results of
the Puts-Steals experiment are shown in the remaining charts. 97

6.2 Mean times reported for executing the graph application benchmark. 99
6.3 Surplus work (percentage) of the experiments. Surplus work: the

difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 100

6.4 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 101

6.5 Mean times of the Parallel SAT benchmark for range assignment sizes
50, 250, and 1,000. 102

6.6 Mean times for LL/IC experiment. 1,000,000 interspersed calls to
Take and Put for 64 threads . 108

6.7 Mean times for Enqueue - Dequeue in inner experiments. 1,000,000
interspersed calls to Enqueue and Dequeue for 64 threads 110

6.8 Mean times for Enqueue - Dequeue in outer experiments. 1,000,000
interspersed calls to Enqueue and Dequeue for 64 threads 111

A.1 2D Torus Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively. 131

A.2 2D Torus 60% Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively. 134

A.3 3D Torus Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively. 136

A.4 3D Torus 40% Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively. 138

A.5 Random Directed and Undirected Graph with 256 and 1,000,000 ini-
tial sizes respectively. 141

A.6 Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 151

A.7 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 152

A.8 Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 161

A.9 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 162

A.10 Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 171

A.11 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 172

A.12 Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 181

A.13 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 182

A.14 Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts
in sequential executions (i.e., 1, 000, 000). 191

A.15 Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of
takes in sequential executions (i.e., 1, 000, 000). 192

A.16 Mean times of the Parallel SAT benchmark for range assignment 50. . 193
A.17 Mean times of the Parallel SAT benchmark for range assignment 100. 194
A.18 Mean times of the Parallel SAT benchmark for range assignment 250. 194
A.19 Mean times of the Parallel SAT benchmark for range assignment 500. 195
A.20 Mean times of the Parallel SAT benchmark for range assignment 1000. 196
A.21 Mean times of the Parallel SAT benchmark for range assignment 2500. 196
A.22 Mean times of the Parallel SAT benchmark for range assignment 5000. 197
A.23 percentage of repeated work performed by each algorithm when the

range of assignments varies. This percentage is the number of repeated
tasks concerning the total of tasks. Tested ranges of (50, 100, 250, 500).198

A.24 percentage of repeated work performed by each algorithm when the
range of assignments varies. This percentage is the number of repeated
tasks concerning the total of tasks. Tested ranges of (1000, 2500, 5000).199

B.1 1,000,000 Interspersed Takes and Puts (CAS vs FAI) for 64 threads. . 202
B.2 1,000,000 interspersed enqueue - dequeue calls for 64 threads. 203
B.3 1,000,000 of interspersed Enqueue - Dequeue calls for 64 threads. . . . 205

Listings

3.3.1 Code execute by thread 1 on core 1 29
3.3.2 Code executed by thread 2 on core 2 29
3.3.3 Code reordered by CPU . 29
3.3.4 Updating code 3.3.1 to use fences. 29
3.3.5 Updating code 3.3.2 to use fences. 30
3.3.6 Code execute by thread 1 on core 1 30
3.3.7 Code execute by thread 2 on core 2 30

CHAPTER 1

Introduction

In these days, it is very common to hear about new processors that increase the
number of cores in each one. Tasks like gaming, data processing, rendering animation,
and video edition are becoming more natural daily. These tasks take advantage of
the new processors and their multi-core architectures. It is worth mentioning that
these multi-core processors are already present in laptops, smartphones, PCs, tablets,
smart TVs, game consoles, multiple IoT1 devices, smartwatches, and even devices
like keyboards!2 No matter if we are specialized programmers like those who work
in embedded systems or are working on back-end software or developing games, it is
really important to design and code algorithms that take advantage of these multi-
core architectures.

However, concurrent computing is one of the most challenging topics in computer
science. This is because we are used to thinking in a sequence of steps. It is not
easy to imagine multiple things happening simultaneously and randomly intermix-
ing. When we program sequentially, it is easy to see that things occur in the same
order every time, making it deterministic. However, concurrency introduces non-
determinism since processes run independently, meaning things do not necessarily
happen in the same order. As a result, all kinds of unforeseen interactions can occur.
When building concurrent algorithms, some things must be considered properly to

1Internet of the Things.
2My current keyboard is already a tiny computing device; it has a small screen on which small

applications can be displayed and some additional controls like a knob to use such applications.
Regarding the keyboard’s processor specification, the provider mentioned that the processor follows
a multi-core architecture without specifying which one.

2 1. Introduction

avoid undesirable behaviors in concurrent executions. For example, we can consider
the following reasons why concurrent programming can be challenging:

• Complexity: Executing concurrent algorithms involves running multiple tasks
simultaneously. Such executions can result in complex interactions and inter-
dependencies between different program parts. Managing and coordinating all
these interactions in a synchronized manner can be quite challenging.

• Race Conditions: A race condition occurs when the expected outcome or
state of a shared variable relies on a specific sequence of events that are beyond
the program’s design. Usually, this problem can result in errors, unpredictable
behavior, or bugs that are challenging to replicate.

• Synchronization: To ensure that multiple processes can safely access shared
resources, synchronization mechanisms such as locks, semaphores, barriers, or
even concurrency primitives provided by processor architectures must be used.
However, correctly managing these mechanisms can be challenging, as improper
use can cause problems such as data corruption or performance issues. There-
fore, it is essential to implement these mechanisms correctly to prevent such
issues.

• Performance: Usually, we think that using multiple cores in parallel should
improve the performance of a concurrent program. However, using shared re-
sources and some factors like load balancing, synchronization, and unnecessary
parallelization can degrade the performance of concurrent programs. We must
carefully design and develop concurrent programs to achieve optimal perfor-
mance.

• Deadlocks: A deadlock happens when two or more processes are waiting
for each other to release resources. This results in a state where no process
can make any progress. Deadlocks are usually challenging and complicated to
identify and resolve, especially in complex systems

• Scalability: We want our concurrent programs to scale well as the number
of processors or cores increases. However, ensuring that concurrent programs
improve when the number of processors increases requires careful design and
optimization.

• Learning Curve: Additional concepts concerning concurrent programming,
like threads, processes, concurrency primitives, linearizability, and sequential
consistency, can require a significant learning curve.

1.1 Motivation 3

• Debugging and Testing: The concurrent programs’ nondeterministic na-
ture makes them difficult to debug. Order-of-events-dependent bugs are also
challenging to reproduce and diagnose. Testing such programs can be time-
consuming and complex.

Several techniques have been developed to manage multiple processes that access
shared resources simultaneously and address the abovementioned reasons. These
techniques include locks, semaphores, barriers, and primitives such as Read-Modify-
Write operations, which differ in their level of granularity. Using these techniques,
synchronization patterns have been designed to handle situations where data is read
after being written by multiple processes, known as Read-After-Write patterns, which
rely on the flag principle [44].

1.1

Motivation

Usually, to implement concurrent algorithms in the standard asynchronous shared
memory model, we must use Read-After-Write synchronization patterns or atomic
Read-Modify-Write instructions (e.g., Compare&Swap or Test&Set). As previously
mentioned, Read-After-Write patterns rely on the flag principle [44]. Under this prin-
ciple, when multiple processes write to a shared variable and then read from another
variable, memory fences (also known as barriers) are necessary to prevent reordering
of reads and writes by the processor or compiler. When implementing an algorithm
that uses such synchronization patterns in modern multi-core architectures, using
memory fences is crucial to ensure proper execution. However, it is well-known that
the use of fences is highly costly, while Read-Modify-Write instructions, with high
coordination power (it can be formally measured through the consensus number for-
malism [41]), are in principle slower than the simple Read/Write instructions. In
practice, contention might be the dominant factor; an uncontended Read-Modify-
Write instruction can be faster than contended Read/Write instructions.

The work of Attiya et al. [9] has shown that it is impossible to eliminate expensive
synchronization in classic and ubiquitous algorithm specifications. This leads us
to question if it is possible to bypass this impossibility result in any way. There
are two possible ways to circumvent this result: (1) consider relaxed semantics for
the algorithms and (2) make additional assumptions about the model. Considering
the reasons why concurrent programming can be challenging, we are interested in
studying how to design and develop concurrent algorithms that can deal with all
(or at least the majority) reasons shown previously using relaxed semantics. In

4 1. Introduction

particular, we want to explore the shift from traditional to more flexible concurrent
computing approaches to circumvent the impossibility result mentioned previously.
Additionally, we want to design modular and simple concurrent algorithms that can
use distinct solutions (from classic synchronization methods to relaxed and flexible
solutions) as if they were Lego pieces and study when relaxations could be useful in
practical settings.

1.2

Objectives And Contribution

We are interested in the following theoretical questions:

1. Are there useful relaxations that admit solutions using only synchronization
mechanisms that are among the simplest ones?

2. Is it possible to build modular concurrent algorithms that use relaxed solutions
and are good enough to compete with classic algorithms in the state-of-the-art?

As a first step, we explore the problem of the work-stealing in Chapter 4, seeking
for Read/Write wait-free and fence-free solutions in the standard asynchronous shared
memory model. Work-stealing is a popular technique for efficient task parallelization
of irregular workloads by implementing dynamic load balancing. Fence-free means
that the algorithm’s correctness does not require any specific instruction ordering
beyond what is implied by data dependence. The combination of the three require-
ments, Read/Write based, wait-freedom, and fence-freedom, dramatically restricts
the structure of possible solutions. Every operation can only execute the Read in-
struction in a set of reads followed by the Write instruction in a set of writes, whose
written values depend on the reads; in both cases, reads and writes instructions can
be executed in any order. Despite the simplicity of the possible solution, we show
that non-trivial and useful objects can be implemented.

We first consider work-stealing with multiplicity [16], a relaxation in which every
task is taken by at least one Take/Steal operation, and, differently from idempotent
work-stealing [65], if several operations take on a task, they must be pairwise con-
current. Therefore, no more than the number of processes in the system can take the
same task. We study the case where tasks are inserted/extracted in FIFO order. We
present a Read/Write wait-free algorithm for work-stealing with multiplicity, whose
Put operation is fence-free and Take and Steal operations are devoid of Read-After-
Write synchronization patterns. The step complexity of Put is constant, while Take

1.2 Objectives And Contribution 5

and Steal have logarithmic step complexity. Simplicity is a notable quality of the
algorithm. It is based on a single instance of MaxRegister object [7, 51], showing that
work-stealing with multiplicity reduces to MaxRegister.

Then, we study a variant of multiplicity in which Take/Steal operations extract-
ing the same task need not be concurrent. However, each process extracts any task at
most once and hence the relaxed behavior is not allowed to happen in sequential ex-
ecutions. This relaxation is called work-stealing with weak multiplicity. We present
an algorithm inspired by our first solution, which uses only Read/Write instructions,
is fence-free, and all its operations are wait-free. Furthermore, each operation has
constant step complexity. To our knowledge, this is the first algorithm for a re-
laxation of work-stealing with all these properties. The algorithm is obtained by
reducing work-stealing with weak multiplicity to RangeMaxRegister, a relaxation of
MaxRegister proposed here.

We continue our study by addressing the second question presented at the begin-
ning of this section. We adopt a modular approach to building concurrent algorithms
to tackle this question. Specifically, we focus on the problem of multi-producer, multi-
consumer concurrent FIFO queues. Our modular approach for FIFO queue models
the queue as a pair of objects to manage the head and the tail, along with a set
of container objects to store the items inserted into the queue. To deal with con-
currency during insertions/extractions, we consider the idea of baskets [46] as the
containers to store the items. Initially, baskets were considered as a way to reduce
queue’s Compare&Swap contention in a variant of the Michael-Scott queue [64], being
defined implicitly. More recently, the concept of the basket was explicitly described
as an abstract data type [74]; nevertheless, in this work, we propose a basket specifi-
cation that provides stronger guarantees and allows different basket implementations
to continue with the modular design. We provide two distinct implementations for
the baskets, the first one that follows an approach similar to that of the LCRQ al-
gorithm [67], while the second implementation is reminiscent of locally linearizable
generic data structure implementations of [33].

In the case of the objects to manage head and tail, we propose a novel object
we call Load-Link/Incremental-Conditional, which resembles the well-known instruc-
tion Load-Link/Store-Conditional, and, in a similar fashion to the baskets, it can
be implemented in different ways. We even propose a solution that implements only
Read/Write instructions instead of more sophisticated Read-Modify-Write instructions
to continue tackling the first question of this section. Another implementation of this
type of object is based on Compare&Swap instruction.

We complement our results by performing an experimental evaluation for both
case studies, i.e., for work-stealing and the modular basket queues. In the first exper-

6 1. Introduction

imental evaluation, we compare our work-stealing algorithms to the standard Cilk
THE [30], Chase-Lev [22], and idempotent work-stealing [65]. The algorithms were
evaluated using three different benchmarks: (1) zero cost experiment, (2) parallel
spanning tree, and (3) parallel SAT. While the work associated with each task is
minimal in the first two benchmarks, the work associated with tasks is considerable
in the third one. In the first two benchmarks, some of our algorithms exhibit sim-
ilar and sometimes better performance than idempotent work-stealing algorithms,
which outperform Cilk THE and Chase-Lev. However, in the third benchmark, no
significant difference exists between all algorithms, either relaxed or not.

Similarly, we compare our modular queue algorithms to the Wait-Free queue
by Yang and Mellor-Crummey [90], the Lock-Free LCRQ queue by Morrison and
Afek [67], the Lock-Free queue by Michael and Scott [64], the Lock-Free queue by
Ramalhete and Correia [77] and the Lock-Free queue by Ostrovsky and Morrison [74],
which use the idea of basket, just like we do. The algorithms were evaluated using
two benchmarks: (1) inner experiments and (2) outer experiments. In the first bench-
mark, we evaluate distinct combinations of LL/IC objects and baskets in the modular
queue and compare their performance. The results show that the combination of
Compare&Swap-based LL/IC object with the basket implementation that follows a
similar approach to that of LCRQ performed better than the other combinations.
In the second benchmark, the previous combination had a better performance with
respect to the queue of Ostrovsky and Morrison and the classic queue of Michael and
Scott but it is outperformed by the fastest queues known in state-of-the-art (LCRQ,
Yang-Mellor Crummey’s queues).

This thesis gathers results from a conference paper in 35th International Sympo-
sium on Distributed Computing, DISC 2021 [17], a journal paper in the Journal of
Parallel and Distributed Computing [19] and a preprint work published in ArXiv [18].
Part of this thesis is a continuation of such a preprint.

1.3

Structure Of This Thesis

The rest of this thesis is structured as follows. In Chapter 2, we discuss the state of
the art concerning concurrent computing, relaxed concurrent computing, the prob-
lem of work-stealing, and concurrent queues. Chapter 3 presents the model of com-
putation used for this work, the linearizability and set-linearizability formalisms, a
background of hardware fundamentals where is discussed the use of memory fences
and some architectures like TSO and x86, the relationship between consistency mod-

1.3 Structure Of This Thesis 7

els in programming languages and the hardware, and finishing with the statistical
methodology used for the experiments. Chapter 4 addresses the problem of work-
stealing and presents the wait-free, fence-free, Read/Write algorithms to solve this
problem. Chapter 5 describes the design for the modular baskets queue and the
distinct algorithms of the modules for this queue. Chapter 6 presents the experi-
mental evaluations and the results of both case studies. Chapter 7 closes this work,
presenting the final discussion about the two case studies analyzed in this thesis and
future research.

8 1. Introduction

CHAPTER 2

State of the Art

From the end of World War II until the 1990s, most computers had only a single
processor core. Operating systems used schedulers and other techniques to simulate
concurrency. In 2001, IBM created the first multicore processor, which enabled two
processors to work together at high bandwidths and benefit from significant on-chip
memories and high-speed buses. As time passed, processors were equipped with more
cores [47]. It’s important to remember Moore’s Law, which states that the number
of transistors in the same space keeps increasing yearly. However, this results in
smaller electronic components and circuits, which cannot be made faster without
overheating. As a result, many industries are now using “multicore” architectures.
Several processors communicate through shared memory in this setup, using hard-
ware caches and RAM. This allows more effective computing through parallelism,
where the processors work together on a single task[44].

The advent of multiprocessors has revolutionized the way we approach software
development. By exploiting parallelism, we can run complex algorithms faster by
dividing them into smaller sub-tasks. This can be achieved using parallel, distributed,
or concurrent computing techniques. However, programming multiprocessors can be
challenging because modern computer systems are inherently asynchronous.

This thesis explores the shift from traditional to more flexible approaches in con-
current computing to programming concurrent algorithms. This takes a theoretical
approach but with practical applications in mind.

10 2. State of the Art

2.1

Classic Concurrent Computing

Sequential computing has been the standard method of performing computations
since the early days of electronic computing, before the advent of concurrent, paral-
lel, and distributed computing. Sequential computing involves executing instructions
one after the other using a processor based on the contributions of Turing [87] and
Von Neumann [89]. In this way, processes modify objects through atomic operations,
where the relationship between operations and objects can be defined in terms of
preconditions and postconditions. This is similar to API documentation, which de-
scribes the state of an object before and after a method1 is called on the object, as
well as the method’s output, which can be a specific value or throw an exception.
This style of documentation is known as “sequential specification”.

However, this way of expressing the relationship between objects and methods
falls short when several processes share such objects. If many processes can invoke
an object’s operation concurrently, what invocation is first? What is the state after
the execution of these overlapping invocations? Does it make sense to talk about
operation order?

In concurrent systems, three consistency models are usually utilized as a cor-
rectness condition: Serializability, Sequential Consistency, and Linearizability. The
concept of Serializability was initially explained by Papadimitriou [76]. Lamport
introduced the notion of Sequential Consistency [57]. Herlihy and Wing introduced
the idea of Linearizability [45]. Serializability in concurrent computing guarantees
the correctness and isolation of transactions in a multi-user database or concurrent
system. It ensures that when executing a set of transactions concurrently, the final
result is equivalent to running them one after another without overlap, mimicking
a serial execution order. This helps maintain consistency and prevents errors in
the system. Sequential consistency requires shared variable operations in concurrent
systems to appear executed sequentially according to program order. Linearizability
is a stricter condition that guarantees Sequential Consistency and ensures that the
global order of operations includes a specific point in time (i.e., linearization point)
for each operation. This ensures that every operation seems to take effect atomically
at some point between its invocation and response. Linearizability refines the con-
cept of Sequential Consistency by imposing a stricter requirement on the sequence
of methods. This ensures that the system’s observed behavior aligns with a valid

1Since now, we will refer to “operation” as “method” like is used in the context of Object-Oriented
Programming.

2.1 Classic Concurrent Computing 11

sequential execution of the processes. Therefore, while Sequential Consistency allows
for multiple valid orders of operations as long as they respect program order, Linea-
rizability enforces a stricter condition by requiring operations to appear as if they
occurred instantaneously at some specific point between invocation and response.

In a concurrent multi-process system, a progress condition outlines the assur-
ance of process progress. It sets specific requirements that ensure processes in
the system will keep advancing toward completing their tasks. Progress conditions
are partitioned into blocking and non-blocking. Two blocking progress conditions
rely on lock-based synchronization: Deadlock-freedom and starvation-freedom [44].
Deadlock-freedom guarantees that processes will not deadlock and at least one pro-
cess will make progress; this means that a process acquiring a lock will release it; in
other words, a process trying to acquire the lock eventually succeeds. Starvation-
freedom ensures that every thread progresses as long as no other thread holds the
lock.

On the other hand, there are three non-blocking progress conditions: Obstruction-
Free [43], Lock-Free [45] and Wait-Free [41]. Lock-free progress condition ensures
that some method invocation finishes in a finite number of steps. Wait-free progress
condition [41] is stronger than lock-free, where every method invocation finishes its
execution in a finite number of steps. When using lock-free methods, the system
viewed as a whole will make progress; however, there is not guarantee that any
specific thread will make progress. This is because lock freedom ensures minimal
progress. On the other hand, wait-freedom ensures the maximal progress: any process
that continues to take steps will make progress. Obstruction-free [43] only guarantees
progress only if no other processes actively interfere with the process making progress.
This makes the condition strictly weaker than lock-free.

Consistency models and progress conditions are properties of the concurrent ob-
jects that show how they should behave and how they make progress. However,
we still need other properties that tell us how powerful the methods are for solv-
ing synchronization problems. In the article Wait-Free Synchronization by Herlihy,
the notion of consensus number was introduced [41], which is used as a measure of
the computational power of concurrent objects. The consensus number of a con-
current object is the maximum number of processes that can solve an elementary
synchronization problem known as consensus using concurrent objects, which are
often called synchronization primitives. Herlihy shows that there is an infinite hier-
archy of synchronization primitives. This means that a primitive at a certain level
cannot be used to implement a wait-free or lock-free version of any primitive at a
higher level [41].

Developing efficient and correct concurrent algorithms is widely recognized as a

12 2. State of the Art

challenging problem. To address the issue, currently, multiprocessors provide syn-
chronization instructions that can be expressed as Read-Modify-Write (RMW) opera-
tions2, with high coordination power (measured through the consensus number [41]),
which are in principle slower than simple Read/Write instructions3.

Additionally, some programs may utilize Read-After-Write synchronization pat-
terns that rely on the flag principle (see, for example, [44]). This involves writing to
a shared variable and then reading another variable. To ensure proper implementa-
tion of this synchronization pattern on multicore architectures, a memory fence (also
known as a barrier) should be explicitly added to prevent the compiler or architecture
from rearranging Read and Write instructions.

It has been demonstrated that building concurrent implementations of classic and
ubiquitous specifications4 in the standard asynchronous shared memory model must
use Read-After-Write synchronization patterns or atomic Read-Modify-Write instruc-
tions. Attiya et al. [9] addresses the fundamental limitation in concurrent algorithms,
arguing that the necessity of synchronization mechanisms is intrinsic and cannot be
eliminated without incurring significant costs. Ellen et al. [23] show that shared data
structures are often inherently sequential and cannot be easily parallelized. Attiya
et al. [8] explores the advantages and drawbacks of obstruction-free implementations
over other synchronization methods. These implementations can avoid the scalabil-
ity and fault-tolerance problems that arise from traditional locking-based techniques,
which can become a bottleneck in highly concurrent systems. Obstruction-free im-
plementations can perform well without step contention but have high worst-case
complexity.

2.2

Relaxed Concurrent Computing

The work of Attiya et al. [9] has shown that it is impossible to eliminate expensive
synchronization in classic and ubiquitous specifications. This leads us to question if
it is possible to bypass this impossibility result in any way. There are two possible
ways to circumvent this result: (1) consider relaxed semantics for the algorithms and
(2) make additional assumptions about the model.

Software development has become more challenging with the widespread adop-
2e.g., Compare&Swap or Test&Set
3In practice, an uncontended Read-Modify-Write instruction can be faster than contended

Read/Write instructions due to contention.
4Such as sets, queues, stacks, and mutual exclusion.

2.2 Relaxed Concurrent Computing 13

tion of multicore processors as the standard computing platform. It is critical to
optimize the use of all available computer resources, including multiple cores, mem-
ory, and storage, for efficient performance. Most programs need data structures, and
with all these new multicore computing platforms, concurrent data structures are
required for implementing distributed, parallel, and concurrent programs. Designing
concurrent data structures is a challenging task. The challenge arises when trying to
enhance performance while maintaining correctness. As we strive to improve perfor-
mance, ensuring the algorithm’s correctness becomes increasingly more complex [82].
In order to improve scalability, it has been mentioned that traditional data structures
must be relaxed. This often involves relaxing correctness and progress conditions5.
By relaxing the ordering guarantees of queues and stacks, performance and scalabil-
ity can be significantly increased. There are many examples of natural relaxations
that demonstrate this [82]. In the work of Shavit and Taubenfeld [83], it is pointed
out that relaxing the semantics of traditional data structures might be beneficial to
reduce synchronization requirements and improve scalability: “There is a trade-off
between synchronization and the ability of an implementation to scale performance
with the number of processors. Amdahl’s law implies that even a small fraction of
inherently sequential code limits scaling. Using semantically weaker data structures
may help reduce the synchronization requirements and improve multicore systems’
scalability.” Two types of relaxation are used: (1) relaxing the sequential specifica-
tion of traditional data structures and (2) relaxing the requirements for correctness
conditions.

An example of the first case is the k-FIFO queue presented in the work of Kirsch
et al. [53, 54], where the sequential specification requirement was relaxed. The
elements of this queue can be dequeued out-of-order up to a constant k ≥ 0 (called
k-Out-of-Order). Hezinger et al. [38] address such redefinition of data structure
semantics. Their definition of a relaxed data structure corresponds to establishing
a distance from any sequence over the alphabet to sequential specification. The
k-relaxed sequential set contains all sequences over the alphabet within distance k
from the original specification [38]. This semantic specification defines the distance in
terms of data structures. Shavit and Taubenfeld conducted a theoretical analysis of
relaxed queues, stacks, and multisets. They examine whether the relaxation of these
data structures’ semantics can result in more simple and scalable implementations.
The authors evaluate these relaxations from a perspective of computability [83].
Also, in the work of Henzinger et al. [38], in addition to the definition of K-
Out-of-Order, they define the K-Stuttering and the K-Lateness. Concurrent data
structures can employ a relaxation scheme known as K-Stuttering, which allows for

5Often called safety and liveness respectively.

14 2. State of the Art

a certain amount of repetition or stuttering in operation execution. This relaxation
enables an operation to be repeated up to k times before being considered a failure.
While this can increase the performance of the data structure by reducing the need
for synchronization, it may also compromise its correctness to some extent. The
concept of K-lateness involves measuring the duration that an item remains on a
stack without removal. This metric is determined by counting the number of pop
operations that have occurred (k) since the item was last the youngest element added
to the stack. K-lateness is particularly useful in the context of k-stuttering relaxation
for concurrent data structures, as it helps to identify which items can be removed
from the stack without violating the relaxation constraints.

In the second case, based on the research conducted by Afek et al. [4], the con-
cept of quasi-linearizability is a way to quantify limited non-determinism. An object
implementation is considered quasi-linearizable if each execution is at a bounded “dis-
tance” from some linear execution of the object. This definition is more flexible than
linearizability and can improve the performance and scalability of concurrent object
implementations. To illustrate, quasi-linearizability can be seen as a middle ground
between linearizability and weaker consistency models. A quantitative relaxation
framework to formally specify relaxed objects is introduced in the work of Henzinger
et al. [38], and this formalism is applied in the work of Haas et al. [34], where their
relaxed queue implementations are instances of a distributed queue, consisting of
multiple FIFO queues k-relaxed. In the work of Talmage and Welch [86], it is shown
that the relaxations: k-Out-of-Order, k-Lateness, and k-Stuttering and Linearizabi-
lity studied in [38], can also be defined as consistency conditions. In the work of
Henzinger et al. [33], the concept of local linearizability is introduced. This relaxed
consistency condition applies to container data structures such as pools, queues, and
stacks. The concept of distributional linearizability was first introduced in the work
of Alistarh et al. [5]. This concept is used to analyze randomized relaxations and has
been applied to MultiQueues [79], a group of concurrent data structures designed to
implement relaxed concurrent priority queues.

Castañeda, Rajsbaum, and Raynal introduce the concept of multiplicity [16, 20],
which refers to the property of a relaxed queue or stack that allows an item to be
returned more than once by different operations, but only in case of concurrency.
The property of multiplicity will be utilized for relaxation in most of the research
presented in Chapter 4.

2.3 Work-Stealing 15

2.3

Work-Stealing

In this work, we are interested in studying how relaxation can be applied to practical
environments. In particular, we are interested in applying to work-stealing and data-
structures. Work-stealing is a popular technique for efficient task parallelization of
irregular workloads by implementing dynamic load balancing. It has been utilized in
various contexts, such as programming languages, parallel-programming frameworks,
SAT solvers, and state-space exploration in model checking (e.g. [10, 12, 10, 27, 30,
58, 78]).

In the work-stealing technique, each process has a set of tasks it needs to complete.
The process that owns the task set can put or take tasks from it to complete them.
Once a process completes all its tasks (that is, the set is empty), it becomes a thief
and can steal tasks from another process, which is called the victim. A work-stealing
algorithm offers three main operations: Put and Take, exclusively for the owner’s use,
and Steal, solely for the thief’s use. To guarantee correctness, Linearizability condi-
tion [45] is generally assumed, while lock-freedom [45] and wait-freedom [41] are the
typical progress conditions. When designing work-stealing algorithms, the main ob-
jective is to ensure that the Put and Take operations are efficient and easy to use since
these are the most frequently used operations by the owner. Unfortunately, it has
been demonstrated that any work-stealing algorithm in the standard asynchronous
shared memory model must rely on either Read-After-Write synchronization patterns
or Read-Modify-Write instructions (such as Compare&Swap or Test&Set) [9]. The
Read-After-Write synchronization pattern is based on the flag principle, which entails
writing on a shared variable and reading another variable (as shown in [44]).

To properly implement an algorithm on multicore architectures using a synchro-
nization pattern, it is crucial to include a memory fence (also called barrier) to
prevent the reordering of Read or Write instructions by the compiler or the archi-
tecture. However, these fences can be costly, and atomic Read-Modify-Write instruc-
tions, with high coordination power (which can be formally measured through the
consensus number formalism [41]), are slower than simple Read/Write instructions6.
Take/Steal operations in work-stealing algorithms are based on the flag principle, as
found in the literature [22, 30, 36, 37]. To overcome the impossibility result in [9], we
must consider work-stealing with relaxed semantics or make additional assumptions
on the model. Only a few works, such as [65] and [68], have explored these directions.

6In practice, contention might be the dominant factor, namely, an uncontended Read-Modify-
Write instruction can be faster than contended Read/Write instructions.

16 2. State of the Art

Observing that in some contexts, it is ensured that no task is repeated (e.g., by
checking first if a task is completed) or the nature of the problem solved tolerates
repeatable work (e.g., parallel SAT solvers), Michael, Vechev, and Saraswat propose
the concept of idempotent work-stealing [65]. This relaxation permits a task to be
taken at least once instead of exactly once. Three idempotent work-stealing algo-
rithms are presented in their paper [65], where tasks are inserted and extracted in
different orders. The relaxation allows each of the algorithms to overcome the im-
possibility result in [9] in its Put and Take operations as they use only Read/Write
instructions and do not require Read-After-Write synchronization patterns. How-
ever, the Steal operation uses Compare&Swap, and Put requires that certain Write
instructions not be reordered, while Steal needs certain Read instructions not to be
reordered either. Thus, fences are required when the algorithms are implemented.
Fences between Read (respective Write) instructions are typically not overly costly in
practice. As for progress guarantees, Put and Take are wait-free, while Steal is only
non-blocking.

Morrison and Afek propose two work-stealing algorithms in [69] based on the
TSO (Total Store Order) model [81]. Their Put operation is wait-free and uses
only Read/Write instructions, while Take and Steal are either non-blocking and use
Compare&Swap, or blocking and use a lock. Two well-known algorithms, Cilk THE,
and Chase-Lev work-stealing, have been adapted here. These adaptations have been
modified to work with the TSO model, which prohibits the reordering of Write and
Read instructions, eliminating the need for fences between them [22, 30]. In Morrison
and Afek’s algorithms, each process has a local buffer for storing Write instructions
until they are sent in a FIFO order to the main memory. Their correctness can be
affected by reordering Write or Read instructions, but TSO prevents this. To avoid
Read-After-Write patterns, they assume that the Write buffers have limited size.

2.4

FIFO Queues

These shared data structures are fundamental and used in all sorts of systems.
Shared-memory implementations of concurrent queues have been proposed for more
than three decades. Unfortunately, even state-of-the-art concurrent queues expe-
rience poor scalability because of high contention arising from Read-Modify-Write
instructions such as Compare&Swap instruction or the (Fetch&Increment) instruc-
tion, which manipulate the head and tail of the queue [24, 25, 46, 55, 56, 64, 66, 90].
The latency of RMW instructions increases linearly with the number of contending

2.4 FIFO Queues 17

cores as each instruction acquires exclusive ownership of its cache line.
One of the most popular ways to implement a queue is by utilizing the mean-

ing behind the Fetch&Increment instruction, which does not fail and always makes
progress [67, 90]. In many queue implementations, a queue operation retries a failed
Compare&Swap until it succeeds [24, 25, 46, 55, 56, 90]. The basket queue approach
lies in the middle, where a failed Compare&Swap in an enqueue operation implies
concurrency with other enqueue operations. Therefore, the items of all these opera-
tions do not need to be ordered, and instead, they are stored in a basket where the
items can be dequeued in any order [46]. A recent implementation of hardware trans-
actional Compare&Swap has been proposed to overcome this bottleneck, exhibiting
better performance than the usual Compare&Swap [74].

In Section 2.2, examples of First-In-First-Out (FIFO) queues that applied relax-
ations were provided [34, 53, 54]. Following the work of Castañeda, Rajsbaum, and
Raynal [20] about the multiplicity relaxation, Johnen et al. [52] proposed a wait-
free FIFO queue that supports multiple enqueuers and multiple dequeuers where.
They show that by relaxing the semantics of the queue, such as allowing concurrent
dequeue operations (multiplicity relaxation), they can achieve O(log n) worst-case
complexity for both enqueue and dequeue operations.

18 2. State of the Art

CHAPTER 3

Preliminaries and Methodology

This chapter will cover all the necessary tools required for the thesis. As we are
considering asynchronous shared memory systems, the first section will describe the
mathematical foundation for the computational model. This will describe formal
concepts such as process, algorithm, and Linearizability [45] in concurrent systems.

In the following section, we will explore the hardware foundations of concurrent
systems. Specifically, we will discuss concepts such as cache memory, consistency
memory model, cache coherence, and memory fences, which are crucial for correctly
implementing concurrent algorithms. We will also discuss the concept of a memory
model at the programming language level and examine the Java and C++ memory
models that define the allowable behavior of multithreaded programs.

Finally, we will conclude this chapter by discussing the statistical experimental
methodology used to analyze program implementations and compare performance
between them.

3.1

Computation Model

In the realm of computing, concurrent computation stands as a cornerstone for
achieving efficient and scalable systems. It enables the execution of multiple tasks
simultaneously, which is crucial for modern software applications such as web servers
and programs exploiting multi-core processors’ power. However, the complexity of
concurrent systems requires precise mathematical models to reason about their be-

20 3. Preliminaries and Methodology

havior accurately. This section will discuss the mathematical model in detail, in-
cluding its multiple components and assumptions for the essential topics developed
in this thesis.

We consider the standard concurrent shared memory with n ≥ 2 asynchronous
processes, p0, . . . , pn−1, which may crash at any time during execution [40, 44, 45].
The index of process pi is i. Processes communicate with each other by invoking
atomic instructions of base objects: either simple Read/Write, or more powerful
Read-Modify-Write, such as Swap or Compare&Swap.

An algorithm for a high-level concurrent object T (e.g., a queue or a stack) is a
distributed algorithm A consisting of local state machines A1, . . . , An. Local machine
Ai specifies which instruction of base objects execute to return a response when it
invokes a (high-level) operation of T ; each of these instructions is a step.

An execution of A is a (possibly infinite) sequence of steps, namely, instructions
of base objects, plus invocations and responses of (high-level) operations of the con-
current object T with the following properties:

1. Each process first invokes an operation, and only when it has a corresponding
response can it invoke another operation, i.e., executions are well-formed and

2. For any invocation to an operation op of a process pi, denoted as invi(op), the
steps of pi between that invocation and its correspondent response (if there is
one), denoted resi(op), are the steps specified by Ai when pi invokes op.

An operation in an execution is complete if both its invocation and response
appear in the execution. An operation is pending if only its invocation appears
in the execution. It is assumed that after a process completes an operation, it non-
deterministically picks the operation it executes next. An execution E is an extension
of an execution F , if E is a prefix of F , namely, E = F · F ′ for some F ′.

For any finite execution E and any process pi, E|pi denotes the sequence of
invocations and responses of pi in E. Two finite executions E and F are equivalent
if E|pi = F |pi ∀pi. For any execution E, comp(E) denotes the execution obtained
by removing from E all steps and invocations of pending operations.

A process is correct in an infinite execution if it takes infinitely many steps. An
implementation is lock-free if, in every infinite execution, infinitely many operations
are complete [45]. An implementation is wait-free if, in every infinite execution,
every correct process completes infinitely many operations [41]. Thus, a wait-free
implementation is lock-free but not necessarily vice-versa. Bounded wait-freedom [40]
additionally requires a bound on the number of steps needed to terminate. The step
complexity is the maximum number of steps a process needs to execute to return.

3.1 Computation Model 21

The step complexity of an algorithm is the maximum among the step complexity of
its operations.

In the Read-After-Write synchronization pattern, a process first writes in a shared
variable and then reads another shared variable, maybe executing other instructions
in between. For example, this mechanism is widely used in the classic Lamport’s
bakery mutual exclusion algorithm (see [44]). The correctness of the mechanism
requires that the write and read instructions of a process are executed in a specific
order, although there is no data dependence relation between them. In Section 3.2, we
will discuss thoroughly how current processor architectures can reorder instructions,
how they can alter the correctness of concurrent algorithms, and how to avoid this
problem using fences.

An algorithm, or one of its operations, is fence-free if it does not require any spe-
cific ordering among its steps beyond what is implied by data dependence (e.g., the
value written by a Write instruction depends on the value read by a previous Read
instruction). Note that a fence-free algorithm does not use Read-After-Write syn-
chronization patterns. In our algorithms, we use notation {O1.inst1, . . . , Ox.instx}
to denote that the instructions O1.inst1, . . . , Ox.instx can be executed in any order.
Observe that memory fences (also known as memory barriers) are not required to
correctly implement a fence-free algorithm in a concrete language or multi-core ar-
chitecture since any reordering of non-data-dependent instructions does not affect
the correctness of the algorithm.

Linearizability [45] is the standard correctness condition for concurrent objects.
Intuitively, an execution is linearizable if its (high-level) operations can be ordered
sequentially, without reordering non-overlapping operations, so that their responses
satisfy the specification of the implemented object.

A sequential specification of a concurrent object T is a state machine specified
through a transition function δ. Given a state q and an invocation invi(op) of process
pi, δ(q, invi(op)) returns the tuple (q′, resi(op)) (or a set of tuples if the machine is
non-deterministic) indicating that the machine moves to state q′ and the response
to op is resi(op). The sequences of invocation-responses tuples ⟨invi(op) : resi(op)⟩
produced by the state machine are its sequential executions. For the sake of clarity,
a tuple ⟨invi(op) : resi(op)⟩ is simply denoted op. Also, the subscripts of invocations
and responses are omitted.

Given an execution E, we write op <E op′ if and only if res(op) precedes inv(op′)
in E. Two operations are concurrent denoted op||Eop′, if neither op <e op′ nor
op′ <E op. The execution is sequential if <E is a total order.

22 3. Preliminaries and Methodology

Definition 3.1 (Linearizability [45])
Let be A an algorithm for a concurrent object T . A finite execution E of A is
linearizable with respect to T , or just linearizable if T is clear from the context, if
there is a sequential execution S of T and E can be extended to an execution E ′

by appending zero or more responses such that:

1. comp(E ′) and S are equivalent and

2. for every two complete operations op and op′ in E, if op <E op′ then op <S

op′.

We say that A is linearizable with respect to T or just linearizable if T is clear
from the context if each of its executions is linearizable.

Another correctness condition for concurrent objects is Set-Linearizability. Set-
Linearizability [15, 71] is an extension of linearizability, allowing multiple operations
to be linearized at the same linearization point, whereas linearizability requires a
total order of operations.

A set-sequential specification of a concurrent object differs from a sequential
execution in that δ receives as input the current state q of the machine and set
Inv = {invid1(op1), . . . , invidt(opt)} of operation invocations, and δ(q, Inv) returns
(q′, Res), where q′ is the next state and Res = {resid1(op1), . . . , residt(opt)} are the
responses to the invocations in Inv and each idi denotes the index of the invoking/re-
sponding process. Intuitively , all operations op1, . . . , opt are performed concurrently
and move the machine from state q to q′. The sequence of sets Inv, Res is a con-
currency class of the machine. The state machine’s sequences of concurrency classes
are its set-sequential executions. In our set-sequential specifications, invocations will
be subscripted with the index of the invoking process only when there is more than
one invocation in a concurrency class. Observe that a set-sequential specification
in which all concurrency classes have a single element corresponds to a sequential
specification.

Given a set-sequential execution S of a set-sequential object, the partial order <S

on the operations of S is defined as above: op <S op′ if and only if res(op) precedes
inv(op′) in S, namely, the concurrency class of op appears before of the concurrency
class of op′.

Definition 3.2 (Set-linearizability [15, 71])
Let be A an implementation of a concurrent object T . A finite execution E of A

3.2 Hardware Foundations 23

Projection

(Sequential
Execution)

Time

op

op

op

op

op
 op op

op

(a) Linearizability

op

op
op

Projection

Time

op ,

 op

op
op

op op
op ,

op ,

 op

op
op

(b) Set-Linearizability

Figure 3.1: Graphical description of linearizability and set-linearizability.

is set-linearizable with respect to T , or just set-linearizable if T is clear from the
context, if there is a set-sequential execution S of T and E can be extended to
an execution E ′ by appending zero or more responses such that:

1. comp(E ′) and S are equivalent,

2. for every two completed operations op and op′ in E, if op <E op′ then
op <S op′.

We say that A is set-linearizable with respect to T , or just set-linearizable if
T is clear from the context if each of its executions is set-linearizable.

A comparison between Linearizability and Set-Linearizability can be found in
Figures 3.1a and 3.1b, respectively.

3.2

Hardware Foundations

Knowing the hardware foundations behind concurrent computing besides the math-
ematical computation model is important. When we translate concurrent algorithms
from the mathematical computation model to a program in a particular program-
ming language, we need to deal with a lot of assumptions and rules that do not
necessarily current processor architectures follow. For example, when we design our
algorithms, we suppose linearizability is the correctness condition in asynchronous

24 3. Preliminaries and Methodology

shared memory. Still, current processors cannot implement linearizability in the real
world because this property incurs significant costs1. Instead of stronger correctness
conditions for asynchronous shared memory, manufacturers provided distinct types
of memory consistency (also known as memory model) [70, 80] for their processors
and machines. A memory model is a precise, architecturally visible definition of
shared memory correctness [70]. Knowing about the hardware foundations helps us
to implement correct algorithms. This will help us understand why specific tools like
“fences” are necessary to ensure correct concurrent computing. In this section, we
will discuss the functioning of concurrent programs on computer hardware at a high
level and focus on memory interactions at various levels.

L3

Thread 1 Thread 2

L2

L1i L1d

Core N

Thread 1 Thread 2

L2

L1i L1d

Core 1

...

System Bus

Main Memory Hard DrivesAnother hardware

Chiplet

Figure 3.2: Baseline model of a Multi-core Processor Chip.

When analyzing computer systems, it is important to consider those with multi-
core processors communicate through a shared memory. This means all cores in
the processor, can perform reads (loads) and writes (stores) to all addresses in the

1For example, high power consumption, high manufacturing cost, low performance, etc.

3.2 Hardware Foundations 25

memory. A typical system model includes a single chip with multiple cores and
off-chip main memory. You can see an illustration of this model in the figure 3.22.
Usually, a multi-core processor includes cache memory, a special high-speed memory
close to the processor that allows fast process access. Caches decrease the average
latency when accessing storage structures [70, 80]. In recent times, multi-core chips
have adopted a three-tiered cache memory system. Each core has its own private L1
and L2 cache levels, while all the cores share the L3 cache level. The primary purpose
of the cache levels L1 and L2 is to provide fast access to data and instructions for
the core. Each core uses the first cache level to retrieve required data and execute
instructions. Cache L1 is divided into two sub-caches, one for data (L1d) and the
other for instructions (L1d). Typically, access to this cache level is faster than access
to other levels. The second level of cache is usually more extensive and stores data
and instructions about to be executed. Multiple cores share the third cache level
and serve as a source for the L2 cache [6, 48].

The main memory holds frequently accessed data for the CPU, such as instruc-
tions or processing data, and allows faster access than secondary memory. The
processor calls the memory bus to obtain such data and instructions, which transfers
data from the primary memory to the CPU and cache memory. This bus has three
parts: the address bus, the control bus, and the data bus. The address bus is used to
retrieve information about the location of stored data. On the other hand, the con-
trol bus is utilized to transfer control signals from control units to other components
of the computer. Finally, the data bus transfers information between the primary
memory and the corresponding chipset.

When considering the simplified view of cache and memory architecture, it is
important to ensure that shared memory is correct. Incoherence can occur when
multiple actors have concurrent access to caches and memory, such as processor
cores, external devices, system buses, etc., which may read and/or write to them.
The cores will be the main actors, but we must consider the possibility of other actors
interacting with caches and memory.

In order to ensure that shared memory is accurate, two important issues must
be addressed: consistency and correctness. Consistency establishes rules for how
memory reads (loads) and writes (stores) interact with the memory. These rules
must consider the behavior of these operations when multiple threads or even a sin-
gle thread accesses memory. Consistency models define the proper behaviors for
shared memory about loads and stores and do not reference caches or coherence [70].
Memory consistency models (or memory models) specify shared memory correct-
ness. They define the allowed behaviors for multithreaded programs that execute

2In the figure 3.2, we omit many features to simplify the reasoning about the hardware

26 3. Preliminaries and Methodology

with shared memory. The most intuitive and strongest memory model is Sequential
Consistency (SC) [57]. Another memory model used by systems x86 and SPARC is
Total Store Order (TSO) [75, 81, 84]. TSO is driven by the goal of utilizing first-
in-first-out write buffers to store the outcomes of completed stores prior to writing
the results to the caches. Additionally, “relaxed” or “weak” memory models are
considered because they show that most memory orderings in strong models are
unnecessary [70].

It is important to consider cache coherence protocols when dealing with caching
and solving coherence issues. These protocols come into play when multiple cores
access multiple copies of data, with at least one being a write access. To ensure that
the data accessed is up-to-date and consistent, the distributed set of cores implements
a set of rules within a system [70]. Hence, it is essential to consider consistency models
and cache coherence protocols to prevent access to stale or incoherent data. The goal
of a coherence protocol is to maintain coherence by enforcing the next invariants [70]:

1. Single Writer, Multiple-Read Invariant (SWMR). At any given (logical) time,
only one core may write to memory location A. Other cores may only read the
memory location A.

2. Data-Value Invariant. The value of the memory location at the beginning of
an epoch is the same as the value of the memory location at the end of its last
read-write epoch.

To ensure that the SWMR and data value invariants are always maintained, we
use a distributed system consisting of a collection of coherence controllers. Such
controllers are finite state machines associated with each storage structure (cache and
memory). These coherence controllers exchange messages with each other to ensure
that invariants are upheld for each structure. The coherence protocol specifies the
interaction between these finite-state machines and moving from one state to another
based on the conditions of the data and the cache memory [70].

The coherence controllers have several important responsibilities. They handle
service requests from two sources: Core and Network. On the “Core side”, the
cache controller interfaces with the processor core, receiving loads and stores from
the core and returning load values to the core. Additionally, the cache controller
initiates coherence transactions by issuing a coherence request in the case of a cache
miss. This coherence request is sent to one or more coherence controllers across the
interconnection network [70]. On the cache controller’s “network side”, it interfaces
with the rest of the system through the interconnection network. The controller

3.2 Hardware Foundations 27

Core

Cache

Controller Cache

Interconnection Network

Loads and
Stores

Loaded
values

Issued
Coherence
Requests

and
Responses

Received
Coherence

Request
and

Responses

Network
Side

Core Side

Figure 3.3: Cache Controller

receives requests and coherence responses that it must process [70]. A coherence
controller is illustrated in Figure 3.3.

Coherence states are essential for ensuring the smooth operation of a system.
These states assist the coherence controller in deciding whether it needs to commu-
nicate with other controllers to retrieve new data, update existing data, or continue
operating with the current data. The most commonly used coherence states are
modified (M), shared (S), and invalid (I). However, AMD has gone a step further
with its MOESI protocol [6] and introduced two additional states, owned (O) and ex-
clusive (E), to improve the system’s efficiency. On the other hand, Intel has created
its extension called MESIF [48] to achieve the same goal. A detailed explanation of
how coherence protocols work can be found in the book of Nagarajan et al. [70].

28 3. Preliminaries and Methodology

3.3
About Fences And Its Use In Concurrent

Algorithms

In many processor architectures, it is common to see cores reordering memory ac-
cesses to different addresses to perform efficient computations according to certain
rules [70]. These reorders do not affect the execution of a single-thread program.
We can consider three possible reorder cases: load-load, store-store, and load-store
or store-load. Processors that support the sequential consistency model require each
core to preserve the program order in any of those combinations.

However, processors that support the TSO memory model do not guarantee or-
dering between a store and a subsequent load that comes after it in program or-
der [75, 81]. The reason behind this is that processor cores write to store buffers to
hold committed stores until the rest of the memory system can process the stores.
Nevertheless, they ensure that the load gets the value of the earlier store.

Compilers can reorder instructions and memory accesses to enhance performance
and reduce the cost of certain loads and stores to and from memory. In some cases,
if the programmer knows what he is doing, he can use some compilation flags to
indicate to the compiler to use instruction reordering, allowing data races of stores
in multi-threaded environments3.

A widely used mechanism to avoid reordering (memory accesses, instructions)
is the use of memory fences. A memory fence is a special instruction that acts
as a barrier that enforces an ordering constraint on memory operations (reads and
writes) issued before and after such a memory fence. Memory fences are essential
for maintaining memory order consistency in multi-threaded programming environ-
ments. This is because most modern CPUs or compilers perform performance opti-
mizations, such as instruction reordering and speculative execution, which can lead
to out-of-order execution. Memory fences ensure that memory operations are syn-
chronized and appear to occur in the expected order, preventing potential issues
caused by instruction reordering and ensuring the correctness of multi-threaded pro-
grams. Typically, these low-level code optimizations, may not significantly impact
the behavior of a single-threaded program. However, in concurrent programs where
multiple threads are executing simultaneously, these optimizations can lead to unex-

3See, for example, the options that control optimizations in the GCC compiler, in spe-
cific the flag -Os, which enables all -O3 optimizations, but also turn on the option of
-fallow-store-data-races: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html,
and the discussion about its lack of clear documentation: https://gcc.gnu.org/bugzilla/show_
bug.cgi?id=97309.

https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97309
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=97309

3.3 About Fences And Its Use In Concurrent Algorithms 29

pected and hard-to-debug issues, such as race conditions and inconsistent data states.
Therefore, it is crucial to be mindful of these potential impacts when developing and
testing concurrent programs (See Example 3.1).

Example 3.1 (Instruction re-ordering)
Consider the following multi-thread program with two threads, each concur-
rently running on distinct cores. The first thread executes the code shown
in 3.3.1, and the second one executes the code shown in 3.3.2:

1 while (z == 0);
2 print(y);

Code 3.3.1: Code execute by thread 1 on core 1

1 y = 30;
2 z = 1;

Code 3.3.2: Code executed by thread 2 on core 2

In this case, we might expect that the instruction print(y) always prints
the number 30. Nevertheless, the compiler or the CPU could change the order
of the instructions for thread 2, giving, as a result, an execution where the
value for y is undefined, and the instructions could be interleaved as shown in
the code 3.3.3:

1 z = 1; // Thread 2
2 while (z == 0); // Thread 1
3 print(y); // Thread 1
4 y = 30; // Thread 2

Code 3.3.3: Code reordered by CPU

However, this execution is sequentially consistent but is an out-of-order
execution producing an undefined result. With the use of memory barriers, we
can ensure that instructions do not be reordered. For example, our code could
be rewritten as shown in 3.3.4 and 3.3.5:

while (z == 0);
fence ();
print(y);

30 3. Preliminaries and Methodology

Code 3.3.4: Updating code 3.3.1 to use fences.

y = 30;
fence ();
z = 1;

Code 3.3.5: Updating code 3.3.2 to use fences.

Thus, the system cannot print 30 without setting z to 1 before. Using
a fence between potentially problematic instructions ensures that the code
executes correctly; therefore, the instruction reorders, as shown in Code 3.3.3,
cannot occur.

In the case of processors that support the TSO memory model, reordering in-
structions is not always necessary to produce unpredictable behavior in concurrent
programs. This is because the cores of the processors contain store buffers. To better
understand this, consider Example 3.2.

Example 3.2 (Dealing with store buffers)
Consider the following multi-thread program with two threads, each concur-
rently running on distinct cores. Each core has its own store buffer. The first
thread executes the code shown in 3.3.6, and the second executes the code
shown in 3.3.7. Initially, x = 0 and y = 0. Is it possible that (r1, r2) = (0, 0)
at the end of the execution?

1 S1: x = FOO;
2 L1: r1 = y;

Code 3.3.6: Code execute by thread 1 on core 1

1 S2: y = BAR;
2 L2: r2 = x;

Code 3.3.7: Code execute by thread 2 on core 2

If we analyze the possible execution of these codes, we can identify four po-
tential outcomes for the values of r1 and r2. These outcomes are (BAR, FOO),
(BAR, 0), (0, FOO), and (0, 0). However, it is important to note that the last
outcome is invalid in a Sequential Consistent memory model. In contrast, the

3.3 About Fences And Its Use In Concurrent Algorithms 31

TSO memory model considers the final outcome valid. One might wonder how
it is possible to arrive at this value. Consider the following sequence of events:

• Core 1 executes store S1, but FOO is stored in the core’s write buffer.

• Similarly, Core 2 executes store S2 and holds BAR in its write buffer.

• Afterward, both cores execute their individual reads, L1 and L2, getting
the value 0, which represents the previous value of x and y.

• Finally, both core’s write buffers update memory with FOO and BAR.

In the end, the result of the execute the program is (r1, r2) = (0, 0), which
is an invalid result in Sequential Consistency. In order to prevent undesirable
results, a programmer should similarly use fences as in Example 3.1. Using
Code 3.3.6 as a basis, we can add a fence between store S1 and load L1 to
ensure that write buffers are emptied into memory and that later loads are not
permitted to execute until an earlier fence has been committed. We can use a
similar reasoning for Code 3.3.7.

TSO allows for the utilization of a FIFO write buffer, which is beneficial for
improving performance by hiding the latency of committed stores. However, a more
advanced approach would involve using a non-FIFO write buffer that enables the
coalescing of writes. This means that two stores that are not in consecutive program
order can be combined and written to the same entry in the write buffer. Nonetheless,
employing a non-FIFO coalescing write buffer violates TSO, as TSO mandates that
stores must adhere to the program order [70].

TSO behaves similarly to Sequential Consistency, permitting only one type of
reordering. Hence, the use of fences is fairly infrequent, and the implementation is
not too critical. However, x86 architecture provide three types of fences: LFENCE,
SFENCE and, MFENCE [6, 48]:

• MFENCE: is a full memory fence that ensures that no later loads or stores are
observable globally before any earlier loads or stores. It empties the store buffer
before later loads can execute.

• SFENCE: only prevents the reordering of writes (it is a store-store barrier), it
works well with non-temporal stores4 and other instructions listed as exceptions.

4Non-temporal stores means that the data being stored is not going to be read

32 3. Preliminaries and Methodology

• LFENCE: is designed to prevent the reordering of reads with subsequent reads
and writes, effectively combining load-load and load-store barriers. However,
according to x86 specification, load-load, and load-store barriers are always
present. As a result, LFENCE by itself is not enough for memory ordering;
however, there is a larger discussion about its use far beyond the scope of this
thesis.

For consistency models that permit far more reordering, fences are used more
frequently, and their implementation can significantly impact performance. In pro-
gramming languages, memory models are defined to provide a consistent interface for
developers to implement concurrent programs, regardless of the different hardware
models provided by different processor architectures. We will delve deeper into this
topic in the next section.

3.4
After Hardware Foundations, What’s Up About

Programming Languages?

The preceding sections introduced the foundational hardware concepts needed to
comprehend the memory consistency models and cache protocols required to create
accurate concurrent programs. The model discussed earlier is situated at the hard-
ware level and low-level software. However, defining or redefining memory models
for high-level languages is equally important as it creates a standardized interface
between a program and any software or hardware that might modify that program.
A memory model also enables us to understand how the program will behave in a
multi-core environment, making it easier to reason about its behavior [2, 70].

In recent years, memory models have been specified for two of the most widely
used programming languages, C++ [13] and Java [60]. These models describe the
expected behavior of language-level threads, locks, atomics, and Read-Modify-Write
instructions. The specifications of such memory models outline the anticipated out-
comes for high-level language programmers and the capabilities that compilers, run-
time systems, and hardware providers can deliver. Figure 3.4 illustrates the difference
between (a) high-level and (b) low-level memory models [70].

Java and C++ adopt the relaxed memory model approach of “Sequential Con-
sistency for Data-Race Freedom (SC for DRF)” [3]. A data race occurs when two

again soon (i.e., no “temporal locality”). https://sites.utexas.edu/jdm4372/2018/01/01/
notes-on-non-temporal-aka-streaming-stores/

https://sites.utexas.edu/jdm4372/2018/01/01/notes-on-non-temporal-aka-streaming-stores/
https://sites.utexas.edu/jdm4372/2018/01/01/notes-on-non-temporal-aka-streaming-stores/

3.4 After Hardware Foundations, What’s Up About Programming Languages? 33

memory accesses target the same location simultaneously and are not reads or syn-
chronization operations. The approach of SC for DRF guarantees that a program is
correctly synchronized if and only if all sequentially consistent executions are free of
data races. If a program is correctly synchronized, then all program executions will
appear to be sequentially consistent [72].

Hardware

Low Level Program

C++ Compiler Java Compiler

Java Runtime

C++ Program Java Program(a)

(b)

Figure 3.4: (a) High-level and (b) low-level memory models.

The memory model of C++ specifies the order in which memory accesses, in-
cluding regular, non-atomic memory accesses, should occur around an atomic op-
eration [49]. Without constraints on a multi-core system, when multiple threads
simultaneously read and write to multiple variables, one thread may observe the
values change in a different order than the order in which another thread wrote
them. This can also occur among multiple reader threads [49]. Similar effects can
occur even on uniprocessor systems due to compiler transformations allowed by the
memory model. By default, all atomic operations provided by the library follow
sequentially consistent ordering. However, this default can negatively impact per-
formance. The library’s atomic operations can be given an additional memory order
argument to specify precise constraints beyond atomicity that the compiler and pro-
cessor must enforce for a specific operation [49]. This argument specifies the precise
constraints the compiler and processor must enforce for a given operation beyond
just ensuring atomicity [49]. Six memory orders are defined in the specification,
ranging from the weakest order (specified as std::memory_order_relaxed) to the
strongest one (specified as std::memory_order_seq_cst), which is a sequentially-
consistent ordering. Table 3.1 shows the description of each memory order as in the
C++ specification [49].

34 3. Preliminaries and Methodology

Value Explanation
memory_order_relaxed Relaxed operation: no synchronization or ordering con-

straints are imposed on other reads or writes; only this
operation’s atomicity is guaranteed.

memory_order_consume A load operation with this memory order performs a
consume operation on the affected memory location:
no reads or writes in the current thread dependent
on the value currently loaded can be reordered before
this load. Writes to data-dependent variables in other
threads that release the same atomic variable are visi-
ble in the current thread. On most platforms, this only
affects compiler optimizations.

memory_order_acquire A load operation with this memory order performs the
acquire operation on the affected memory location: no
reads or writes in the current thread can be reordered
before this load. All writes in other threads that re-
lease the same atomic variable are visible in the current
thread.

memory_order_release A store operation with this memory order performs the
release operation: no reads or writes in the current
thread can be reordered after this store. All writes
in the current thread are visible in other threads that
acquire the same atomic variable (see Release-Acquire
ordering below), and writes that carry a dependency
into the atomic variable become visible in other threads
that consume the same atomic.

memory_order_acq_rel A read-modify-write operation with this memory order
is both an acquire operation and a release operation.
No memory reads or writes in the current thread can
be reordered before the load or after the store. All
writes in other threads that release the same atomic
variable are visible before the modification, and the
modification is visible in other threads that acquire the
same atomic variable.

3.4 After Hardware Foundations, What’s Up About Programming Languages? 35

memory_order_seq_cst A load operation with this memory order performs an
acquire operation, a store performs a release operation,
and read-modify-write performs both an acquire oper-
ation and a release operation, plus a single total order
exists in which all threads observe all modifications in
the same order.

Table 3.1: Memory orders in C++

In the previous section, we discussed memory fences as an essential element of
concurrent programming. Both C++ and Java offer memory fences to ensure the
correct execution of concurrent programs. In C++, the function std::atomic_-
thread_fence establishes memory synchronization ordering of non-atomic and re-
laxed atomic accesses as instructed by the memory order, without an associated
atomic operation. However, it is worth noting that on x86 systems (x86_64), these
functions do not issue any CPU instructions and only affect compile-time code. The
exception to this is std::atomic_thread_fence(std::memory_order::seq_cst),
which issues the full memory fence instruction MFENCE [49].

In the case of Java, for versions less than 9, fences and other low-level operations
were restricted to the use of a class named UNSAFE5. UNSAFE was the most powerful
tool on the platform because it allowed users to violate established rules and perform
otherwise impossible actions. In the latest versions, the Java platform provides the
class VarHandle6, which exposes the memory fence methods [73] shown in Table 3.2,
additionally to provide access to another low-level operation. Many of these fences
try to behave similarly according to the memory orders defined by the specification
of C++ [49].

Fence Description
fullFence Ensures that loads and stores before the fence will not be

reordered with loads and stores after the fence. This method
has memory ordering effects compatible with atomic_-
thread_fence(memory_order_seq_cst).

5sun.misc.UNSAFE
6java.lang.invoke.VarHandle

36 3. Preliminaries and Methodology

acquireFence Ensures that loads before the fence will not be reordered
with loads and stores after the fence. This method has
memory ordering effects compatible with atomic_thread_-
fence(memory_order_acquire).

releaseFence Ensures that loads and stores before the fence will not be
reordered with stores after the fence. This method has
memory ordering effects compatible with atomic_thread_-
fence(memory_order_release).

loadLoadFence Ensures that loads before the fence will not be reordered with
loads after the fence.

storeStoreFence Ensures that stores before the fence will not be reordered
with stores after the fence.

Table 3.2: Memory fences provided by Java

It is important to note that the Java Language Specification [72] does not ex-
plicitly mention the use of barriers. However, in Java, the usage of barriers may
be considered an implementation detail, as its memory model attempts to operate
based on happens-before semantics. The happens-before semantics defines a set of
rules about the ordering and visibility guarantees between actions in a program.
This helps to show that changes made by one thread become visible to others. As
mentioned previously, Java also adopts the relaxed memory model approach of “Se-
quential Consistency for Data-Race Freedom” [3], which is crucial to prevent data-
races and ensure the correct behavior of concurrent programs.

Definition 3.3 is a term used in the Java Language Specification to explain what
the happens-before semantic means. It refers to the main operations that establish
this relationship, which include (1) program order, (2) volatile variables, (3) locks, (4)
fork-join pattern on threads, (5) thread interruptions, and (6) thread terminations.
In certain unforeseen situations not specified in the Java Language Specification, the
use of UNSAFE or VarHandle classes becomes necessary.

Definition 3.3 (Happens-before semantics[72])
Two actions can be ordered by a happens-before relationship. If one action
happens-before another, then the first is visible to and ordered before the sec-
ond.

If we have two actions x and y, we write hb(x, y) to indicate that x happens-
before y.

3.5 Experimental Methodology 37

If x and y are actions of the same thread and x comes before y in program
order, then hb(x, y).

There is a happens-before edge from the end of an object’s constructor to the
start of a finalizer for that object.

If an action x synchronizes-with a following action y, then we also have
hb(x, y).

If hb(x, y) and hb(y, z), then hb(x, z).

3.5

Experimental Methodology

One of the goals of this thesis is to assess our algorithms’ performance. In experi-
mental computer science research and development, benchmarking plays a vital role.
Developers perform benchmarking tests on their products under development to eval-
uate their performance, while researchers use benchmarking to assess the impact on
the performance of their novel research ideas [32]. In this thesis, we have followed and
adapted the guidelines presented in the work of Forsyth et al.[28], Georges et al. [32]
and Lilja [59]. These guidelines provide fundamental techniques for measuring com-
puter performance and strategies for analyzing and interpreting the resulting data.
Topics covered include performance metrics, benchmarking programs, and statistical
tools. By following these guidelines, we can perform rigorous statistical evaluation,
better understand the performance of our algorithm implementations, and compare
them against other algorithms.

A standard method of evaluating experimental results is by measuring perfor-
mance or throughput. But what do these terms mean? Throughput, defined by the
Cambridge Dictionary, is the amount of work completed in a given period. In con-
trast, performance refers to how well something functions or works. Performance is
measured by the amount of useful work a system accomplishes, typically determined
by its accuracy, efficiency, and speed of executing instructions. One or more of the
following factors might be involved when performance is measured:

1. Short response time for a given piece of work.

2. High throughput.

3. Low utilization of computing resources.

4. High availability of a computing system.

38 3. Preliminaries and Methodology

5. High bandwidth.

6. Short data transmission time.

From the work of Lilja [59], some strategies for measurement are:

• Event driven: It records the information necessary to calculate the perfor-
mance metric whenever an event occurs.

• Tracing: Similarly to the previous, but instead of recording the event that has
occurred, a portion of the system is recorded to identify the event.

• Sampling: This strategy records a portion of the system in a fixed time in-
terval.

• Indirect measurement: This type occurs when the metric data is not directly
accessible, and you must find another metric that can be measured directly.

We can combine those strategies with interval timers to measure the time it takes
to execute the program or a section of code, providing a time basis for sampling.

3.5.1 Statistic tools for experiments
As computer science and engineering researchers, we aim to measure and compare
the performance of novel and existing algorithms. To evaluate the effectiveness of
these algorithms, we require an experimental methodology that enables us to measure
their performance and throughput and determine whether they are competitive. This
thesis proposes various concrete implementations of the same algorithm for different
studies. Our experiments will be categorized into two groups. The first category will
measure the performance of different algorithm versions, while the second category
will focus on comparing our best algorithm (or the two best) with other algorithms
mentioned in the literature. To evaluate the performance of our algorithms, we will
measure the time taken to execute a set of operations over a specified time interval.
This will help us determine how quickly the program can complete its execution.
The technique used to measure the time of an event is the following:

• Read the current time and store it in a variable start_count.

• Let the portion of the program execute.

• Read the current time and store it in a variable stop_count.

3.5 Experimental Methodology 39

• Take the difference between start_count and stop_count. This will be the
total time required to execute the event.

This technique for measuring the execution time of any portion of a program is
known as the wall clock time [59]. We will use this technique to measure all the events
we want to track. However, remember the measurements from this technique include
time spent on other system operations, such as memory paging, thread interleaving,
input/output operations, and network communication, if applicable. These external
events can introduce uncertainty, errors, or noise into our measurements. To quantify
the uncertainty, we need to use probability and statistics tools.

To summarize a collection of measures, we can use indices of central tendency such
as the mean (Definition 3.4), median, and mode. The most commonly used index is
the sample arithmetic mean or average, which can summarize all the measurements
into a single value representing the center of these values’ distribution. To quantify
the precision of our measurements, we can use a confidence interval for the mean
value [32, 59]. Other tools we need are the sample variance (Definition 3.5), the
standard deviation (Definition 3.6), and the coefficient of variation (Definition 3.7).

Definition 3.4 ((Sample arithmetic) Mean)
Formally, the (sample arithmetic) mean is defined to be:

x̄A = 1
n

n∑
i=1

xi (3.1)

Where xi values are the individual measurements.

Definition 3.5 (Sample Variance)
The sample variance represent our calculated estimate of the actual variance. It
is defined to be:

V =
∑n

i=1(xi − x̄2)
n− 1 (3.2)

Where the xi are the n independent measurements and x̄ is the corresponding
sample mean.

Definition 3.6 (Standard Deviation)
From the Equation 3.2 described in Definition 3.5, the standard deviation is

40 3. Preliminaries and Methodology

defined as the positive square root of the variance:

s =
√

V =
√∑n

i=1(xi − x̄2)
n− 1 (3.3)

Definition 3.7 (Coefficient of Variation)
The coefficient of variation (COV) is defined as the standard deviation (Equa-
tion 3.3) divided by the mean (Equation 3.1):

COV = s

x̄
(3.4)

Experimental evaluation assumes that errors that occur during an experiment
follow a Gaussian (a.k.a. normal) distribution. This implies that if multiple mea-
surements are taken of the same value, they will tend to follow a Gaussian distribution
centered around the true mean value x [59]. Suppose we assume that the random
errors follow a Gaussian distribution. In that case, we can use the properties of the
distribution to evaluate the accuracy of our estimate of the true value. Confidence
intervals can help us determine a range of values with a high probability of containing
the true value. To do so, we need to consider two cases:

1. When the number of measurements is large (n ≥ 30).

2. When the number of measurements is small (n < 30).

The number 30 is typically chosen by convention as the minimum sample size
required for the central limit theorem to hold true. This theorem in probability theory
explains that as the sample size increases, the distribution of a sample variable should
approximate a normal distribution, regardless of the actual shape of the population.
As a result, confidence intervals can be used to estimate the overall mean of these
averaged values [32, 59].

For the first case, we use the sample mean (x̄) as the best approximation of the
true value. If the n samples used to calculate x̄ are all independents with mean µ y
standard deviation s, the central limit theorem then assures us that, for large values
of n, the sample mean x̄ is approximately Gaussian distributed with mean µ and
standard deviation s/

√
n. We can quantify the precision of the measurements by

searching two values c1 and c2, such that the probability of the mean value being
between those two values is 1− α. That is PR[c1 ≤ x̄ ≤ c2] = 1− α. c1 and c2 are
chosen to form a symmetric interval around x̄ such that Pr[x < c1] = Pr[x > c2] = α

2 .

3.5 Experimental Methodology 41

The interval [c1, c2] is called confidence interval for x̄ and α is called the significance
level and the value (1 − α) is called the confidence level [32, 59]. From the central
limit theorem, we have:

c1 = x̄− z1−α/2
s√
n

(3.5)

c2 = x̄ + z1−α/2
s√
n

(3.6)

where x̄ is the sample mean, s is the sample standard deviation, n is the number
of measurements and z1−α/2 is the value of a standard unit normal distribution with
mean µ = 0 and variance s2, which obeys the following property: Pr[Z ≤ z1−α/2] =
1− α/2, where the value z1−α/2 is typically obtained from a pre-computed table.

In the second case, for a small number of measurements (n < 30), the sample vari-
ances s2 calculated for different groups of measurements can vary significantly. The
distribution of the transformed value z = x̄−x

s/
√

n
follows the Student’s t-distribution

with n - 1 degrees of freedom. Then, the confidence interval for x̄ when n < 30 can
be computed as:

c1 = x̄− t1−α/2;n−1
s√
n

(3.7)

c2 = x̄ + t1−α/2;n−1
s√
n

(3.8)

where t1−α/2;n−1 defined such that a random variable T that follows the Student’s
t-distribution with n − 1, obeys: Pr[T < t1−α/2;n−1] = 1 − α/2, where the value
z1−α/2;n−1 is typically obtained from a pre-computed table [32, 59].

Confidence intervals are an interesting concept because they provide insight into
how much noise there is in measurements. However, when making decisions about
the performance of one or more systems, we need to determine whether changes are
due to random fluctuations or if they are statistically significant. To do this, we can
use the following two techniques [32, 59]:

1. Comparing two alternatives

2. Analysis of variance (ANOVA)

The first technique is simple. The approach to comparing two alternatives is to
determine whether the confidence intervals for two groups of measurements overlap.
Suppose the intervals of two sets of data do not overlap. In that case, we can
conclude that there is no evidence to suggest that there is not a statistically significant

42 3. Preliminaries and Methodology

difference between them. The wording of this last sentence is important because
there is still a probability α that the differences observed in our measurements are
due to random effects in our measurements, i.e., we cannot guarantee with absolute
certainty that there is a difference between the compared alternatives [32].

Conversely, if the intervals overlap, we cannot confidently conclude that the dif-
ferences seen in the mean values are not due to random fluctuations. To determine
whether there is no statistical difference, we need to calculate the confidence interval
for the difference of the means of the two alternatives. First determine the sample
mean x̄1 and x̄2 and the sample standard deviation s1 and s2. Then, compute the
difference of the means as x̄ = x̄1 − x̄2. The standard deviation sx of the difference
of the mean values is computed as:

sx =
√

s2
1

n1
+ s2

2
n2

(3.9)

Then, the confidence interval for the difference of the means is then given by:

c1 = x̄− z1−α/2sx (3.10)

c2 = x̄ + z1−α/2sx (3.11)
The confidence interval calculated before is in the case when the number of mea-

surements is considerable on both systems, i.e., n1 ≥ 30 and n2 ≥ 30. When the
number of measurements on at least one of the systems is smaller than 30, we can no
longer assume that the difference between the means is under Gaussian distribution.
In the last case, when the number of measurements in both systems is small, i.e.,
n1 < 30 and n2 < 30, we need to resort to the Student’s t distribution by replacing
the value z1−α/2 with t1−α/2;ndf

, where ndf represent the degrees of freedom, which it
can approximate by integer number nearest to:

ndf =
(s2

1
n1

+ s2
2

n2
)2

(s2
1/n1)2

n1−1 + (s2
2/n2)2

n2−1

(3.12)

In the case of the Analysis of Variance (ANOVA), a general technique for
observing the variation in a collection of measurements into meaningful components.
To perform this analysis, it is necessary to assume that the errors in the measurements
for the distinct alternatives are independent and under normal distribution. The
variance for the measurement errors is the same for all alternatives. The variation
observed is divided into:

3.5 Experimental Methodology 43

Measurements 1 2 . . . j . . . k Overall mean
1 y11 y12 . . . y1j . . . y1k

2 y21 y22 . . . y2j . . . y2k
...

i yi1 yi2
. . . yij

... yik
...
n yn1 yn2 . . . ynj . . . ynl

Column means ȳ.1 ȳ.2 . . . ȳ.j . . . ȳ.k ȳ..

Table 3.3: Organizing the n measurements for k alternatives in an ANOVA analysis

1. The variation observed within each system is assumed caused by the measure-
ment error.

2. The variation between alternatives.

If the variation between the alternatives is larger than the variation within each
alternative, then it can be concluded that there is a statistically significant difference
between the alternatives. To evaluate ANOVA, we must organize the measurements
as shown in the table 3.3: there are n · k measurements for all k alternatives. The
column means are defined as:

ȳ.j =
∑n

i=1 yij

n
(3.13)

The overall mean is defined as:

ȳ.. =
∑k

j=1
∑n

i=1 yij

n · k
(3.14)

Compute the sum of squares of the differences between the mean of the mea-
surements for each alternative and the overall mean to find the variation due to the
effects of the alternatives (SSA):

SSA = n
k∑

j=1
(ȳ.j − ȳ..)2 (3.15)

The variation within an alternative due to random effects is calculated by sum-
ming the differences (or errors) between individual measurements and their respective
alternative mean.

44 3. Preliminaries and Methodology

SSE =
k∑

j=1

n∑
i=1

(yij − ȳ.j)2 (3.16)

Finally, the sum-of-squares total, SST, or the sum of squares of the differences
between the individual measurements and the overall mean is defined as:

SST =
k∑

j=1

n∑
i=1

(yij − ȳ..)2 (3.17)

It is possible to split the observed total variation (SST) into a within component
(SSE) and a between component (SSA).

SST = SSA + SSE (3.18)
ANOVA analysis quantifies whether there is a difference in variation across alter-

natives (SSA) compared to variation within each alternative (SSE) due to random
measurement errors. One way to do this is to compare the fractions SSA

SST
and SSE

SST
.

A more rigorous approach is to use the F-test [59], which tests whether two vari-
ances are significantly different. After conducting an ANOVA test, we may determine
a significant difference between the alternatives, but the test does not specify which
alternatives have a significant difference. Various techniques can be employed to
determine whether there is a statistically significant difference between alternatives.
We will describe the techniques we will use for each of our specific case studies.

3.5.2 Statistically rigorous methodology
Measuring performance in programming languages like Java is far from trivial due to
the many factors that can affect the computation, e.g., the garbage collector and heap
size. We use the methodology proposed by Georges, Buytaert, and Eeckhout [32]
to obtain statistically rigorous results. The methodology measures the steady-state
performance, which concerns long-running applications in which start-up is of less
interest. An important detail to consider in languages like Java is that JIT com-
pilation (compilation Just In Time) is performed during the start-up of the virtual
machine, and the load of the program, steady-state performance suffers less from the
variability due to JIT compilation. For compiled languages like C++, this detail is
not important.

Two issues must be addressed to quantify steady-state performance. The first is
to determine when a steady state is reached. The second is that different evaluations

3.5 Experimental Methodology 45

may result in different steady-state performances. Georges et al. proposed a four-
step methodology for quantifying steady-state performance. The methodology is as
follows for a given experiment:

1. Consider p invocations, each invocation running at most q benchmark itera-
tions. Suppose we want to retain k measurements per invocation.

2. For each invocation i, we must determine the first iteration si, where the steady-
state performance is reached. This means that the coefficient of variation
(CoV) 7 of the most recent five executions falls below an established threshold
(for example, 0.02). If the CoV never drops below the threshold established for
any five consecutive executions, it is considered the five consecutive executions
with the lowest CoV.

3. For each invocation, compute the mean x̄i of the last five executions under
steady-state is:

x̄i =
∑si

j=si−k xij

5
4. Compute the confidence interval for a given confidence level across the com-

puted means from the different invocations. For example, computing a 95%
confidence interval over the x̄i measurements.

Since the number of measurements is small, the confidence interval is computed
under the assumption that the distribution of the transformed value t corresponds
with:

t = x̄− µ

s/
√

n

where s is the sample standard deviation, µ is the population mean and n is the
number of measurements; the transformed value follows the Student’s t-distribution
with n−1 degrees of freedom. The confidence intervals can be computed as described
in Section 3.5.1 and in the work of Georges et al. [32].

7CoV is the standard deviation s divided by the mean x̄.

46 3. Preliminaries and Methodology

CHAPTER 4

Case Study 1: Work-Stealing

In this chapter, we begin with a case study related to the topic of relaxations ap-
plied to data structures. Our motivation for this study comes from previous re-
search, which has shown that algorithms for concurrent objects often use expensive
and complex synchronization mechanisms that can harm performance (see, for ex-
ample, [9, 41]). To address this issue, researchers have proposed objects with re-
laxed semantics that can provide algorithms without the need for such costly mech-
anisms [65, 68]. We aim to investigate whether there are any non-trivial and useful
relaxed objects that can be implemented using only basic synchronization mech-
anisms without compromising performance. Specifically, we explore how we can
provide relaxed data structures that can be applied to the case of work-stealing to
solve this problem.

We focus on the First-In-First-Out (FIFO) data structures with single-producer
multi-consumer semantics and on two relaxation methods for work-stealing, known
as multiplicity and weak-multiplicity. These relaxation methods allow a task to be
extracted by more than one Take/Steal operation, but each process can only take
the same task at most once. However, this relaxation can only occur in a concurrent
environment. The first relaxation’s property is directly guaranteed by the definition
of set-linearizability. The second relaxation follows from the requirement that solu-
tions must be sequentially exact. We present two read/write, wait-free algorithms
for these relaxations that do not require read-after-write synchronization patterns.
Additionally, the second algorithm is fence-free with constant step complexity.

Chapter 6 presents an experimental evaluation using three benchmarks related to
this case study and the results obtained from the evaluation. Our goal is to determine

48 4. Case Study 1: Work-Stealing

whether implementing the algorithms presented in this chapter can compete with or
even surpass other state-of-the-art work-stealing algorithms.

4.1

Introduction

Work-stealing is a popular technique to implement dynamic load balancing for effi-
cient task parallelization of irregular workloads. It has been used in several contexts,
e.g., programming languages, parallel-programming frameworks, SAT solvers and
state-space exploration in model checking (e.g. [10, 12, 21, 27, 30, 58, 78]).

In work-stealing, each process owns a set of tasks that must be executed. The
owner of the set can put tasks in it and can take tasks from it to execute them.
When a process runs out of tasks (i.e., the set is empty), it becomes a thief to steal
tasks from a victim. A work-stealing algorithm provides three high-level operations:
Put and Take, which can be invoked only by the owner, and Steal, which a thief can
invoke. Linearizability is the usual assumed correctness condition, while lock-freedom
and the stronger wait-freedom are the typical progress conditions.

A main target when designing work-stealing algorithms is to have Put and Take
operations as simple and efficient as possible, as typically, they are the operations
most intensively used by the owner. Unfortunately, it has been formally shown that
any work-stealing algorithm in the standard asynchronous shared memory model
must use Read-After-Write synchronization patterns or atomic Read-Modify-Write in-
structions (e.g., Compare&Swap or Test&Set) [8]. Read-After-Write is a useful syn-
chronization pattern based on the flag principle, i.e., writing on a shared variable and
then reading another variable (see [44]). To correctly implement an algorithm using
such a synchronization pattern in real multi-core architectures, a memory fence needs
to be explicitly added so that the compiler or the architecture does not reorder the
Read and Write instructions. It is well-known that fences that avoid reads and writes
to be reordered are highly costly, while atomic Read-Modify-Write instructions, with
high coordination power (which can be formally measured through the consensus
number formalism [41]), are in principle slower than the simple Read/Write instruc-
tions.1 Indeed, the known work-stealing algorithms in the literature are based on
the flag principle in their Take/Steal operations [22, 31, 36, 37]. Two possible ways
to circumvent the impossibility result in [8] are to consider work-stealing with re-
laxed semantics or to make extra assumptions on the model. As far as we know, [65]

1In practice, contention might be the dominant factor, namely, an uncontended Read-Modify-
Write instruction can be faster than contended Read/Write instructions.

4.2 Work-Stealing with Multiplicity 49

and [68] are the only works that follow these directions.
Observing that in some contexts, it is ensured that no task is repeated (e.g., by

checking first if a task is completed) or the nature of the problem solved tolerates
repeatable work (e.g., parallel SAT solvers), Michael, Vechev, and Saraswat propose
idempotent work-stealing [65], a relaxation allowing a task to be taken at least once,
instead of exactly once. Three idempotent work-stealing algorithms are presented
in [65], where tasks are inserted/extracted in different orders. The relaxation allows
each of the algorithms to circumvent the impossibility result in [8] in its Put and Take
operations as they use only Read/Write instructions and are devoid of Read-After-
Write synchronization patterns. However, Steal uses Compare&Swap. Moreover, Put
requires that some Write instructions are not reordered, and Steal requires that some
Read instructions are not reordered either, and thus fences are required when the al-
gorithms are implemented. However, fences between Read (resp. Write) instructions
are usually not too costly. As for progress guarantees, Put and Take are wait-free
while Steal is only nonblocking.

Morrison and Afek consider the TSO model [81] and present two work-stealing
algorithms in [68] whose Put operation is wait-free and uses only Read/Write instruc-
tions, and Take and Steal are either nonblocking and use Compare&Swap, or blocking
and use a lock. The algorithms are non-trivial adaptations of the well-known Cilk
THE and Chase-Lev work-stealing algorithms [22, 31] to the TSO model. Gener-
ally speaking, in this model, Write (resp. Read) instructions cannot be reordered;
hence, fences among Write (resp. Read) instructions are unnecessary. Additionally,
each process has a local buffer where its Write instructions are stored until they are
eventually propagated to the main memory (in FIFO order). Reordering some Write
(resp. Read), instructions of Morrison and Afek’s algorithms compromise correctness.
However, TSO prevents this from happening. To avoid Read-After-Write patterns,
they assume bounded size Write buffers.

4.2

Work-Stealing with Multiplicity

Work-stealing with multiplicity is a relaxation in which, roughly speaking, every
task is extracted at least once. If several operations extract the task, they must
be concurrent. In the formal set-sequential specification below (and its variant in
the next section), tasks are inserted/extracted in FIFO order. The definition can be
easily adapted to encompass other orders (e.g., LIFO). Figure 4.1 depicts an example
of a set-sequential execution of work stealing with multiplicity, where concurrent

50 4. Case Study 1: Work-Stealing

Take/Steal operations extract the same task.

Thief

Thief

Owner

Time

Put(x) : true Put(y) : true

Steal() : x

Take() : x Take() : y

Steal() : empty

Figure 4.1: A set-sequential execution of work-stealing with multiplicity.

Definition 4.1 (FIFO Work-Stealing with Multiplicity)
The universe of tasks that the owner can put is N = {1, 2, . . .}, and the set of
states Q is the infinite set of finite strings N∗. The initial state is the empty
string, denoted ϵ. In state q, the first element in q represents the head and the
last one the tail. The transitions are the following:

1. ∀q ∈ Q, δ(q, Put(x)) = (q · x, ⟨Put(x) : true⟩).

2. ∀q ∈ Q, 0 ≤ t ≤ n − 1, x ∈ N, δ(x · q, {Take(), Steal1(), . . . , Stealt()}) = (q,
{⟨Take() : x⟩, ⟨Steal1() : x⟩, . . . , ⟨Stealt() : x⟩}).

3. ∀q ∈ Q, 1 ≤ t ≤ n − 1, x ∈ N, δ(x · q, {Steal1(), . . . , Stealt()}) = (q,
{⟨Steal1() : x⟩, . . . , ⟨Stealt() : x⟩}).

4. δ(ϵ, Take()) = (ϵ, ⟨Take() : empty⟩).

5. δ(ϵ, Steal()) = (ϵ, ⟨Steal() : empty⟩).

Let A be a set-linearizable algorithm for work-stealing with multiplicity. Note
that items 2 and 3 in Definition 4.1 and the definition of set-linearizability directly
imply that in every execution of A, the number of Take/Steal operations that take the
same task is, at most, the number of processes in the system, as the operations must
be pairwise concurrent to be set-linearized together. Furthermore, every sequential
execution of A (i.e., an execution where operations do not overlap in time) is a
sequential execution of non-relaxed work-stealing, as every operation is linearized
alone, by definition of set-linearizability. Formally, every sequential execution of A
is a sequential execution of (FIFO) work-stealing. We call this property sequentially-
exact. Thus, without contention, A provides an exact solution for (FIFO) work-

4.2 Work-Stealing with Multiplicity 51

stealing.
Remark 1. Every set-linearizable algorithm for work-stealing with multiplicity is
sequentially-exact.

4.2.1 Work-Stealing with Multiplicity from MaxRegister
We show that work-stealing with multiplicity can be reduced to a single instance of
a MaxRegister object (defined below). Together with any Read/Write wait-free linea-
rizable algorithms for MaxRegister, our algorithm provides a Read/Write algorithm
for work-stealing with multiplicity. We argue that using the MaxRegister algorithm
of Aspnes, Attiya, and Censor-Hillel [7], the resulting work-stealing algorithm with
multiplicity has logarithmic step complexity, devoid of Read-After-Write synchroniza-
tion patterns. The algorithm presented in this section seems to have no practical
implications. However, it will lead us to our efficient, fully fence-free Read/Write
work-stealing algorithm with constant step complexity in all its operations.

Figure 4.2 contains WS-MULT, a set-linearizable algorithm for work-stealing with
multiplicity. The algorithm uses a linearizable wait-free MaxRegister object, which
provides two operations: MaxRead, which returns the maximum value written so far
in the object, and MaxWrite, which writes a new value only if it is greater than the
largest value written so far.

In WS-MULT, the tail of the queue is stored in the persistent local variable tail
of the owner, while the head is stored in the shared MaxRegister Head. Persistent
means that the local variable retains its value between invocations to operations.
When the owner wants to put a new task, it first locally increments tail (Line 1)
and then stores the task in the corresponding entry of Tasks and marks one more
entry with ⊥ (Line 2); ⊥ indicates lack of tasks. Recall that the notation in Line 2
(instructions between brackets) denotes that the instructions can be executed in any
order. When the owner wants to take a task, it first reads the current head of the
queue from Head (Line 4). Then, if there are tasks available (i.e., the head is less or
equal to the tail), it reads the task at the head, updates Head, and finally returns
the task (Lines 6 and 7); if there are no tasks available, the owner returns empty
(Lines 9). When a thief wants to steal a task, it first reads the current value of
Head (Line 10) and then reads that entry of Tasks (Line 11). If it reads a task
(i.e. a non-⊥ value), it updates Head and then returns the task (Lines 13 and 14).
Otherwise, all tasks have been extracted, and it returns empty (Line 16).

The semantics of MaxWrite guarantees that Head contains the current value of
the head at all times, as a “slow” process cannot “move back” the head by writing
a smaller value in Head (in Lines 6 or 13). Thus, the MaxRegister Head acts as a

52 4. Case Study 1: Work-Stealing

sort of barrier in the algorithm. Two Take/Steal operations can return the same task
only if concurrent, reading the same value from Head.

Shared Variables:
Head: atomic MaxRegister object initialized to 1
Tasks[1, 2, . . .]: array of atomic Read/Write objects with

the first two objects initialized to ⊥
Local Variables of the Owner:

tail← 0

Operation Put(x):
(01) tail← tail + 1
(02) {Tasks[tail].Write(x), Tasks[tail + 2].Write(⊥)}
(03) return true
end Put

Operation Take():
(04) head← Head.MaxRead()
(05) if head ≤ tail then
(06) {x← Tasks[head].Read(), Head.MaxWrite(head + 1)}
(07) return x
(08) end if
(09) return empty
end Take

Operation Steal():
(10) head← Head.MaxRead()
(11) x← Tasks[head].Read()
(12) if x ̸= ⊥ then
(13) Head.MaxWrite(head + 1)
(14) return x
(15) end if
(16) return empty
end Steal

Figure 4.2: WS-MULT: a MaxRegister-based set-linearizable algorithm for work-
stealing with multiplicity.

Note that if only the first object in Tasks is initialized to ⊥ (and hence Put has
modified accordingly), a thief may read a value from Tasks that has not been written
by the owner: in execution with a single Put(x) operation, the steps in Line 2 could
be executed Tasks[1].Write(x) first and then Tasks[2].Write(⊥) with a sequence of
two Steal operations completing in between, resulting in the second operation reading

4.2 Work-Stealing with Multiplicity 53

Tasks[2], which has not been written yet by the owner, and might contain a value
distinct from ⊥.

Theorem 4.1 WS-MULT (Figure 4.2) is a set-linearizable wait-free algorithm for
work-stealing with multiplicity, using Read/Write instructions and a single instance
of a linearizable MaxRegister object. Moreover, all operations execute a constant
number of Read/Write instructions, invoke a constant number of operations of the
MaxRegister object, and Put is Read/Write.

Proof:
The algorithm is wait-free since the MaxRegister object is assumed to be wait-
free, and none of the operations executes a loop. Observe that Put uses only
Read/Write. Before proving that WS-MULT is set-linearizable, we first observe
that at any time, the thieves read the range of Tasks that the owner has already
initialized; more specifically, every Steal operation reads from Tasks (in Line 11),
a value that was written by the owner, either ⊥ or a task.

In any given execution, the range Tasks[Head, Head + 1, . . . ,] contains a
(possibly empty) sequence of tasks followed by at least one ⊥ value, considering
the entries in index-ascending order. The claim is true initially as the first two
entries if Tasks are initialized to ⊥. Every time the owner stores a new task,
it initializes a new entry of Task to ⊥ (Line 2); hence the claim holds at any
time, as Head is incremented only if the owner or a thief reads that Tasks[Head]
contains a non-⊥ value (Lines 6 or 13). Note that the order of the instructions
in Line 2 is irrelevant.

We now prove that WS-MULT is set-linearizable. Consider any finite execution
E of it. Since we already argued the algorithm is wait-free, there is a finite
extension of E in which all its operations are completed, and no new operations
start. Thus, we can assume that there are no pending operations in E.

First, note that the semantics of MaxWrite implies that no pair of non-concur-
rent Take/Steal operations return the same task: if two operations are not con-
current, then the first one increments the value of Head, the second operation
cannot read the same tasks from Tasks. Thus, we have:
Remark 2. If a task is returned by more than one Take/Steal operation, these
operations are pairwise concurrent. Thus, two distinct Take operations cannot
return the same task.

The main observation for the set-linearizability proof is that, at any time, the

54 4. Case Study 1: Work-Stealing

state of the object is represented by the tasks in the range Tasks[Head, Head +
1, . . .], i.e., the sequence of non-⊥ values (in index-ascending order) written by the
owner in that range. The set-linearization SetLin(E) of E is obtained as follows:

• Every Put operation is set-linearized alone (i.e., in a concurrency class con-
taining only that operation) placed at its step corresponding to Tasks[tail].
Write(x) in E (Line 2).

• For every task returned by at least one Take/Steal operation, all operations
returning the task are set-linearized in the same concurrency class placed at
the first step e of E that corresponds to Head.MaxWrite(head + 1) (either
Line 6 or 13) among the steps of the operations. Note that e occurs between
the invocation and response of every operation in the concurrency class.
Since the operations return the same task, all of them execute the MaxRead
steps in Lines 4 or 10 before e, and, by definition, e appears in E before any
other operation executes its step corresponding to Head.MaxWrite(head+1).
Observe that the order in which the instructions in Line 6 are executed is
irrelevant.

• Every Take operation returning empty is set-linearized alone, placed at its
step in E corresponding to
Head.MaxRead() (Line 4).

• Every Steal operation returning empty is set-linearized alone, placed at its
step in E corresponding to Head.MaxRead() (Line 10).

Every concurrency class of SetLin(E) is placed at a step of E that lies between
the invocation and response of each operation in the concurrency class, which
immediately implies that SetLin(E) respects the partial order <E of E. Thus,
to conclude that SetLin(E) is a set-linearization of E, we need to show that it is
indeed a set-sequential execution of work-stealing with multiplicity.

First, a task can be extracted by a Take/Steal operation only if the Put oper-
ation that stores the task executes its step corresponding to Tasks[tail].Write(x)
(in Line 2) before the Take/Steal operation reads the entry of Tasks where the
task is stored. Thus, in SetLin(E), every task is inserted before it is extracted.

Now, Put stores tasks in Tasks in index-ascending order. Due to the semantics
of MaxRegister, Head never “moves back”, i.e., it only increases by one at a time,

4.2 Work-Stealing with Multiplicity 55

and hence Take and Steal extract tasks in index-ascending order too. Tasks in
SetLin(E) are inserted/extracted in FIFO order.

More specifically, for any concurrency class C of SetLin(E) with Take/Steal
operations that return the same task x, right before the step e of E where C is
set-linearized, we have that x is a task with the smallest index (left-most) in the
range Tasks[Head, Head + 1, . . .], and thus indeed the operations in C get the
“oldest" task in the object.

It only remains to be argued that any Take/Steal operation that returns empty,
does so correctly, i.e., each of these operations is set-linearized at a step of E at
which Tasks[Head, Head + 1, . . .] is empty, i.e., all its entries initialized by the
owner in that range contain ⊥.

Consider any Take operation in E that returns empty. Observe that this can
happen only if the owner sees that head > tail, namely, the conditional of Line 5
is not satisfied. This is possible only when no task has been inserted, or all items
have been extracted, and hence Tasks[Head, Head + 1, . . .] is empty. Consider
any Steal operation in E that returns empty. This is possible only when the thief
reads ⊥ from Tasks in Line 11, and since we already argued that the owner inserts
tasks in ascending order, the sequence Tasks[Head, Head + 1, . . .] is empty.

We conclude that SetLin(E) is a valid set-sequential execution of work-stealing
with multiplicity, and as it respects the partial order <E of E, we have that it is
a set-linearization of E, and therefore WS-MULT is set-linearizable. The theorem
follows. ■

If we replace Head with the Read/Write wait-free linearizable MaxRegister algo-
rithm of Aspnes, Attiya, and Censor-Hillel [7], whose step complexity is O(log m),
where m ≥ 1 is the maximum value that can be stored in the object, the step com-
plexity of WS-MULT is bounded wait-free with logarithmic step complexity too. In
the resulting algorithm, at most m tasks can be inserted; the actual value of m is
application-dependent. Since the algorithm does not use Read-After-Write synchro-
nization patterns (as explained in the proof of Theorem 4.2), the resulting algorithm
does not use those patterns either.

Theorem 4.2 If Head is an instance of the Read/Write wait-free linearizable
MaxRegister algorithm of Aspness, Attiya, and Censor-Hillel [7], WS-MULT is set-
linearizable, fully Read/Write and Take and Steal have step complexity O(log m),
where m denotes the maximum number of tasks that can be inserted in an execu-
tion. Furthermore, no operation uses Read-After-Write synchronization patterns.

56 4. Case Study 1: Work-Stealing

Proof:
The algorithm remains set-linearizable by the composability of set-linearizability
[15]. While the step complexity of Put is O(1), the step complexity of Take and
Steal is O(log m) as the step complexity MaxRead and MaxWrite of the MaxRegister
algorithm [7] is O(log m).

We now argue that Take and Steal do not use Read-After-Write synchronization
patterns. The reason is that the MaxRegister algorithm does not use this synchro-
nization mechanism. Roughly speaking, the algorithm consists of a binary tree of
height O(log m) with an atomic bit in each node. When a process wants to per-
form MaxRead, it reads the bits in the path of the tree from the root to a leaf and
then returns a value according to the leaf it reached; the next node in the path
the process reads depends on the current node’s value. When a process wants to
perform MaxWrite, it reads the bits in a path from the root to a leaf, which is
a function of the binary representation of the value the process wants to write;
then, if the new value is larger than the current one, in a bottom-up manner, it
writes 1 in every node in the path with 0 (for the algorithm to be linearizable, the
writes should occur in this order. Hence the algorithm is not fence-free). Thus,
we have that MaxRead consists of a sequence of reads, and MaxWrite consists of
a sequence of reads followed by a (possibly empty) sequence of writes. Therefore,
Take/Steal of WS-MULT consists of a sequence of reads followed by a (possibly
empty) sequence of writes, and thus the operation does not use Read-After-Write
synchronization patterns. ■

4.3

Work-Stealing with Weak Multiplicity

A logarithmic step complexity of the Take operation is prohibitive in practical set-
tings. Ideally, we would like to have constant step complexity in all operations and
use simple synchronization mechanisms if possible. In this section, we propose a
variant of work-stealing with multiplicity that admits fully Read/Write fence-free al-
gorithms with constant step complexity in all its operations. Intuitively, the variant
requires that every task is extracted at least once, but now every process extracts
a task at most once, hence Take/Steal operations returning the same task might not
be concurrent. Therefore, the relaxation retains the property that the number of
operations that can extract the same task is, at most, the number of processes in the
system. We call this relaxation weak multiplicity.

4.3 Work-Stealing with Weak Multiplicity 57

Thief

Thief

Owner u v w x

x

v w x

z

Put(z)

Take(): output

Steal (): output

Steal (): output

(a) A schematic view of work-stealing with
weak multiplicity.

Thief

Thief

Owner

Time

Put(x) : true Put(y) : true

Steal() : x

Take() : empty

Steal() : y

Steal() : y

(b) A sequential execution of work-stealing
with weak multiplicity.

Figure 4.3: Schematic view and sequential execution of work-stealing with weak
multiplicity.

Figure 4.3a depicts a schematic view of work stealing with weak multiplicity.
Intuitively, each process has its own virtual queue of tasks at any state. When the
owner inserts a new task, it atomically places the task in all virtual queues, as shown
in the figure. Therefore, for any pair of processes’ virtual queues, one is a suffix of
the other. A Take/Steal operation can return any task from its virtual queue that is
no “beyond” the first task of the shortest virtual queue in the state. In the example
depicted in the figure 4.3a, a Steal operation of thief p1, denoted Steal1(), can return
only x, as p1 has the shortest virtual queue in the state. In contrast, a Take operation
can return any task in its virtual queue and remove all preceding tasks. E.g., if w is
returned, then u and v are removed from the virtual queue, which leaves the owner’s
virtual queue containing only x and z. Note that tasks are extracted in FIFO order.
This property guarantees that every task is taken at least once. In our algorithms, all
virtual queues are implemented using a single queue. Figure 4.3b shows an example
of sequential execution of work-stealing with weak multiplicity. Note that Take/Steal
operations can get the same task, although they are not concurrent.

The next sequential specification formally defines work-stealing with weak mul-
tiplicity. Without loss of generality, the specification assumes that p0 is the owner
and each invocation/response of thief pi is subscripted with its index, which belongs
to the set {1, . . . , n− 1}.

Definition 4.2 (FIFO Work-Stealing with Weak Multiplicity)
The universe of tasks that the owner can put is N = {1, 2, . . .}, and the set of
states Q is the infinite set of n-vectors of finite strings N∗ × . . . ×N∗, with the
property that for any two pairs of strings in a vector/state, one of them is a suffix
of the other. The initial state is the vector with empty strings, (ϵ, . . . , ϵ). The

58 4. Case Study 1: Work-Stealing

transitions are the following:

1. ∀(t0, . . . , tn−1) ∈ Q, δ((t0, . . . , tn−1), Put(x)) = ((t0 · x, . . . , tn−1 · x),
⟨Put(x) : true⟩).

2. ∀(t0, . . . , tn−1) ∈ Q such that t0 = x1 · · ·xj ·q ̸= ϵ with j ≥ 1 and tj ·q being
the shortest string in the state (possibly with xj · q = ϵ · ϵ = ϵ), δ((t0, . . . ,
tn−1), Take()) = {((t̂0, t1, . . . , tn−1), ⟨Take() : xk⟩)}, where k ∈ {1, . . . , j}
and t̂0 = xk+1 · · ·xj · q.

3. ∀(t0, . . . , tn−1) ∈ Q such that ti = x1 · · ·xj · q ̸= ϵ with j ≥ 1, i ∈ {1,
. . . , n − 1} and tj · q being the shortest string in the state (possibly with
xj · q = ϵ · ϵ = ϵ), δ((t0, . . . , tn−1), Steali()) = {((t0, . . . , ti−1, t̂i, ti+1, . . . ,
tn−1), ⟨Steali() : xk⟩)}, where k ∈ {1, . . . , j} and t̂i = xk+1 · · ·xj · q.

Observe that the second and third items in Definition 4.2 correspond to non-
deterministic transitions in which a Take/Steal operation can extract any task in
{x1, . . . , xj} of the invoking process’ virtual queue (and removes all preceding tasks);
the value returned value can be ϵ when the shortest string in the state is ϵ (xj · q =
ϵ · ϵ = ϵ in the definition). Moreover, note that if x1 · · ·xj · q = ϵ, and hence
x1 · · · xj · q is the shortest string in the state, then the operation is forced to return
ϵ. Furthermore, the definition guarantees that every task is extracted at least once
because every Take/Steal operation can only return a task that is not “beyond” the
first task in the shortest string of the state.

The specification of work-stealing with concurrent weak multiplicity admits trivial
solutions. A simple solution is obtained by replacing Head in WS-MULT with one
local persistent variable head per process (each initialized to 1); Put remains the
same, and Take and Steal instead of reading from Head, they locally read the current
value of head and increment it whenever a task is taken. It is not hard to verify that
the resulting algorithm is indeed linearizable.
Remark 3. To avoid this kind of simple solution (which can be very inefficient in
practice, as every process might execute every task), we restrict our attention to
sequentially-exact algorithms; namely, every sequential execution of the algorithm is
a sequential execution of the specification of (FIFO) work-stealing.2 It is easy to see

2Alternatively, work-stealing with weak multiplicity can be specified using the interval-
linearizability formalism in [15], which allows us to specify that a Take/Steal operation can ex-
hibit a non-exact behavior only in the presence of concurrency. Interval-linearizability would imply
that any interval-linearizable solution provides an exact solution in sequential executions. Roughly
speaking, in interval-linearizability, operations are linearized at intervals that can overlap each

4.3 Work-Stealing with Weak Multiplicity 59

that the algorithm described above does not have this property.
Finally, we stress that, differently from work-stealing with multiplicity, two dis-

tinct non-concurrent Take/Steal operations can extract the same task in an execution,
which can happen only if some operations are concurrent in the execution due to the
sequentially-exact requirement. Particularly, in our algorithms, this relaxed behavior
can occur when processes are concurrently updating the head of the queue.

4.3.1 Read/Write Fence-Free Work-Stealing with Multiplicity
This subsection presents WS-WMULT, a Read/Write fence-free linearizable algorithm
for work-stealing with weak multiplicity. The algorithm is obtained by replacing
the linearizable MaxRegister object in WS-MULT, Head, with a linearizable Range-
MaxRegister object, a relaxation of MaxRegister with a RMaxRead operation that
returns a value in a range of values that have been written to the register; the range
always includes the maximum value written so far.

We present a RangeMaxRegister algorithm that is nearly trivial. However, it allows
us to efficiently solve work-stealing with weak multiplicity, with implementations
exhibiting good performance in some practical settings, as seen in Section 6.1. As
we have mentioned above, to avoid trivial solutions, we focus on sequentially-exact
linearizable algorithms for RangeMaxRegister, i.e., each sequential execution of the
algorithm is a sequential execution of MaxRegister. 3 When WS-WMULT is combined
with this algorithm, it becomes Read/Write, fence-free, linearizable, sequentially-
exact, and wait-free with constant step complexity.

Intuitively, in RangeMaxRegister, each process has a private MaxRegister, and
whenever it invokes RMaxRead, the result lies in the range defined by the value of its
private MaxRegister and the maximum among the private MaxRegister values in the
state. In the sequential specification of RangeMaxRegister, each invocation/response
of process pi is subscripted with its index i.

Definition 4.3 (RangeMaxRegister)
The set of states Q is the infinite set of n-vectors with natural numbers, with
vector (1, . . . , 1) being the initial state. ∀ q = (r0, . . . , rn−1) ∈ Q and i ∈ {0, . . . ,
n− 1}, the transitions are the following:

1. If x > ri then
δ(q, RMaxWritei(x)) = ((r0, . . . , ri−1, x, ri+1, . . . , rn−1), ⟨RMaxWritei(x) :

other.
3Again, this can be alternatively specified through interval-linearizability.

60 4. Case Study 1: Work-Stealing

true⟩),
otherwise
δ(q, RMaxWrite(x)) = (q, ⟨RMaxWrite(x) : true⟩)

2. δ(q, RMaxReadi()) = {(q, ⟨RMaxReadi() : x⟩)}, where x ∈ {ri, ri + 1, . . . ,
max(r0, . . . , rn−1)}.

As already mentioned, WS-WMULT is the algorithm obtained by replacing Head
in WS-MULT with an atomic RangeMaxRegister object initialized to 1 (hence MaxRead
and MaxWrite are replaced by RMaxRead and RMaxWrite, respectively).

Theorem 4.3 WS-WMULT is a sequentially-exact linearizable wait-free algorithm
for work-stealing with weak multiplicity, using Read/Write instructions and a single
sequentially-exact linearizable RangeMaxRegister object. Moreover, all operations
execute a constant number of Read/Write instructions and invoke a constant num-
ber of operations of the RangeMaxRegister object, and Put is Read/Write.

Proof:
All algorithm operations are wait-free since the RangeMaxRegister object is as-
sumed to be wait-free, and none of the operations executes a loop. Note that Put
uses only Read/Write.

As in the proof of Theorem 4.1, it can be argued that thieves read values from
Tasks that have been written by the owner.

Consider any finite execution E of the algorithm. Since the algorithm is wait-
free, there is a finite extension of E in which all its operations are completed,
and no new operations start. Thus, we can assume that there are no pending
operations in E.

Proving that E is linearizable is quite straightforward. It is enough to observe
that, at any step of E, the state of the object is encoded in the state of Head.
Let (r0, . . . , rn−1) be the state of Head at a given step of E. Then, the state of
the object is (t0, . . . , tn−1) with each ti being the finite sequence of tasks in the
range Tasks[ri, ri+1, . . .] (i.e. the sequence of non-⊥ values written by the owner,
in index-ascending order). Thus, in a linearization of E, a Put(x) operation is
linearized at its step Tasks[tail].Write(x) in Line 2. In contrast, a Take/Steal
operation is linearized at its step Head.RMaxRead() in Line 4/Line 10 (observe
that the non-deterministic choice in a transition with a Take/Steal operation is
resolved with the outcome of RMaxRead). Therefore, we conclude that every

4.3 Work-Stealing with Weak Multiplicity 61

execution of WS-WMULT is linearizable, and thus, the algorithm is linearizable
too.

Since Head is assumed to be sequentially-exact, in sequential executions, the
algorithm behaves exactly as WS-MULT (exchanging RMaxRead and RMaxWrite
with MaxRead and MaxWrite, respectively). Thus, by Remark 1 and since WS-
MULT is set-linearizable, the sequential executions of the algorithm are sequential
executions of work-stealing. Thus, the algorithm is sequentially-exact. The the-
orem follows.

■

Figure 4.4 contains a simple sequentially-exact linearizable wait-free algorithm
for RangeMaxRegister. All processes share a single Read/Write object R, and each
process has a local persistent variable r. The idea is straightforward: each process
locally stores in r the maximum value it is aware of; whenever it discovers a new
largest value in RMaxWrite, it writes it in r and R, and since R might not have the
largest value, it returns the maximum among r and R in RMaxRead.

Shared Variables:
R: atomic Read/Write object initialized to 1

Local Variables of a Process:
r ← 1

Operation RMaxWrite(x):
(01) r ← max{r, R.Read()}
(02) if x > r then
(03) {r ← x, R.Write(x)}
(04) end if
(05) return true
end RMaxWrite

Operation RMaxRead():
(06) r ← max{r, R.Read()}
(07) return r
end RMaxRead

Figure 4.4: A linearizable wait-free algorithm for RangeMaxRegister.

62 4. Case Study 1: Work-Stealing

Theorem 4.4 The algorithm in Figure 4.4 is a sequentially-exact linearizable wait-
free and fence-free algorithm for RangeMaxRegister using only Read/Write instruc-
tions and with constant step complexity in all its operations.

Proof:
It is clear from its pseudocode that the algorithm is Read/Write, wait-free and
fence-free, and each operation has constant step complexity.

Consider any finite execution E of the algorithm. Since the algorithm is wait-
free, there is a finite extension of E in which all its operations are completed,
and no new operations start. Thus, we can assume that there are no pending
operations in E.

To prove linearizability, it is enough to observe that at any step of E, the state
of the object is (r0, . . . , rn−1), where ri is the value stored in the local persistent
variable r of process pi at that moment. Thus, a RMaxWrite (x) operation with
x > r (hence the condition in Line 2 is true) is linearized at its step R.Write(x) in
Line 3; if x ≤ r, the operation is linearized at line 1, i.e., at the beginning of the
operation. A RMaxRead () operation is linearized at its step R.Read() in Line 6;
note that the operation returns a value between the value in r and the maximum
among the r’s local variables since that is the maximum value R can store at that
time. Thus, the algorithm is linearizable.

Suppose now that E is sequential. By induction of the number of operations,
it is easy to show that R always contains the maximum value. Thus, E is a
sequential execution of MaxRegister, and therefore the algorithm is sequentially-
exact. The theorem follows. ■

We are now able to present the main result of this chapter:

Theorem 4.5 If Head is replaced with an instance of the algorithm in Figure 4.4,
WS-WMULT is Read/Write, fence-free, wait-free, sequentially-exact, and lineariza-
ble with constant step complexity in all its operations.

4.3 Work-Stealing with Weak Multiplicity 63

Shared Variables:
Head: atomic Read/Write object initialized to 1
Tasks[1, 2, . . .]: array of atomic Read/Write objects

with the first two objects initialized to ⊥
Local Variables of the Owner:

head← 1
tail← 0

Local Variables of a Thief:
head← 1

Operation Put(x):
(01) tail← tail + 1
(02) {Tasks[tail].Write(x), Tasks[tail + 2].Write(⊥)}
(03) return true
end Put

Operation Take():
(04) head← max{head, Head.Read()}
(05) if head ≤ tail then
(06) {x← Tasks[head].Read(), Head.Write(head + 1)}
(07) head← head + 1
(08) return x
(09) end if
(10) return empty
end Take

Operation Steal():
(11) head← max{head, Head.Read()}
(12) x← Tasks[head].Read()
(13) if x ̸= ⊥ then
(14) Head.Write(head + 1)
(15) head← head + 1
(16) return x
(17) end if
(18) return empty
end Steal

Figure 4.5: WS-WMULT algorithm with the RangeMaxRegister algorithm in Fig-
ure 4.4 inlined.

Proof:
By composability of linearizability [45], the algorithm remains linearizable when
Head is replaced with an instance of the algorithm in Figure 4.4. The algorithm

64 4. Case Study 1: Work-Stealing

is fully Read/Write and wait-free because Put uses only Read/Write instructions
and the RangeMaxRegister algorithm in Figure 4.4 is fully Read/Write and wait-
free, by Theorem 4.4. The step complexity of Put is O(1). The step complexity of
Take and Steal is O(1) because the RangeMaxRegister algorithm in Figure 4.4 has
constant step complexity. It is not difficult to verify that the resulting algorithm
does not require any specific ordering among its steps beyond what is implied by
data dependence. Therefore, it is fully fence-free. The algorithm is sequentially-
exact because the algorithm in Figure 4.4 is sequentially-exact. The theorem
follows. ■

Figure 4.5 contains an optimized WS-WMULT algorithm with the RangeMaxReg-
ister algorithm in Figure 4.4 inlined. Since Take and Steal first RMaxRead from and
then RMaxWrite to Head, the algorithm remains sequentially exact when removing
Line 1 of RMaxWrite in Figure 4.4. Our experimental evaluation in Section 6.1 tested
implementations of this algorithm.

4.4

Bounding the Multiplicity

This section discusses simple variants of our algorithms that bound the number of
operations that can extract the same task. We only discuss the case of WS-MULT as
the variants for WS-WMULT are similar.

Bounding multiplicity We call this variant B-WS-WMULT. The modification
consists of an extra array A of the same length as Tasks array, with its first two
entries initialized to true. Steal is modified as follows: after Line 12, a thief per-
forms A[head].Swap(false), and it executes Lines 13 and 14 only if the Swap suc-
cessfully takes the true value in A[head]; otherwise, it goes to the Line 10 to start
over. The modified algorithm guarantees no two distinct Steal operations take the
same task. However, a Take and a Steal can take the same task. Note that Steal
is only nonblocking in the modified algorithm. The new algorithm is a set-linear
solution to the work-stealing variant with multiplicity (Definition 4.1), where every
concurrency class has at most one Take and one Steal that return the same task.
The set-linearizability proof is the same as the difference in the sizes of concurrency
classes. Figure 4.6 illustrates the changes made to the algorithm in Figure 4.2 to
produce the B-WS-WMULT version.

4.4 Bounding the Multiplicity 65

Removing multiplicity The Take operation of B-WS-MULT can be modified sim-
ilarly to obtain an algorithm for exact (FIFO) work-stealing, i.e., every task is taken
exactly once (Definition 4.1 with singleton concurrency classes). The modified Take
operation is only nonblocking.

Shared Variables:
Head: atomic MaxRegister object initialized to 1
Tasks[1, 2, . . .]: array of atomic Read/Write objects with

the first two objects initialized to ⊥
A[1, 2, . . .]: array of booleans, the first two entries

initialized to true.
Local Variables of the Owner:

tail← 0

Operation Put(x):
(01) tail← tail + 1
(02) {Tasks[tail].Write(x), Tasks[tail + 2].Write(⊥)}
(03) return true
end Put

Operation Take():
(04) head← Head.MaxRead()
(05) if head ≤ tail then
(06) {x← Tasks[head].Read(), Head.MaxWrite(head + 1)}
(07) return x
(08) end if
(09) return empty
end Take

Operation Steal():
(10) head← Head.MaxRead()
(11) x← Tasks[head].Read()
(12) if x ̸= ⊥ and A[head].Swap(false) then
(13) Head.MaxWrite(head + 1)
(14) return x
(15) else
(16) go to line 10
(17) end if
(18) return empty
end Steal

Figure 4.6: B-WS-WMULT: algorithm obtained from modify the algorithm WS-MULT
as specified in Section 4.4.

66 4. Case Study 1: Work-Stealing

Multiplicity on demand Consider a variant of Definition 4.1 in which a task x
encodes if several processes can execute it, denoted mult(x), or it has to be executed
by a single process, denoted ¬mult(x) (in practice this can be done, for example,
by stealing a bit from the task representation). Then, WS-MULT can be modified
to have multiplicity on demand. In the modified Take operation, after executing
the instructions in Line 6, the owner tests if mult(x) holds, and if so, it returns x;
otherwise, it performs Tasks[head].Swap(⊤), and then returns x only if the Swap
successfully takes the task in Tasks[head] (i.e. if it obtains a value distinct from
⊥ and ⊤), else it goes to Line 4 and starts over. In the modified Steal operation,
after Line 11, a thief checks if x = ⊥, and if so, it returns empty. Then, it checks
if x ̸= ⊤ and mult(x) holds, and if so it returns x. Otherwise, x ̸= ⊤ and ¬mult(x)
holds, and hence the thief performs Tasks[head].Swap(⊤) and returns x only if Swap
returns a value distinct from ⊤, else it goes to Line 10 and starts over. In the
resulting algorithm, if mult(x) holds, x is taken by one operation. The modified Take
and Steal operations are only nonblocking. Again, the set-linearizability proof is the
same as the difference in the sizes of concurrency classes.

4.5

Coping with realistic assumptions

Base objects of bounded length We have presented our algorithms assuming
all base objects can store values of unbounded length. However, we can assume that
base objects can store only 64 bit values. This makes our algorithms bounded as at
most 264 tasks can be inserted, and the task comes from a set of size 264 − 1 (or
264 − 2 if ⊤ is used). Arguably, this number is large enough in any application.

Arrays of finite length We also assumed that tasks are stored in an array of
infinite lengths. We now discuss two approaches to remove this assumption; both
techniques have been used in previous algorithms (e.g. [1, 4, 36, 65, 90]). In both
approaches, only the owner modifies the array; hence, no expensive synchroniza-
tion mechanisms are needed. We only discuss the case of WS-MULT as the other
algorithms can be handled similarly.

In the first approach, Tasks is now a pointer, initially pointing to an array of
finite fixed length with its two first entries initialized to ⊥. Each time the owner
detects the array is full in the middle of a Put operation (i.e., when the tail is larger
than the length of the array Tasks points to), it creates a new array A, whose length
doubles the length of the current array. Then, it copies the content to A, initializes

4.5 Coping with realistic assumptions 67

the following two entries to ⊥, updates Tasks to let it point to A (depending on the
language, it may be necessary to manually release the memory associated with the old
array), and finally, it continues executing the algorithm. Although the modified Put
operation remains wait-free, its step complexity is unbounded. The set-linearizable
proof of the modified algorithms is essentially the same, with the observation that
now Steal operations might read the same tasks from different arrays in Line 11
(because the owner was in the middle of updating Tasks), which is not a problem
because the Steal operations are concurrent.

Instead of storing tasks in the Tasks array, the second approach involves storing
pointers to node objects, each node containing a fixed-length array where tasks are
stored. In the beginning, Tasks has only one object in its first entry, and the first
two entries of the array associated with the object are initialized to ⊥. When the
owner detects that all entries in the array of the object have been used (in the middle
of a Put operation), it creates a new node, initializing the first two entries to ⊥. The
pointer of this new node is stored at the last free position of the dynamic array,
and it continues executing the algorithm. An index of Tasks is now a tuple: an
array-index to the object and a node-index array. Thus, any pair of nodes can be
easily compared (first array-indexes, then node-indexes), and increasing an index
can be efficiently performed too (if the node-index is the last one, the array-index
moves forward, and the node-index is set to one; otherwise, only the node-index
is incremented). The modified Put operation remains wait-free with constant step
complexity. The set-linearization proof of the modified algorithm remains the same.

The second approach might bring benefits when memory regions are allocated.
In the first approach, each time the algorithm resizes its Tasks array, it is necessary
to allocate space that doubles the current one. Allocating large arrays in memory
might consume a considerable amount of time. In the second approach, using in-
direct addressing, separate memory regions of relatively small size simulate a large
array; typically, memory regions of small size can be quickly allocated. Additionally,
memory management can be improved using a “shrinking after growth” pattern, as
in the work of Chase and Lev [22].

Memory management Another issue in practical settings is that of memory man-
agement. This issue can be delegated to the garbage collector in programming lan-
guages like Java. However, a safe and efficient concurrent memory reclamation pro-
tocol should be implemented in programming languages without automatic garbage
collection. The main problem arises when a process attempts to reclaim a memory
region while another uses it. Hence, a synchronization mechanism is required. Be-
low, we briefly describe some well-known memory management protocols that can

68 4. Case Study 1: Work-Stealing

be used with our algorithms.
An approach is to let each process announce the objects (memory locations) it

plans to access and then register its objects to protect them. When a process needs
to reclaim an object, it adds the object to a list containing the objects that have
been deleted but not yet freed. When the list grows to a certain size, a process
initiates a scan to verify if the object is in use. If it is not, the process can reclaim
the object. If it is in use, the object will be kept for future reclamation. Popular
protocols for memory reclamation based on this approach are hazard pointers [63]
and Pass-the-Buck, which provides a solution to the Repeat Offender Problem [42].
A different approach involves using reference counting, where every object has a
counter that increments when a process uses it and decrements when the object is
released. Sundell [85] and Valois [88] have employed this approach. Another known
approach is epoch-based reclamation. It uses the concept of epochs, which are global
markers that indicate whether a given memory region is safe to be reclaimed. Read-
Copy-Update (RCU) schema [61] is based on this approach.

4.6

Idempotent ̸= Multiplicity

To finish this chapter, in this section, we explain that idempotent work-stealing
algorithms [65] do not implement work-stealing with multiplicity, even the weaker
variant. While in our relaxations, every process extracts a task at most once, and
hence the number of distinct operations that extract the same task is at most the
number of processes in the system, in idempotent work-stealing algorithms, a thief
can extract the same task an unbounded number of times. Such executions are
arguably “corner cases” but show a theoretical difference between multiplicity and
idempotency.

Idempotent work-stealing [65] is defined as: every task is extracted at least once,
instead of exactly once (in some order). The three idempotent work-stealing algo-
rithms of Michael, Vechev, and Saraswat [65] insert/extract tasks in FIFO and LIFO
orders and as a double-ended queue (the owner puts in and takes from one side, and
the thieves steal from the other).

Figure 4.7 shows the FIFO idempotent work-stealing algorithm [65]. The algo-
rithm stores the tasks in a shared array tasks, and shared integers head, and tail
indicate the positions of the head and the tail. For every integer z > 0, we describe
an execution of the algorithm in which, for every k ∈ {1, . . . , z}, there is a task that
is extracted by Θ(k) distinct operations (possibly by the same thief), with only one

4.6 Idempotent ̸= Multiplicity 69

Structures:
Task: task information
TaskArrayWithSize:

size: integer
array: array of Task

FifoIwsq:
head: integer;
tail: integer;
tasks: TaskArrayWithSize

constructor FifoIwsq(integer size) {
head := 0;
tail := 0;
tasks := new TaskArrayWithSize(size);

}

void put(Task task) {
Order write at 4 before write at 5

1: h := head;
2: t := tail;
3: if (t= h+tasks.size) {expand(); goto 1;}
4: tasks.array[t%tasks.size] := task;
5: tail := t+1;

}

TaskInfo take() {
1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: task := tasks.array[h%tasks.size];
5: head := h+1;
6: return task;

}

TaskInfo steal() {
Order read in 1 before read in 2
Order read in 1 before read in 4
Order read in 5 before CAS in 6

1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: a := tasks;
5: task := a.array[h%a.size];
6: if !CAS(head,h,h+1) goto 1;
7: return task;

}

void expand() {
Order writes in 2 and 4 before write in 5
Order write in 5 before write in put:5

1: size := tasks.size;
2: a := new TaskArrayWithSize(2*size);
3: for i = head:tail−1,
4: a.array[i%a.size] := tasks.array[i%tasks.size];
5: tasks := a;
}

Figure 2. FIFO idempotent work stealing queue.

index h modulo the array size. In line 5, the owner writes the value
h+1 to the head variable.

Steal: A thread starts the steal operation by reading the head
variable in line 1 and then the tail variable in line 2. In line 3,
it checks if the values read from head and tail are equal. If so,
then the queue is empty and an empty indicator is returned. Note
that the order of the reads is required only to avoid returning an
empty indicator for a queue that was never empty during the steal
operation. This could happen if tail were to be read first, then some
number of put and take operations are completed resulting in a

value of head that is equal to or larger than the value read earlier
from tail.

In line 4, the thread reads a pointer to the tasks array. The read of
head in line 1 must be ordered before the read in line 4. Otherwise, a
thief may read a stale pointer to the tasks array and then get a head
index from the anchor variable that is inconsistent with the stale
array, if the owner has expanded the array size in the meantime. In
line 5, the thread reads the array element with index h modulo the
array size. Reading the task information which may span multiple
words need not be atomic.

Finally, the CAS in line 6 checks that the value of head is
the same as that read in line 1. While it is possible for a steal

operation to observe the same value of head at lines 1 and 5, even
if the value of head has changed in the meantime, the algorithm’s
correctness does not require preventing this ABA situation (unlike
in the idempotent LIFO algorithm), for the following reasons: Only
a take operation by the owner can overwrite head with a smaller
value. However, this can happen only as long as the owner has not
observed higher values of head. Therefore, it is impossible that a
put by the owner has overwritten the task read in line 4 of the
steal operation. It follows that it is impossible that the thief has
extracted a stale task instead of a new task (which otherwise can
lead to a lost task situation), and that the task extracted by the
steal operation is not corrupt or inconsistent.

If successful, the CAS in line 6 updates the head variable with
value higher by one than that read in line 1 to indicate the extraction
of a task.

Expand: For the owner to expand a full queue, it allocates a new
larger array (e.g., with double the current capacity) in line 2. Then,
it copies the tasks from the current array to the newly allocated
one in lines 3 and 4. After that, it sets the tasks pointer to the new
array in line 5. The writes in lines 2 and 4 must be ordered before
the write in line 5. Otherwise, a thief may read uninitialized task
information.

The write in line 5 must be ordered before the subsequent write
in line 5 of put that updates the tail variable. Otherwise, a steal

operation may return an old task, while the new task is lost without
ever being executed.

3.4 Algorithm with Double-Ended Extraction

In the idempotent double-ended algorithm (Figure 3), the queue
is represented by an array of tasks, and an anchor variable that is
packed with three subfields indicating the index of the head of the
queue, the size of the queue, and an ABA-prevention tag. The task
array is encapsulated in a structure that contains both the array and
its size.

Put: The owner starts the put operation by reading the anchor
variable in line 1. In line 2, the owner checks if there is enough
space to put the new task by checking if the size subfield is less than
the size of the tasks array. If not, it expands the array and restarts.
Otherwise, it proceeds to line 3 and writes the task information into
the task array at the tail of the queue (i.e., h+s modulo the size
of the array). The writing of the task information which can span
multiple words need not be atomic.

Finally, in line 4, the owner writes to the anchor variable the
three packed values as read in line 1 with the size and tag subfields
each incremented by one, indicating the addition of a task and
to prevent the ABA problem in concurrent steal operations as
discussed below.

Take: The owner starts the take operation by reading the anchor
variable in line 1, then checking in line 2 if the queue is empty (i.e.,
if s = 0). If so, the operation returns an indicator of an empty queue.

49

Structures:
Task: task information
TaskArrayWithSize:

size: integer
array: array of Task

FifoIwsq:
head: integer;
tail: integer;
tasks: TaskArrayWithSize

constructor FifoIwsq(integer size) {
head := 0;
tail := 0;
tasks := new TaskArrayWithSize(size);

}

void put(Task task) {
Order write at 4 before write at 5

1: h := head;
2: t := tail;
3: if (t= h+tasks.size) {expand(); goto 1;}
4: tasks.array[t%tasks.size] := task;
5: tail := t+1;

}

TaskInfo take() {
1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: task := tasks.array[h%tasks.size];
5: head := h+1;
6: return task;

}

TaskInfo steal() {
Order read in 1 before read in 2
Order read in 1 before read in 4
Order read in 5 before CAS in 6

1: h := head;
2: t := tail;
3: if (h= t) return EMPTY;
4: a := tasks;
5: task := a.array[h%a.size];
6: if !CAS(head,h,h+1) goto 1;
7: return task;

}

void expand() {
Order writes in 2 and 4 before write in 5
Order write in 5 before write in put:5

1: size := tasks.size;
2: a := new TaskArrayWithSize(2*size);
3: for i = head:tail−1,
4: a.array[i%a.size] := tasks.array[i%tasks.size];
5: tasks := a;
}

Figure 2. FIFO idempotent work stealing queue.

index h modulo the array size. In line 5, the owner writes the value
h+1 to the head variable.

Steal: A thread starts the steal operation by reading the head
variable in line 1 and then the tail variable in line 2. In line 3,
it checks if the values read from head and tail are equal. If so,
then the queue is empty and an empty indicator is returned. Note
that the order of the reads is required only to avoid returning an
empty indicator for a queue that was never empty during the steal
operation. This could happen if tail were to be read first, then some
number of put and take operations are completed resulting in a

value of head that is equal to or larger than the value read earlier
from tail.

In line 4, the thread reads a pointer to the tasks array. The read of
head in line 1 must be ordered before the read in line 4. Otherwise, a
thief may read a stale pointer to the tasks array and then get a head
index from the anchor variable that is inconsistent with the stale
array, if the owner has expanded the array size in the meantime. In
line 5, the thread reads the array element with index h modulo the
array size. Reading the task information which may span multiple
words need not be atomic.

Finally, the CAS in line 6 checks that the value of head is
the same as that read in line 1. While it is possible for a steal

operation to observe the same value of head at lines 1 and 5, even
if the value of head has changed in the meantime, the algorithm’s
correctness does not require preventing this ABA situation (unlike
in the idempotent LIFO algorithm), for the following reasons: Only
a take operation by the owner can overwrite head with a smaller
value. However, this can happen only as long as the owner has not
observed higher values of head. Therefore, it is impossible that a
put by the owner has overwritten the task read in line 4 of the
steal operation. It follows that it is impossible that the thief has
extracted a stale task instead of a new task (which otherwise can
lead to a lost task situation), and that the task extracted by the
steal operation is not corrupt or inconsistent.

If successful, the CAS in line 6 updates the head variable with
value higher by one than that read in line 1 to indicate the extraction
of a task.

Expand: For the owner to expand a full queue, it allocates a new
larger array (e.g., with double the current capacity) in line 2. Then,
it copies the tasks from the current array to the newly allocated
one in lines 3 and 4. After that, it sets the tasks pointer to the new
array in line 5. The writes in lines 2 and 4 must be ordered before
the write in line 5. Otherwise, a thief may read uninitialized task
information.

The write in line 5 must be ordered before the subsequent write
in line 5 of put that updates the tail variable. Otherwise, a steal

operation may return an old task, while the new task is lost without
ever being executed.

3.4 Algorithm with Double-Ended Extraction

In the idempotent double-ended algorithm (Figure 3), the queue
is represented by an array of tasks, and an anchor variable that is
packed with three subfields indicating the index of the head of the
queue, the size of the queue, and an ABA-prevention tag. The task
array is encapsulated in a structure that contains both the array and
its size.

Put: The owner starts the put operation by reading the anchor
variable in line 1. In line 2, the owner checks if there is enough
space to put the new task by checking if the size subfield is less than
the size of the tasks array. If not, it expands the array and restarts.
Otherwise, it proceeds to line 3 and writes the task information into
the task array at the tail of the queue (i.e., h+s modulo the size
of the array). The writing of the task information which can span
multiple words need not be atomic.

Finally, in line 4, the owner writes to the anchor variable the
three packed values as read in line 1 with the size and tag subfields
each incremented by one, indicating the addition of a task and
to prevent the ABA problem in concurrent steal operations as
discussed below.

Take: The owner starts the take operation by reading the anchor
variable in line 1, then checking in line 2 if the queue is empty (i.e.,
if s = 0). If so, the operation returns an indicator of an empty queue.

49

Figure 4.7: Idempotent FIFO work-stealing [65].

of them being concurrent with the others.

1. Let the owner execute alone z times Put. Thus, there are z distinct tasks in
tasks.

2. Let r = z.

3. The owner executes Take and stops before executing Line 5, i.e. it is about to
increment head.

4. In some order, the thieves sequentially execute r Steal operations; note these
Steal operations return the r tasks in tasks[0, . . . , r − 1].

5. We now let the owner increment head. If r > 1, go to step 3 with r decremented
by one; else, end the execution.

Observe that in the execution just described, the task in tasks[i], i ∈ {0, . . . , z−
1}, is extracted by a Take operation and by i + 1 distinct non-concurrent Steal
operations (possible by the same thief). Thus, the task is extracted Θ(i) distinct
times. Since z is any positive integer, we conclude there is no bound on the number
of times a task can be extracted.

70 4. Case Study 1: Work-Stealing

A similar argument works for the other two idempotent work-stealing algorithms.
Ultimately, this happens in all algorithms because tasks are not marked as taken in
the shared array where they are stored. Thus, when the owner takes a task and
experiences a delay before updating the head/tail, all concurrent modifications of
the head/tail performed by the thieves are overwritten once the owner completes its
operation, leaving all taken tasks ready to be retaken. This situation is avoided in
our algorithms by marking the entries of the Tasks array as taken and with the help
of MaxRegister and RangeMaxRegister.

CHAPTER 5

Case Study 2: Modular Baskets Queue

In this chapter, we want to take a modular approach to building concurrent queues
with multi-producer and multi-consumer semantics. In simple words, we want to
think about a queue as a set of parts that can assembled, where each part must
satisfy a specification without matters how it is built. The basic design of a modular
queue can be thought as two objects to manipulate the head and the tail, a set of
container objects to store the items in the queue, and a set of well defined operation
to enqueue and dequeue items. In this way, we can define a set of specifications that
these modules must satisfy and design specific algorithms for them.

For the modular concurrent queue, we take up the idea of baskets as the containers
to store the items. Hoffman, Shalev, and Shavit [46] proposed a variant of the
Michael-Scott queue [64] with the objective of reducing the queue’s Compare&Swap
contention. We can think of each basket as a group of concurrently enqueued items.
Items in the same group can be dequeued in any order. This allows that items
from different groups can be inserted in parallel. In the work of Ostrovsky and
Morrison [74], the concept of the basket was defined explicitly and more rigorously.
They proposed an abstract data type for the basket, which allows different basket
implementations. Our work goes in this direction, however, our basket specification
provides stronger guarantees.

In the case of the objects for manipulating the head and the tail, we propose
a novel object we call load-link/increment-conditional (LL/IC). This object can be
implemented using Read/Write instructions instead of more sophisticated Read-
Modify-Write instructions. This design approach can help build more scalable queues
using the same interfaces and distinct implementations. The different modules of

72 5. Case Study 2: Modular Baskets Queue

the queue can be seen as black boxes. In a similar fashion to Chapter 4, Chapter 6
presents an experimental evaluation of the algorithms presented in this chapter and
their results.

5.1

Introduction

Concurrent multi-producer/multi-consumer FIFO queues are fundamental shared
data structures ubiquitous in all sorts of systems. Several concurrent queue shared-
memory implementations have been proposed for over three decades. Despite these
efforts, even state-of-the-art concurrent queue algorithms scale poorly; namely, as
the number of process grows, the latency of queue operations grows at least linearly
on the number of process.

One of the main reasons for the poor scalability is the high contention in the Read-
Modify-Write instructions, such as Compare&Swap or Fetch&Increment, that manip-
ulate the head and the tail [24, 25, 46, 55, 56, 64, 66, 67, 74, 90]. The latency of any
contended such instruction is linear in the number of contending processes since every
instruction acquires exclusive ownership of its location’s cache line, and these acqui-
sitions are serialized by the cache coherence protocol [74]. The best-known queue im-
plementations [67, 90] exploit the semantics of the Fetch&Increment instruction, that
do not fail and hence always make progress. In many queue implementations, a queue
operation retries a failed Compare&Swap until it succeeds [24, 25, 55, 56, 64, 66].

An approach that lies in the middle was proposed by Hoffman, Shalev, and
Shavit [46], the baskets queue. In this queue, failed Compare&Swap operations that
occur during an enqueue operation imply concurrency with other enqueue operations.
Therefore, the items of all these operations do not need to be ordered and can be
stored in a basket. The items in the basket can be dequeued in any order. However,
when the Compare&Swap fails, it is retried; it is important to note that the use of
standard atomic Read-Modify-Write instructions present a scalability issue due to the
coherence protocol that serializes write ownership acquisitions. This serialization re-
sults in the average cost of an RMW being highly dependent on the number of cores
contending for it. Specifically, when C cores contend a Read-Modify-Write instruc-
tion, the average cost is about C

2 uncontended cache misses, regardless of whether the
Read-Modify-Write is a failed or successful Compare&Swap or another Read-Modify-
Write type [74]. To overcome this seemingly inherent bottleneck, it has recently
proposed a Compare&Swap implementation from hardware transactional memory,
that exhibits better performance than the same Compare&Swap implementation in

5.2 The Modular Basket Queue 73

some cases [74].
We observe that Read-Modify-Write instructions are unnecessary to consistently

manipulate the head or tail. We believe this observation may open the possibil-
ity of concurrent queue implementations with better scalability. Concretely, we
present a modular baskets queue algorithm based on a novel object that we call
load-link/increment-conditional (LL/IC) that suffices for manipulating the head and
the tail of the queue. LL/IC admits implementations that spread contention and use
only simple Read/Write instructions. LL/IC is similar to LL/SC, with the difference
that IC, if successful, only increments the current value of the linked register. The
modular baskets queue stands for its simplicity, with a simple correctness proof.

5.2

The Modular Basket Queue

The Modular Basket Queue appears in Algorithm 5.1. It is based on two concurrent
objects: baskets and LL/IC. Roughly speaking, the baskets hold groups of items that
were enqueued concurrently and can be dequeued in any order. Two LL/IC objects
store the head and the tail of the queue. For simplicity, the baskets queue algorithm
is presented using an infinite shared array1.

Definition 5.1 (K-Basket)
A basket of capacity K or “K-basket”, is a data structure that can hold up to
K items. The state of the basket is represented by a pair (S, C) where S is the
set of items that can be added concurrently and C is the number of items in
the basket. A K-basket is initialized to (∅, 0). The sequential specification of a
K-basket satisfies the following properties:

1. Put(x). Non-deterministically can return FULL (regardless of the state) or
OK. If C = K, then return FULL, in another case do S = S∪{x}, C = C +1
and return OK.

2. Take(). If S ̸= ∅, then do S = S \ {x} and return x, for some x ∈ S, else if
S == ∅ do C = K and return CLOSED.

1There are two common approaches to implement an infinite array. One is to use a circular
dynamic array that can expand and shrink as needed. The other is to use a linked list where each
node contains a finite-sized array. During execution, the list grows on demand, and each node is
appended to the list using the Compare&Swap operation to maintain consistency.

74 5. Case Study 2: Modular Baskets Queue

Shared Variables:
A[0, 1, . . .] = infinite array of basket objects
HEAD, TAIL = LL/IC objects initialized to 0

Operation Enqueue(x):
(01) while true do
(02) tail = TAIL.LL()
(03) if A[tail].Put(x) == OK then
(04) TAIL.IC()
(05) return OK
(06) endif
(07) TAIL.IC()
(08) endwhile
end Enqueue

Operation Dequeue():
(09) head = HEAD.LL()
(10) tail = TAIL.LL()
(11) while true do
(12) if head < tail then
(13) x = A[head].Take()
(14) if x ̸= CLOSED then return x endif
(15) HEAD.IC()
(16) endif
(17) head′ = HEAD.LL()
(18) tail′ = TAIL.LL()
(19) if head == head′ == tail′ == tail then return empty endif
(20) head = head′

(21) tail = tail′

(22) endwhile
end Dequeue

Figure 5.1: The modular basket queue algorithm.

Definition 5.2 (Load-Linked/Increment-Conditional (LL/IC))
The specification of an object of type LL/IC satisfies the next two properties,
where the state of the object is an integer R, initialized to 0, and assuming that
any process invokes IC only if it has invoked LL before, then the specification for
these operations is the following:

1. LL(): Returns the current value in R.

5.2 The Modular Basket Queue 75

2. IC(): If R has not been increment since the last LL of the invoking process,
then do R = R + 1; in any case return OK.

The baskets in the original baskets queue algorithm [46] were defined only implic-
itly. Recently, baskets were explicitly defined in the work of Ostrovsky and Morri-
son [74]. Our basket specification provides stronger guarantees; the main difference is
the following: in the work of Ostrovsky and Morrison [74], a basket_empty operation
can return either true or false if the basket is not empty, i.e., it allows false negatives.
The Take operation of our specification mixes the functionality of basket_empty and
basket_extract as if it returns CLOSED, no item will ever be put or taken from the
basket.

Consider the definitions 5.1 and 5.2 about the basket and the LL/IC objects,
we state the Theorem 5.1 about the Algorithm 5.1 representing the modular basket
queue algorithm.

Theorem 5.1 In the Algorithm 5.1, if the objects in the array A, HEAD and TAIL
of type LL/IC are linearizable and wait-free, then the algorithm is a linearizable
lock-free implementation of a concurrent queue.

Proof:
Since all shared objects are wait-free, every implementation step is completed.
Note that every time a Dequeue/Enqueue operation completes a while loop (hence
without returning), an Enqueue (resp. a Dequeue) operation successfully puts
(resp. takes) an item in (resp. from) a basket. Thus, in an infinite execution,
if a Dequeue/Enqueue operation takes infinitely many steps, infinitely many De-
queue/Enqueue operations terminate. Hence, the implementation is lock-free.

We consider the aspect-oriented linearizability proof framework in [39] to prove
that the algorithm is linearizable. Assuming that every item is enqueued at most
once, it states that a queue implementation is linearizable if each of its finite
executions is free of four violations. We enumerate the violations and argue that
every algorithm execution is free of them.

1. VFresh: A Dequeue operation returns an item not previously inserted by any
Enqueue operation. Dequeue operations return items once put in the baskets,
and Enqueue operations put items in the baskets. Thus, each execution is
free of VFresh.

76 5. Case Study 2: Modular Baskets Queue

2. VRepeat: Two Dequeue operations return the item inserted by the same
Enqueue operation. The specification of the basket directly implies that
every execution is free of VRepeat.

3. VOrd: Two items are enqueued in a certain order, and a Dequeue returns the
later item before any Dequeue of the earlier item starts. LL/IC guarantees
that if an Enqueue operation enqueues an item, say x, and then a later
Enqueue operation enqueues another item, say y, then x and y are inserted
in baskets A[i] and A[j], with i < j. Then, x is dequeued first because
Dequeue operations scan A in index-ascending order. Thus, every execution
is free of VOrd.

4. VWit: A Dequeue operation returning empty even though the queue is never
logically empty during the execution of the Dequeue operation. An item is
logically in the queue if it is in a basket A[i] and i < TAIL. When a
Dequeue operation returns empty, there is a point in time where no basket
in A[0, 1, . . . , TAIL− 1] contains an item, and hence the queue is logically
empty (it might, however, be the case that A[TAIL] does contain an item
at that moment). Hence, every execution is free of VWit.

Therefore, Algorithm 5.1 is a linearizable lock-free implementation of a con-
current queue. ■

The algorithm’s scalability depends on the scalability of the concrete implemen-
tations of LL/IC and the basket with which it is instantiated. Our proposed solution
involves wait-free implementations of each of the objects. In section 5.2.1, we present
the implementations of these objects, which include a Compare&Swap-based opera-
tion and a Read/Write-based operation.

5.2.1 LL/ IC implementations.

A Compare&Swap-based implementation.

Let p denote a process that invokes an operation on the object. This implementation
uses a shared register R initialized to 0. LL first reads R and stores the value in a
persistent variable rp of p, and then returns rp. IC first reads R and if that value is
equal to rp, then it performs Compare&Swap(R, rp, rp +1); in any it case returns OK.
The pseudocode for this implementation is shown in Figure 5.2.

5.2 The Modular Basket Queue 77

Shared Variables:
R = Atomic Register initialized to 0

Operation LL(rp):
(01) rp = R.Read()
(02) return rp

end LL

Operation IC(rp):
(03) r = R.Read()
(04) if r == rp then
(05) Compare&Swap(R, rp, rp + 1)
(06) endif
(07) return OK
end IC

Figure 5.2: Compare&Swap-based LL/IC object

Theorem 5.2 The Compare&Swap-based LL/IC implementation from the algo-
rithm 5.2 is linearizable and wait-free.

Proof:
It is not hard to see that the algorithm is wait-free. For the linearizability proof,
consider any finite execution E with no pending operations. We define the fol-
lowing linearization points. The linearization point of an LL operation is when it
reads R (Line 1). If an IC operation performs a Compare&Swap, it is linearized
at that step (Line 5). Otherwise, it is linearized when it reads R (Line 3). Let
St be the sequential execution induced by the first t linearization points of E,
reading its steps in index-ascending order. By induction on t, it can be shown
that St is a sequential execution of LL/IC, where T is the number of operations
in E. The main observation is that if there is a successful Compare&Swap before
the Compare&Swap of an IC operation of a process p, then the contents of R are
different from the value p reads in its previous LL operation. ■

A Read/Write implementation.

This implementation uses a shared array M with n entries initialized to 0. LL first
reads all entries of M (in some order), stores the maximum value in a persistent
variable maxp of p, and then returns maxp. IC first reads all entries of M , and if the

78 5. Case Study 2: Modular Baskets Queue

maximum among those values is equal to maxp, it performs Write(M [p], maxp + 1);
in any it case returns OK. The pseudocode for this implementation is shown in
Figure 5.3.

Shared Variables:
M = [0, . . . , 0] n Registers

Operation LL(maxp):
(01) maxp = max(M)
(02) return maxp

end LL

Operation IC(maxp):
(03) m = max(M)
(04) if m == maxp then
(05) M [p].Write(maxp + 1)
(06) endif
(07) return OK
end IC

Figure 5.3: Read/Write-based LL/IC object

Theorem 5.3 The Read/Write-based LL/IC implementation from algorithm 5.3 is
linearizable and wait-free.

Proof:
The algorithm is wait-free because the max operation is performed in a finite
number of steps, and all other instructions always finish. We next argue that
each of its executions is linearizable.

Consider any finite execution of the algorithm with no pending operations.
To simplify the argument, suppose that there is a fictitious IC operation that
atomically writes 0 in all entries of M at the beginning of the execution.

Each IC operation is linearized at its last step. Thus, an IC that writes
is linearized at its Write step (Line 5), and an IC that does not write is lin-
earized at its last Read step (Line 3 inside of max operation). Let MAX be
the maximum value in the shared array M at the end of the execution. For
every R ∈ {0, 1, . . . , MAX}, let ICR be the IC operation that writes R for the
first time in M . We will linearize every LL operation that returns the value
R ∈ {0, 1, . . . , MAX − 1} at one of its steps and argue that this step is be-

5.2 The Modular Basket Queue 79

tween ICR and ICR+1. This will induce a sequential execution that respects the
real-time order and is a sequential execution of LL/IC, hence a linearization.

Let op denote any LL that returns R ∈ {0, 1, . . . , MAX − 1} and let e denote
its Read step that reads R for the first time. Observe that ICR has been linearized
when e happens in the execution. We have two cases:

1. If the shared memory M does not contain a value > R when e occurs
(hence no ICR′ with R′ > R has been linearized when e occurs), then op is
linearized at e.

2. If the shared memory M does contain a value > R when e occurs, then op
is linearized as follows. Let M [j] be the entry read at step e. Note that
this case can happen if and only if some entries in the range M [0, . . . , j− 1]
contain values > R when e happens (and hence some ICR′ with R′ > R
have been linearized when e occurs). Moreover, it can be shown that the
value R + 1 is written in an entry in the range M [0, . . . , j− 1] at some time
between the invocation of op and e. Let i ∈ {0, . . . , j − 1} be the index of
the entry where it is written R + 1 for the first time. Then, op is linearized
right before R + 1 is written in M [i] (and hence before ICR+1).

■

5.2.2 Basket implementations.
The basket implementations appear in Algorithms 5.4 and 5.5. Both implementations
have a shared array where the items are put and taken. A Put operation tries to
put its item in a location, while a Take operation either take an item from a location
or marks it as “canceled”. The first implementation follows an approach similar to
that of the LCRQ algorithm [67], while the second implementation is reminiscent of
locally linearizable generic data structure implementations of [33].

K-Basket

For this implementation, the processes use Fetch&Increment to guarantee that at most
two “opposite” operations “compete” for the same location in the shared array, which
can be resolved with a Swap; the idea of this algorithm is similar to the approach in
the LCRQ algorithm [67]. We called K-basket to this implementation, shown in the
Algorithm 5.4.

80 5. Case Study 2: Modular Baskets Queue

Theorem 5.4 Algorithm 5.4 is a wait-free linearizable implementation of a K-
basket.

Proof:
It is not hard to see that the algorithm is wait-free. Always that the value of
the variables PUTS or TAKES is greater than K or the state of the basket is
CLOSED, the algorithm finishes. The total of cycles will always be bounded by
K.

For the linearizability proof, given an entry A[i], we will say that a Put oper-
ation successfully puts its item in A[i] if it gets ⊥ when it performs Swap on A[i],
and that a Take operation successfully cancels A[i] if it gets ⊥ when it performs
Swap on A[i], otherwise (i.e., it gets a value distinct from ⊥), we say that the
Take operation successfully takes an item from A[i].

From the specification of Fetch&Increment, for every A[i], at most one Put
operations tries to put its item in A[i] successfully, and at most one Take operation
tries to either successfully cancel A[i] or successfully take an item from A[i]. By
the specification of Swap, if A[i] is canceled, no Put operation successfully puts
an item in it, and no Take operation successfully takes an item from it.

Given any execution of the algorithm, the operations are linearized as fol-
lows. A Put operation that successfully puts its item is linearized at its last
Fetch&Increment instruction before returning. A Take operation that successfully
takes an item from A[i] is linearized right after the Put operation that successfully
puts its item in A[i]. A Put that returns FULL is linearized at its return step, and
similarly, a Take that returns CLOSED is linearized at its return step. Note that,
in both cases, at that moment of the execution, every entry of A has been or will
be either canceled or a Take operation has or will successfully take an item from
it. It can be shown that these linearization points induce a valid linearization of
the execution. ■

N-Basket

In the second implementation, each process has a dedicated location in the shared
array where it tries to put its item when it invokes Put. When a process invokes
Take, it first tries to take an item from its dedicated location. If it does not succeed,
it randomly picks a non-previously-picked location, does the same, and repeats until
it takes an item or all locations have been canceled. Since several operations might
“compete” for the same location, Compare&Swap is needed. This implementation is

5.2 The Modular Basket Queue 81

Shared Variables:
A[0, 1, . . . , K − 1] = [⊥,⊥, . . . ,⊥]
PUTS, TAKES = 0
STATE = OPEN

Operation Put(x):
(01) while true do
(02) state = Read(STATE)
(03) puts = Read(PUTS)
(04) if state == CLOSED or puts ≥ K then return FULL
(05) else
(06) puts = Fetch&Increment(PUTS)
(07) if puts ≥ K then return FULL
(08) else if Swap(A[puts], x) == ⊥ then return OK endif
(09) endif
(10) endwhile
end Put

Operation Take():
(11) while true do
(12) state = Read(STATE)
(13) takes = Read(TAKES)
(14) if state == CLOSED or takes ≥ K then return CLOSED
(15) else
(16) takes = Fetch&Increment(TAKES)
(17) if takes ≥ K then
(18) Write(STATE, CLOSED)
(19) return CLOSED
(20) else
(21) x = Swap(A[puts],⊤)
(22) if x ̸= ⊥ then return x endif
(23) endif
(24) endif
(25) endwhile
end Take

Figure 5.4: K-basket from Fetch&Increment and Swap.

reminiscent of locally linearizable generic data structure implementations of [33]. We
called N -basket to this implementation, shown in the Algorithm 5.5.

Theorem 5.5 Algorithm 5.5 is a wait-free linearizable implementation of an n-
basket.

82 5. Case Study 2: Modular Baskets Queue

Shared Variables:
A[0, 1, . . . , n− 1] = [⊥,⊥, . . . ,⊥]
STATE = OPEN

Persistent Local Variables of p:
takesp = {0, 1, . . . , n− 1}

Operation Put(x):
(01) if Read(STATE) == CLOSED then return FULL
(02) else if Read(A[p]) == ⊥ then
(03) if Compare&Swap(A[p],⊥, x) then return OK endif
(04) endif
(05) return FULL
end Put

Function compete(pos):
(06) x = Read(A[pos])
(07) if x == ⊤ then return ⊤
(08) else if Compare&Swap(A[pos], x,⊤) then return x
(09) else return ⊥ endif
end compete

Operation Take():
(10) while true do
(11) if Read(STATE) == CLOSED then return CLOSED
(12) else
(13) if p ∈ takesp then pos = p
(14) else pos = any element of takesp endif
(15) takesp = takesp \ {pos}
(16) if takesp == ∅ then Write(STATE, CLOSED) endif
(17) x = compete(pos)
(18) if x ̸= ⊥,⊤ then return x
(19) else if x == ⊥ then
(20) x = compete(pos)
(21) if x ̸= ⊥,⊤ then return x endif
(22) endif
(23) endif
(24) endwhile
end Take

Figure 5.5: N -basket from Compare&Swap. p denote the invoking process.

Proof:
Clearly, Put is wait-free. It is not difficult to see that Take is wait-free because

5.3 Coping with realistic assumptions 83

the number of iterations is limited by the size of the set takesp.
For the linearizability proof, given an entry A[i], we will say that a Put oper-

ation of a process p, successfully puts its item in A[p] if its Compare&Swap is suc-
cessful. A Take operation successfully cancels A[i] if its Compare&Swap(A[i], x,⊤)
(in the compete function) is successful, with x being ⊥; and it successfully takes
an item from A[i] if its Compare&Swap(A[i], x,⊤) (in the compete function) is
successful, with x being distinct to ⊥ and ⊤.

The linearizability proof is similar to the linearizability proof in the previous
theorem, with the following main differences. (1) If a Put operation returns FULL,
it can be the case that some of the other entries of A will never be canceled or
store an item; the response of the Put operation is, however, correct because the
sequential specification of n-basket allows Put to return FULL in any state of the
object. (2) Several Take operations might try to cancel the same entry A[i] or
successfully take an item from it; this is not a problem because the specification
of Compare&Swap guarantees that, at most, one succeeds.

Given any execution of the algorithm, the operations are linearized as follows.
A Put operation that successfully puts its item is linearized at its (successful)
Compare&Swap. A Take operation that successfully takes an item from A[i] is
linearized right after the Put operation that successfully puts its item in A[i]. A
Put that returns FULL is linearized at its return step, and similarly, a Take that
returns CLOSED is linearized at its return step. Note that at the execution, a
Take that returns CLOSED, every entry of A has been either canceled, or a Take
operation has successfully taken an item from it. It can be shown that these
linearization points induce a valid linearization of the execution. ■

5.3

Coping with realistic assumptions

The previous construction was suitable for the analysis of properties that we desired
in our concurrent queue. However, a realistic implementation will not rely on infinite
arrays 2. As noted in previous chapters, two common approaches for implementing
arrays can be considered “infinite”. The first approach involves using circular dy-
namic arrays, which can expand or shrink as needed. The second approach uses
linked lists, where each node contains a finite-sized array that grows on demand dur-
ing execution. To maintain consistency, each node is appended to the list using a

2We refer to the infinite basket array of the queue.

84 5. Case Study 2: Modular Baskets Queue

Compare&Swap operation.
The first implementation requires straightforward changes, which rely on a mech-

anism to double the array size and copy from one array to another. This will be sim-
ilar to the strategy followed by the Chase-Lev Work-Stealing [22] or the Idempotent
Work-Stealing [65] algorithms presented in Chapter 4.

For the second implementation, we need to make more complex changes. Unlike
the single-producer multi-consumer queue used for work-stealing in Chapter 4, we
are now dealing with a multi-producer multi-consumer environment. This means
we must incorporate a mechanism to ensure that node insertion in the queue is
executed correctly. Algorithms 5.6 and 5.7 show the necessary changes to convert
the Algorithm 5.1 to a queue capable of handling long-run executions. We use the
operator → to denote the access to elements in a structure.

This update defines a new data structure called Segment. It serves as a node
that comprises a small segment of the infinite basket array, a pair of objects of type
LL/IC that denote the Head and Tail similar to what is stated in Algorithm 5.1 and
a pointer to the next node. For simplicity, this node does not perform any circular
assignment or deletion over the array as is done in LCRQ queue [67]. This makes
it easier to determine when the segment is full or marked as closed for memory
management tasks, using only the state of LL/IC objects. Additionally, we have
defined two auxiliary functions that help identify when a segment is full or closed.

Besides the new Segment structure, now the shared variables are pointers to nodes
of type Segment that represent Head and Tail similar to those used in Michael-Scott’s
lock-free queue [64]. We will prove that the queue defined in Algorithms 5.6 and 5.7
is lock-free and linearizable.

Theorem 5.6 Algorithms 5.6 and 5.7 are a linearizable lock-free implementation
of a concurrent queue.

5.3 Coping with realistic assumptions 85

Additional Structures and Operations
struct Segment :

items[1, . . . , N] array of basket objects of size N
HEAD, TAIL = LL/IC objects initialized to 0
next = Pointer to the next segment

end struct

Operation isFull(segment∗)
return segment→ TAIL.LL() ≥ N

end Operation

Operation isClosed(segment∗)
return segment→ HEAD.LL() ≥ N

end Operation

Shared Variables:
Head, Tail = Pointers to objects of type Segment, initially pointing to a sentinel object

Operation Enqueue(x):
(01) while true do
(02) lastTail = Tail
(03) if lastTail ̸= Tail then continue; endif
(04) lastNext = lastTail→ next
(05) if lastNext ̸= ⊥ then
(06) Tail.Compare&Swap(lastTail, lastNext); continue;
(07) endif
(08) ticket = lastTail→ TAIL.LL()
(09) if isFull(lastTail) then
(10) newSegment = new Segment()
(11) newSegment→ items[0].put(val);
(12) newSegment→ TAIL.IC()
(13) if lastTail→ next.Compare&Swap(⊥, newSegment) then
(14) Tail.Compare&Swap(lastTail, newSegment)
(15) return OK
(16) endif
(17) endif
(18) if lastTail→ items[ticket].put(x) == OK
(19) lastTail→ TAIL.IC()
(20) return OK
(21) endif
(22) endwhile
end Enqueue

Figure 5.6: The modular baskets queue using linked-lists. Enqueue operation.

86 5. Case Study 2: Modular Baskets Queue

Additional Structures and Operations
struct Segment :

items[1, . . . , N] array of basket objects of size N
HEAD, TAIL = LL/IC objects initialized to 0
next = Pointer to the next segment

end struct

Operation isFull(segment∗)
return segment→ TAIL.LL() ≥ N

end Operation

Operation isClosed(segment∗)
return segment→ HEAD.LL() ≥ N

end Operation

Shared Variables:
Head, Tail = Pointers to objects of type Segment, initially pointing to a sentinel object

Operation Dequeue():
(01) while true do
(02) lastHead = Head
(03) if lastHead ̸= ⊥ then return epty endif
(04) if lastHead ̸= Head then continue endif
(05) if isClosed(lastHead) then
(06) next = lastHead− > next
(07) Head.CAS(lastHead, next)

Memory reclamation can be performed after the previous instruction
(08) endif
(09) tailT icket = lastHead→ TAIL.LL()
(10) headT icket = lastHead→ HEAD.LL()
(11) while ¬isClosed(lastHead) do
(12) if headT icket < tailT icket then
(13) x = lastHead→ items[headT icket].Take()
(14) if x ̸= closed then return x endif
(15) lastHead→ HEAD.IC()
(16) endif
(17) head′ = lastHead→ HEAD.LL()
(18) tail′ = lastHead→ TAIL.LL()
(19) if head == head′ == tail′ == tail and head < N then return epty endif
(20) headT icket = head′

(21) tailT icket = tail′

(22) endwhile
(23) endwhile
end Dequeue

Figure 5.7: The modular baskets queue using linked-lists. Dequeue Operation

5.3 Coping with realistic assumptions 87

Proof:
To see that the queue algorithm composed of the Algorithms 5.6 and 5.7 is lock-
free, we must analyze the Enqueue function shown in the Algorithm 5.6 and the
Dequeue function shown in the Algorithm 5.7 are both lock-free.

We begin analyzing the Enqueue operation. We observe that a Enqueue oper-
ation enters a loop when:

• lastTail is not equals to Tail in line 3.

• lastNext is not null in line 5.

• The current segment is full and fails the Compare&Swap at line 13.

• The thread is unable to insert the value in the respective basket at line 18.

Now, we will demonstrate that the Enqueue operation is lock-free by proving
that a process only loops beyond a finite number of times if another process
completes an Enqueue on the queue.

• At line 3 the condition is satisfied only if the pointer to the Tail has changed;
this means that if another process has updated the reference to the segment,
then that process must have successfully completed an enqueue operation.

• At line 5 the condition is satisfied only if, while reading the Tail pointer,
another process appends a new segment (being succeeded in inserting a
new element), and the process still does not update the reference to the
Tail pointer. In such a case, we will try to help update the reference to the
Tail segment and loop again.

• At line 13 the condition fails only if the Compare&Swap cannot append a
new segment; this means that another process appends its segment and
succeeds in inserting a new element into the queue.

• At line 18 the condition fails only if the operation cannot insert an element
into the basket.

Now, we observe that a Dequeue operation enters a loop under when:

• lastHead is not equals toHead in line 4.

88 5. Case Study 2: Modular Baskets Queue

• The inner cycle encompassing lines 11 to 22 has been completed, and it does
not return any output.

We will show that the Dequeue operation in Algorithm 5.7 is lock-free by
performing a similar analysis to ours for the Enqueue operation. This will involve
proving that a process only loops beyond a finite number of times if another
process successfully completes a Dequeue operation on the queue.

• At line 4, the condition is satisfied if the pointer to lastHead is distinct
from the current pointer to Head; in such case, we must loop again.

• If the inner cycle from the line 11 to the line 22 does not return anything. In
that case, this suggests that one of the following situations could happen:
(1) the segment lastHead is closed at the beginning of the loop, (2) the
element taken from the basket in line 13 in each iteration is equals to the
special value CLOSED until detect that the segment is closed, that means
other processes are making progress by extract values or return the empty
value.

Therefore, both Enqueue and Dequeue operations are lock-free.
To prove linearizability, we will use the same strategy as the one used in The-

orem 5.1, using the aspect-oriented linearizability proof framework [39] to prove
that the algorithm is linearizable. We assume that LL/IC objects and the baskets
objects in the array of each segment are linearizable and wait-free3. Assuming
that every item is enqueued at most once, it states that a queue implementa-
tion is linearizable if each of its finite executions is free of four violations. The
proof is almost identical to the one shown in the Theorem 5.1. We enumerate the
violations and argue that every algorithm execution is free of them.

1. VFresh: A Dequeue operations returns an item not previously inserted by
any Enqueue operation. Dequeue operations return items once put in the
baskets, and Enqueue operations put items in the baskets. Thus, each exe-
cution is free of VFresh.

2. VRepeat: Two Dequeue operations return the item inserted by the same
Enqueue operation. The specification of the basket directly implies that
every execution is free of VRepeat.

5.3 Coping with realistic assumptions 89

3. VOrd: Two items are enqueued in a certain order, and a Dequeue returns
the later item before any Dequeue of the earlier item starts. Now, we are
dealing with segments, and each segment has its own LL/IC objects for Head
and Tail; we have 2 cases to analyze:

(a) Inserting elements in the same segment: LL/IC guarantees that if an
Enqueue operation enqueued an item, let us say x, and then a later
Enqueue operation enqueued another item, let us say y, then x and y
are inserted in baskets items[i] and items[j], with i < j. Then, x is
dequeued first because the Dequeue operation can scan the items array
in index-ascending order.

(b) Inserting elements in distinct segments: Similarly to the prior anal-
ysis, when a Enqueue operation inserts an item, let us say w, in a
segment, and then a later Enqueue operation enqueues another item,
say z, in another distinct segment, the Dequeue operation will first de-
queue w. This is because it first checks if the current reference to the
Head segment is closed. Since this is still not the case, it extracts w
and increments the Head LL/IC object of the segment. When another
Dequeue operation is executed, it detects that the pointer to the Head
segment is closed and updates the pointer to the next. Now, we can
extract z from the new segment.

Thus, every execution is free of VOrd.

4. VWit: A Dequeue operation returning empty even though the queue is never
logically empty during the execution of the Dequeue operation. An item is
logically in the queue if it is in a basket items[i]; the segment that contains
the basket is in the range from the Head pointer to the Tail pointer (both
can reference the same segment), and i < TAIL, with TAIL being the
correspondent LL/IC object in the segment. When a Dequeue operation
returns empty, it means that both the Head segment and Tail segment
pointers reference the same segment. There is a point in the time where no
basket in items[0, 1, . . . , TAIL−1] range that contains an item, and hence,
the queue is logically empty. However, it is possible that items[TAIL] may
contain an item at that moment. As a result, every execution is free of
VWit.

90 5. Case Study 2: Modular Baskets Queue

Therefore, Algorithms 5.6 and 5.7 are a linearizable lock-free implementation
of a concurrent queue. ■

Another issue in practical settings is memory management. This issue can be
delegated to the garbage collector in languages like Java. However, a safe and effi-
cient concurrent memory reclamation protocol should be implemented in program-
ming languages without automatic memory garbage collection. For example, we
implemented all the algorithms and the necessary infrastructure for experimental
evaluation of this chapter using C++20. For memory management, we have utilized
popular protocols for memory reclamation, like Hazard Pointers [62] and Epoch-
based reclamation [29, 61].

3We proved that there are linearizable and wait-free LL/IC objects in Theorems 5.2, and 5.3, as
well as linearizable and wait-free basket implementations in Theorems 5.4 and 5.5.

CHAPTER 6

Experimental Evaluation and Results

In this chapter, we discuss the results of our experimental evaluation of the algorithms
presented in Chapter 4 and Chapter 5. The chapter is divided into two sections. The
first section (Section 6.1) is about the work-stealing case study. The second section
(Section 6.2) deals with the experimental evaluation of the modular baskets queue.

In the first section, we analyze the performance of the work-stealing algorithms
presented in Chapter 4, dividing the experimental evaluation into three benchmarks.
The first two have been used before in other articles [30, 65, 68], and the third is an
application to a problem that naturally admits parallelization. In the second section,
we analyze the performance of the modular baskets queue algorithms presented in
Chapter 5. We divide the experimental evaluation into two benchmarks. The first
benchmark is designed to evaluate the performance of the modular baskets queue
variants, i.e., the combinations of baskets and LL/IC objects. From the result of this
first benchmark, we pick up the best performing version, and then we implement the
array-based version and the list-of-arrays version as described in Section 5.3. Finally,
these variants are compared against many state-of-the-art queues.

For both evaluations, we use the statistically rigorous methodology by Georges
et al. [32], and we measure the performance as described in Section 3.5.2. In this
experimental evaluation, we provide an in-depth analysis of the data we collected.
We have gained valuable insights into our research topic through rigorous testing and
analysis. We believe that the results presented in this chapter will contribute to a
better understanding of the subject matter and will pave the way for future research
in this field. So, let us dive in and explore the outcomes of our study in detail.

92 6. Experimental Evaluation and Results

6.1

Work-Stealing with Multiplicity

In this section, we discuss the outcome of an experimental evaluation of WS-WMULT
and its bounded version, B-WS-WMULT. Using the approaches discussed in Sec-
tion 4.5, two versions of each algorithm were implemented, one using simple arrays
and the other using dynamic arrays. The suffix Lists was added to the list of ar-
rays version. For example, WS-WMULT denotes the version with resizable arrays,
and WS-WMULT List denotes the version with a list of arrays. WS-WMULT and
B-WS-WMULT were compared to the following algorithms: Cilk THE [30], Chase-
Lev [22], and the three idempotent work-stealing algorithms [65]. Three benchmarks
were employed to evaluate the performance of the algorithms, following the eval-
uation methodology by Georges, Buytaert, and Eeckhout [32], as described in the
Section 3.5.2.

6.1.1 Experimental Setup

Platforms and Implementation

The experiments were conducted on a machine with an AMD Ryzen Threadripper
3970X processor with 64GB of memory and 32 cores, each capable of executing
two hardware threads. The algorithms were implemented in Java 17, which allowed
us to ignore tasks such as garbage collection. As mentioned, two versions of WS-
WMULT and B-WS-WMULT were implemented. The other tested algorithms, Cilk
THE, Chase-Lev, and the three idempotent work-stealing, were implemented follow-
ing their specification, i.e., inserting fences where required; all these algorithms use
resizable arrays to store tasks.

Methodology

To analyze the performance of the algorithms, the experimental evaluation is divided
into the following three benchmarks, where the first two have been used before [30, 65,
68] and the third is an application to a problem that naturally admits parallelization:
(1) Zero cost experiments, (2) Parallel spanning tree, and (3) Parallel SAT. Below, we
briefly describe each benchmark. Performance was measured using the statistically
rigorous methodology by Georges et al. [32], described in Section 3.5.2. Repeated
work was measured in the second and third benchmarks using a more straightforward
methodology.

6.1 Work-Stealing with Multiplicity 93

Zero cost experiments This benchmark shows the performance of a given al-
gorithm in a single core with a single process. Why do we want to evaluate the
algorithms in a single core? The experiment results show that the mere presence
of heavy synchronization mechanisms in an algorithm slows down the computation,
even in sequential executions. We measure the time required for performing a se-
quence of operations that work-stealing algorithms provide. First, the time needed
for Put-Take operations is measured, where a process performs a sequence of Put op-
erations followed by an equal number of Takes. Unlike previous work [65, 68], it also
measured the time for Put-Steal operations, all performed by the same process. In
both experiments, the number of Put operations is 10, 000, 000, followed by the same
number of Take or Steal operations; no operation performs any work associated with
a task. The algorithms were evaluated considering distinct data structures’ initial
sizes to test the effect of resizing structures. The considered initial sizes are 256,
1, 000, 000, and 10, 000, 000. For the case of the implementations based on dynamic
arrays, WS-WMULT Lists, and B-WS-WMULT Lists, these sizes correspond to the
size of the arrays in each structure node.

Parallel spanning tree As Michael, Vechev, and Saraswat [65], and Morrison and
Afek [68], we consider the parallel spanning tree algorithm of Bader and Cong [11].
The algorithm, which uses a form of work-stealing to ensure dynamic load-balancing,
was adapted to work with all tested work-stealing implementations. In the algorithm,
each process places the tasks it generates (i.e., vertices whose adjacent vertices remain
to be explored) in its work-stealing data structure. When it runs out of tasks, it tries
to steal tasks from other processes’ structures in a round-robin fashion. The algo-
rithms are tested on several types of directed and undirected graphs with 1, 000, 000
vertices each:

• 2D Torus. The vertices are on a 2D mesh, where each vertex connects to its
four neighbors in the mesh.

• 2D60 Torus. The random graph obtained from the previous one, where each
edge has a probability of 60% to be present.

• 3D Torus. The vertices are on a 3D mesh, where each vertex connects to its
six neighbors in the mesh.

• 3D40 Torus. The random graph obtained from the previous one, where each
edge has a probability of 40%

• Random. Graph with each vertex having six randomly picked neighbors.

94 6. Experimental Evaluation and Results

The graphs have been considered in previous work [11, 65, 68]. All graphs are
represented using the adjacency lists representation. The experiment is executed as
follows: The parallel spanning tree algorithm is executed independently on each pos-
sible graph, with all combinations of work-stealing algorithms and several available
threads. As in the zero-cost experiment, the impact of resizing structures was tested.
The experiment is independently executed for each graph, work-stealing algorithm,
and several threads with initial structure sizes 250 and 1, 000, 000. Hence, the latter
requires no resizing structures.

The amount of repeated work in both relaxations of work-stealing was also mea-
sured. Computing this value is not straightforward. The parallel spanning tree
algorithm may execute repeated work even when no work-stealing tasks exist. The
reason is that a vertex can be discovered (i.e., put in a work-stealing structure) con-
currently by several distinct processes, and later, each of them can take the vertex
from its structure and execute the work associated with the vertex (i.e., explore its
neighborhood). One more difficulty is that computing the exact number of processes
that Take/Steal the same task in each work-stealing structures would incur in time
and space overheads. Therefore, a simple approach was adopted, where the total
number of Puts (i.e., the total number of tasks stored in all work-stealing structures)
and the total number of Takes (i.e., the total number of tasks executed) are counted.
Each process locally counts its number of Puts/Takes, and the counters are added up
at the end of the experiment. These quantities allowed us to estimate the amount of
repeated work in the relaxations of work-stealing and its impact. To avoid disturb-
ing performance measurements, the experiments for measuring repeated work were
executed independently, following a simpler methodology: each experiment was run
five times from which average values were computed.

Parallel SAT We consider parallel SAT solvers (e.g., [14, 26, 35]). It was imple-
mented as a simple single-producer multi-consumer solver with a single instance of
one of the tested work-stealing algorithms. The implementation is straightforward:
the processes test every possible binary assignment to determine if any of them sat-
isfies a given formula. Each task in the work-stealing structure consists of a range
of assignments to be evaluated. The main process (i.e., the main thread in the Java
program) is the owner of the work-stealing structure and generates all tasks at the
beginning of the experiment. Once all tasks are generated, the main process and
the rest of the processes collaborate to identify if there is a satisfying assignment.
The input to the experiment is an unsatisfiable formula in conjunctive normal form
(CNF). The formula was generated from an SAT formula generator1. The experi-

1https://cnfgen.readthedocs.io/en/latest/cnfgen.families.pigeonhole.html

6.1 Work-Stealing with Multiplicity 95

ment is executed independently for each number of available threads. Multiple size
assignment ranges are tested independently: 50, 100, 250, 500, 1,000, and 2,500.

It was also measured the amount of repeated work in each experiment. In this
case, it is easy to compute the exact number as there is a single work-stealing struc-
ture. It suffices to compare the total number of Puts and the total number of success-
ful Takes/Steals. These quantities are computed as in the previous benchmark, and,
as before, the experiments for measuring repeated work were executed independently
so as not to disturb performance measurements. Each experiment was run five times,
from which average values were computed.

6.1.2 Experimental Evaluation Results
First, we present a summary of the experimental evaluation results of the case study
from Chapter 4:

• Zero cost experiments. In both experiments, Puts-Takes and Puts-Steals, over-
all, the algorithm with the best performance was WS-WMULT, followed by WS-
WMULT Lists and then idempotent FIFO, regardless of the initial array size.
This result is expected because WS-WMULT does not use either costly primi-
tives or memory fences. It was also observed that idempotent FIFO performed
better than WS-WMULT Lists when no resizing was needed. B-WS-WMULT
and B-WS-WMULT Lists performed worst among all algorithms. However, this
did not preclude them from exhibiting a competitive performance in the second
and third benchmarks.

• Parallel spanning tree. In virtually all experiments, WS-WMULT performed
best among all tested algorithms. It outperformed Cilk THE and Chase-Lev,
performing better than WS-WMULT Lists and idempotent FIFO by small mar-
gins. Idempotent FIFO performed best among the idempotent algorithms. B-
WS-WMULT exhibited a competitive performance. Work-stealing algorithms
with FIFO policy generally showed low amounts of repeated work. In contrast,
algorithms with LIFO of dequeue policies exhibited higher amounts, and, for
some graphs, the difference with FIFO is remarkable.

• Parallel SAT. In general, all work-stealing algorithms enhanced performance,
and in both relaxations, repeated work was negligible, which resulted in mi-
nor performance overhead. The algorithms showed no significant statistical
difference in performance for large-size assignments (i.e., fairly complex jobs
associated with tasks).

96 6. Experimental Evaluation and Results

The following subsections explain the results of the experiments in detail.

Zero Cost Experiment

The outcome of the Puts-Takes experiment appears in Figures 6.1a, 6.1b and 6.1c.
Overall, the absence of fences in WS-WMULT derived an improvement over idempo-
tent algorithms that range between 9% to 65%. Table 6.1 contains the percentage
improvement of WS-WMULT over all algorithms. In all cases, B-WS-WMULT and
B-WS-WMULT Lists performed worst. This is arguably attributed to the extra ar-
ray of boolean flags used for bounding multiplicity. 2 It was also observed that the
data structure’s initial size impacts performance. When the initial size exceeds the
number of operations in the experiment (Figure 6.1c), no resizes are needed, B-WS-
WMULT’s performance improved considerably. Still, it was affected by the use of
two distinct arrays. The outcome of the Puts-Steal experiment is similar, and shown
in Figures 6.1d, 6.1e and 6.1f, and Table 6.2. Appendix A.1 contains the detailed
measurements of each algorithm in each experiment.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Intial zize 256: 48.00 49.26 51.85 42.90 65.64 0.00 88.75 52.14 71.46
Initial size 1,000,000: 45.48 46.82 48.73 41.77 62.34 0.00 87.83 40.41 65.45
Initial size 10,000,000: 27.91 27.14 14.31 43.81 50.25 0.00 71.22 46.76 75.19

Table 6.1: Percentage improvement of WS-WMULT over all algorithms in the Puts-
Takes experiment.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Intial size 256: 46.22 63.68 50.66 51.66 66.60 0.00 89.47 52.60 76.53
Initial size 1,000,000: 43.91 62.91 48.25 51.67 64.03 0.00 88.81 40.90 70.53
Initial size 10,000,000: 24.86 57.88 9.00 53.67 52.61 0.00 75.03 46.32 77.75

Table 6.2: Percentage improvement of WS-WMULT over all algorithms in the Puts-
Steals experiment.

Parallel Spanning Tree

Except for the case of Random graphs, where practically all algorithms performed
equally, in general, WS-WMULT outperformed all algorithms. WS-WMULT Lists and
idempotent FIFO overall performed second and third best. The improvement of WS-
WMULT over WS-WMULT Lists and idempotent FIFO was small, between 0.5% and

2Implementations where the two arrays are consolidated in a single array of objects with two
entries, a task, and a flag, performed even worse. Hence, these implementations were discarded.

6.1 Work-Stealing with Multiplicity 97

0.0 0.2 0.4 0.6 0.8 1.0
Time in nanoseconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±7.85e+05

±9.28e+05

±1.08e+06

±7.60e+05

±1.04e+06

±4.46e+05

±4.09e+07

±4.08e+06

±4.01e+07

(a) Puts and Takes with an initial size 256

0.0 0.2 0.4 0.6 0.8 1.0
Time in nanoseconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±7.49e+05

±8.78e+05

±6.03e+05

±6.82e+05

±1.16e+06

±4.68e+05

±6.16e+07

±2.07e+06

±2.91e+07

(b) Puts and Takes with an initial size
1,000,000

0.0 0.2 0.4 0.6 0.8 1.0
Time in nanoseconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±4.21e+05

±4.24e+05

±1.28e+06

±9.11e+05

±1.23e+06

±2.45e+05

±9.45e+06

±1.32e+06

±6.53e+06

(c) Puts and Takes with an initial size
10,000,000

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time in nano seconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±9.56e+05

±1.43e+06

±9.17e+05

±1.46e+06

±1.38e+06

±5.14e+05

±3.10e+07

±3.18e+06

±5.35e+07

(d) Puts and Steals with an initial size 256

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time in nano seconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±8.42e+05

±1.25e+06

±7.56e+05

±1.61e+06

±1.16e+06

±7.93e+05

±3.72e+07

±2.28e+06

±3.23e+07

(e) Puts and Steals with an initial size
1,000,000

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Time in nano seconds 1e9

Chase-Lev

Cilk THE

Idempotent FIFO

Idempotent LIFO

Idempotent DEQUE

WS WMult

B. WS WMult

WS WMult Lists

B. WS WMult Lists

±1.47e+06

±1.01e+06

±8.30e+05

±1.27e+06

±8.84e+05

±3.15e+05

±6.52e+06

±1.47e+06

±2.07e+07

(f) Puts and Steals with an initial size
10,000,000

Figure 6.1: Outcome of the zero cost experiments. Time is in nanoseconds, and red
lines over bars show confidence intervals. The results of the Puts-Takes experiment
are shown in the first three charts and the results of the Puts-Steals experiment are
shown in the remaining charts.

4%, depending on the graph. Thus, the absence of fences in WS-WMULT resulted in a

98 6. Experimental Evaluation and Results

minor improvement over idempotent FIFO. It merits mentioning that B-WS-WMULT
and its lists-based version generally showed a competitive performance, in some cases
close to the first three algorithms. Usually, Cilk THE and Chase-Lev performed
worst, which is expected as they use costly synchronization mechanisms, although
this is not the only factor (more on this below). WS-WMULT outperformed Cilk
THE by a margin between 1% and 21%, and Chase-Lev by a margin between 0.14%
and 32%. The lowest margins occurred in the case of Random graphs, where, as
mentioned, all algorithms performed almost equally. Figure 6.2 depicts the result of
the experiment in some representative cases. In a few cases (e.g., Directed 2D Torus),
Chase-Lev, Cilk THE, and idempotent LIFO performed best with few processes. This
seems to be related to the topology of the graph and the algorithm’s insert/extract
task policy (the owner follows LIFO).

Repeated work was measured indirectly through the total number of Puts (work
to be executed), which was compared to the total number of Puts in sequential exe-
cutions (i.e., 1, 000, 000). The difference between these two numbers is called surplus
work. Surplus work in all algorithms with FIFO insert/extract policy was generally
low, less than 0.7%. All these algorithms implement work-stealing with relaxed se-
mantics. Thus, even if all surplus work was due to relaxation (recall that surplus work
can occur even with non-relaxed work-stealing algorithms), it rarely happened, with
little impact on performance. In sharp contrast, in all algorithms where the owner
follows the LIFO insert/extract policy (Cilk THE, Chase-Lev, idempotent LIFO, and
idempotent Deque), surplus work ranged between 1% and 56%. Therefore, neither
multiplicity nor idempotency per se increased surplus work considerably, and the
dominant factor seems to be the task insert/extract policy combined with the solved
problem. Figure 6.3 depicts the surplus work of the experiments in Figure 6.2.

In all algorithms, not all tasks are executed. Processes are constantly check-
ing the distinct number of vertices that have been processed so far, and when this
number reaches 1, 000, 000, the spanning tree is completed, and the experiment ter-
minates. It can be the case that some vertices remain in one or more work-stealing
structures when the tree is finished; not all surplus work is executed. We measured
the executed surplus work, i.e., the difference between the total number of Takes
(actual work executed) and the total number of Takes in sequential executions (i.e.,
1, 000, 000). Executed surplus work in Cilk THE, Chase-Lev, idempotent LIFO, and
idempotent Deque ranged between 1% and 49%. Figure 6.4 shows the executed
surplus work of the experiments in Figure 6.2. Finally, in some experiments (e.g.,
Random graphs), WS-WMULT executed more surplus work than the algorithms with
LIFO insert/extract policy, but still, it performed slightly better. We attribute this
to the fact that in the FIFO policy, Takes are more likely to read tasks from cache

6.1 Work-Stealing with Multiplicity 99

1 8 16 24 32 40 48 56 64
Threads

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)
1e8

B. WS WMult Lists
B. WS WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Graph: Directed Torus 2D. Initial size of
256 items

1 8 16 24 32 40 48 56 64
Threads

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Graph: Directed Torus 2D. Initial size of
1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(c) Graph: Directed Torus 3D. Initial size of
256 items

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Graph: Directed Torus 3D. Initial size of
1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(e) Graph: Directed Random. Initial size of
256 entries

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(f) Graph: Directed Random: Initial size of
1,000,000 entries

Figure 6.2: Mean times reported for executing the graph application benchmark.

memory, whereas in LIFO, Takes are more likely to read from main memory, which
is costly. Appendix A.2 contains all results of the benchmark.

100 6. Experimental Evaluation and Results

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Torus 2D. Initial
size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

60

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Torus 2D. Initial
size of 1,000,000 items.

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Directed Torus 3D. Initial
size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Directed Torus 3D. Initial
size of 1,000,000 items.

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

14

16

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(e) Surplus work: Directed Random. Initial
size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(f) Surplus work: Directed Random: Initial
size of 1,000,000 items.

Figure 6.3: Surplus work (percentage) of the experiments. Surplus work: the dif-
ference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

6.1 Work-Stealing with Multiplicity 101

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Torus
2D. Initial size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Torus
2D. Initial size of 1,000,000 items.

1 8 16 24 32 40 48 56 64
Threads

0

5

10

15

20

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed surplus work: Directed Torus
3D. Initial size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Directed Torus
3D. Initial size of 1,000,000 items.

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

7

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(e) Executed surplus work: Directed Ran-
dom. Initial size of 256 items.

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(f) Executed surplus work: Directed Ran-
dom: Initial size of 1,000,000 items.

Figure 6.4: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

102 6. Experimental Evaluation and Results

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 50

(a) Range assignment size 50.

32 40 48 56 64
Threads

1.70

1.72

1.74

1.76

1.78

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 50

(b) Range assignment size 50. Zoom in to the
number of processes 32 to 64.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 250

(c) Range assignment size 250.

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

1.75

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)
1e9

Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 250

(d) Range assignment size 250. Zoom in to
the number of processes 32 to 64.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 1000

(e) Range assignment size 1,000.

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 1000

(f) Range assignment size 1,000. Zoom in to
several processes 32 to 64.

Figure 6.5: Mean times of the Parallel SAT benchmark for range assignment sizes
50, 250, and 1,000.

Parallel SAT

The outcomes for range assignment sizes 50, 250, and 1,000 are depicted in Fig-
ures 6.5a, 6.5c, and 6.5e, respectively. All algorithms speeded up sequential compu-

6.2 Modular Basket Queues 103

tation by 70%, and generally, all performed very similarly. However, repeated work
(the difference between the number of Puts and the number of successful Takes/Steals)
slightly impacted the performance of WS-WMULT. Contrary to previous benchmarks,
whose tasks are simple, tasks in this benchmark require more computation; hence,
repeated work is costly. In the experiment with range size 50, WS-WMULT’s repeated
work was larger than other algorithms, and this tendency became more pronounced
as the number of processes increased. This happens because (1) a small range size in-
creases the possibilities of concurrent Puts/Takes and (2) interleavings of Puts/Takes
of WS-WMULT, where multiplicity arises, are arguably not too complex. However,
repeated work was always low, less than 1%. Still, the small amount of repeated work
had some minor impact on WS-WMULT’s performance (see Figure 6.5b). For larger
range sizes, 250 and 1,000, the amount of repeated work of WS-WMULT decreased
to almost zero (as concurrent Puts/Takes are less likely to happen), and hence its
impact became negligible (see Figures 6.5d and 6.5f). In contrast, idempotent algo-
rithms had low amounts of repeated work in all cases (always close to zero), which
arguably happened because the interleavings where the relaxation occurs are less
likely to occur. All algorithms exhibited the same performance when the range sizes
were more significant, with ranges sizes of 250 and 1,000. It is worth stressing that
insert/extract policies did not affect performance, as all tasks were generated at the
beginning of the experiment; hence, basically, every Take/Steal had to read from
main memory at all times.

The outcomes of the rest of the experiments, for range assignment sizes 100, 500,
and 2,500, are similar. Appendix A.3 contains all results of the benchmark.

6.2

Modular Basket Queues

In this section, we discuss the outcome of an experimental evaluation of the modular
baskets queue algorithms presented in Chapter 5. To evaluate the modular queue’s
performance, we have designed a set of experiments that allow us to determine
whether it is competitive with queues in the state-of-the-art literature. We divide
our experiments into two classes: inner experiments and outer experiments.

Inner experiments evaluate the performance of the modular queue using distinct
implementations of LL/IC objects and baskets. These experiments allow us to con-
sider which implementations (combinations of LL/IC objects and baskets to build
the modular queue) perform best. Also, this allows us to know if, using more relaxed
objects, the queue’s performance can compete with the classical synchronization ob-

104 6. Experimental Evaluation and Results

jects. Once the inner experiments have been evaluated and the best combination to
build the queue is chosen, we asses the selected queue against state-of-the-art queues
(outer experiments) to assess its performance and throughput. The list of queue
algorithms against which we evaluate our chosen queue are:

• Wait-Free queue by Yang and Mellor-Crummey [90].

• Lock-Free LCRQ queue by Morrison and Afek [67].

• Lock-Free queue by Michael and Scott [64].

• Lock-Free queue by Ramalhete [77], which was strongly inspired by the ob-
struction-free queue shown in the work of Yang and Mellor-Crummey [90]

• Lock-Free queue by Ostrovsky and Morrison [74]3.

6.2.1 Experimental Setup

Platforms and Implementation

The experiments were conducted on a machine with an AMD Ryzen Threadripper
3970X processor with 64GB of memory and 32 cores, each capable of executing two
hardware threads. This gives a total of 64 hardware threads for the evaluation. We
have developed the algorithms and infrastructure to carry out experimental evalua-
tion using the C++20 programming language. This allows us to benefit from the new
concurrency and parallelism features integrated with this version, including updates
to atomics and synchronization facilities.

For the inner experiments of the modular queue variants, we do not use any ad-
vanced memory reclamation protocol. Instead, we added basic memory reclamation
after each evaluation. During these experiments, we only followed the specifications
of the queue, LL/IC objects, and baskets mentioned in Section 5.2 to implement the
distinct variants. The main objective of this experiment was to understand how
different implementations of the same object (LL/IC, baskets) can affect the perfor-
mance of the modular queue. Below, we have provided a detailed explanation of how
the experiment will be conducted.

For our outer experiments, we use Hazard Pointers as memory reclamation for the
following queues: the lock-free queue by Michael-Scott [64], the LCRQ queue [67],
and the lock-free queue by Ramalhete-Correia [77], as well as the list-of-arrays ver-
sion of the modular queue. In the case of the queue by Ostrovsky-Morrison [74] and

3We implemented only the version that use simple Compare&Swap

6.2 Modular Basket Queues 105

the queue by Yang-Mellor Crummey [90], we used their respective memory reclama-
tion algorithms, such as epoch-based memory reclamation [29, 61]. We followed the
specifications for dynamic arrays and the list of the arrays described in Section 5.3 to
implement the modular queue for these experiments. We compared the implemen-
tations of the modular queue to the state-of-the-art queues. A detailed explanation
of how the experiments are conducted is provided below.

Methodology

To evaluate the performance of the queue and its components, we conduct an exper-
imental evaluation divided into two benchmarks. The first benchmark analyzes the
LL/IC objects described in section 5.2.1 and the baskets described in section 5.2.2.
The second benchmark evaluates the performance of the modular queue using the
best LL/IC object and basket compared to queues in the state-of-the-art literature.
We use the statistically rigorous methodology by Georges et al. [32], as described in
section 3.5.2, to measure performance in both benchmarks. Each software thread is
pinned to a specific hardware thread in both cases.

Inner Experiments

To evaluate the performance of our distinct variants for the LL/IC objects and the
baskets, which are fundamental for the construction of the modular queue, we per-
form the following experiments:

1. For the case of the LL/IC object implementations, we conducted a test to mea-
sure the time required for executing 5, 000, 000 interspersed LL- IC calls to the
same object by multiple threads. Each thread performs a random amount of
work between LL and IC calls to avoid artificial long-run scenarios (see, for
example, [90]). This random work consists of spinning a small amount of time
(approximately six µs) in an empty loop. We took the false sharing problem [50]
into account in the array-based LL/IC implementations (i.e., Read/Write imple-
mentation). We tested the following versions:

• Compare&Swap-based implementation.
• Read/Write-based implementation with distinct padding sizes for each ar-

ray entry (0, 16, 32, 64 bytes of padding).

We also tested the Fetch&Increment instruction in a similar setting to provide
a comparison point for the LL/IC objects. Instead of making two calls with

106 6. Experimental Evaluation and Results

random work in between, we carried out Fetch&Increment with random work
after its execution.

2. For the case of the combinations of LL/IC objects and baskets to build the mod-
ular queue, we did a similar evaluation to the previous, but testing interspersed
calls to enqueue and dequeue in a shared queue by all threads. We measure
the time for executing 5 · 106 interspersed calls to enqueue and dequeue, and
similar to the previous test, we perform some artificial work to avoid artificial
long-run scenarios, using the same technique described previously. The value
K selected for the K-basket was

√
N , with N the number of processes in the

experiment. We tested the following combinations of LL/IC objects with the
respective basket:

• LL/IC Read/Write (with padding) with N -basket
• LL/IC Compare&Swap with N -basket
• LL/IC Read/Write (with padding) with K-basket
• LL/IC Compare&Swap with K-basket

Outer Experiments

The previous experiment’s results displayed the performance of different modular
queue variations. Based on that, we selected the best LL/IC object combination
with the basket for the modular queue. In this experiment, we tested three versions
of that modular queue against the following queues: Yang and Mellor-Crummey’s
Wait-Free queue [90], Morrison and Afek’s Lock-Free LCRQ queue [67], Michael and
Scott’s Lock-Free queue [64], Ramalhete and Correia’s Lock-Free queue [77], which
was inspired by Yang and Mellor-Crummey’s obstruction-free queue-Crummey [90],
and Ostrovsky and Morrison’s Lock-Free queue [74].

There are three versions of the modular queue: the classic version specified in
Section 5.2, which has a fixed size4 and does not have the option to resize5; the
dynamic array version, which has an initial size of 1024 baskets and doubles its size
whenever the array becomes full; and the list of arrays version, which use Hazard
Pointers[59] for memory management and utilizes nodes with basket arrays of size
1024. The last two versions are specified in Section 5.3.

To evaluate all the queues, we adopt a benchmark similar to that used by Ostro-
vsky and Morrison [74]. This benchmark consists of three workloads: producer-only,

41,000,000 of baskets
5It is the same used for the inner experiments

6.2 Modular Basket Queues 107

consumer-only, and a mixed producer/consumer workload. During the experimental
evaluation, each process can have the role of either a producer, who can call the
Enqueue function, or a consumer, who can call the Dequeue function. Similar to the
experiments performed in the section 6.2.1, we measure the time it takes until all
threads complete 1, 000, 000 operations. We use the statistically rigorous methodol-
ogy described in the section 3.5.2 that follows the methodology of Georges et al. [32]
for the experimental evaluation.

6.2.2 Experimental Evaluation Results
First, we present a summary of the experimental evaluation results from the Case
Of Study presented in Chapter 5.

Inner experiments (LL/IC evaluation) In this experiment, we observed that
all objects had similar behavior. As expected, the Fetch&Increment instruction
was faster than the LL/IC objects in virtually all cases. An interesting observa-
tion is that as the number of contending processes increases, the behavior of the
LL/ICCompare&Swap version is pretty similar to the Fetch&Increment evaluation.
The Read/Write version of LL/IC objects behaved similarly but with lower perfor-
mance than the Fetch&Increment and Compare&SwapLL/IC objects. The versions
using 16 and 64 bytes of padding were found to be the best.

Inner experiments (Modular queue variants evaluation) In this experiment,
we observed that queues based on the K-basket are the best among all the modular
queue variants. In particular, the version based on the Compare&SwapLL/IC object
performed the best. However, when the number of contending processes increases,
it scales slightly and performs similarly. The queue using Read/Write LL/IC and
the same type of basket does not scale, as shown in Figure 6.7. On the other hand,
queues based on N -basket will not even be considered for more research in the future.
However, it is interesting to see how the same algorithm can perform very differently
using only distinct types of modules for its main parts.

Outer experiments Based on the test results, the Yang-Mellor Crummey queue is
the most efficient compared to other queues. The LCRQ queue and Fetch&Increment
queue are slightly less efficient than the Yang-Mellor Crummey queue. The perfor-
mance of the list-of-arrays version and the classic version of the modular queue are
less efficient than that of the previous three queues. However, the list-of-array version
of the modular queue performs better than the original version. The Michael-Scott

108 6. Experimental Evaluation and Results

queue is less efficient than the previous queues. The Ostrovsky-Morrison queue per-
forms poorly for a few processes, but its performance improves when the number
of processes increases. The dynamic array version of the modular queue performs
poorly, possibly due to contention when the array resizes when it becomes full.

Inner Experiments - LL/IC Performance

The outcome of the LL/IC performance experiments for 64 processes appears in Fig-
ure 6.6, with their respective percentage improvement shown in Table 6.3. In these
experiments, the only real competitor for the Fetch&Increment instruction in terms
of performance was the LL/IC object Compare&Swap-based implementation, where,
in some moments, the range of improvement was over 0.46% to 3.49%, taking as
reference the execution using the same number of processes. Nonetheless, when the
number of threads was low, it showed no improvement. The Read/Write versions
show a negative improvement, ranging from -3.54% to -47.57%. This result is ex-
pected due to additional instructions needed to execute the LL/IC operations. For
further information about the results, refer to Appendix B.1 for a more detailed in-
sight. Considering these results, we decided to test the modular queue’s performance
using the Compare&Swap-based version and the Read/Write-based version with 16
and 64 bytes of padding for each entry in the next subsection.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Na
no

Se
co

nd
s

1e8
Fetch and Increment
CAS Based LLIC Object
RW Based LLIC Object with 64 bytes of padding
RW Based LLIC Object with 16 bytes of padding
RW Based LLIC Object with 32 bytes of padding
RW Based LLIC Object no padding

Figure 6.6: Mean times for LL/IC experiment. 1,000,000 interspersed calls to Take
and Put for 64 threads

6.2 Modular Basket Queues 109

Fetch and Increment CAS LL/IC RW LL/IC 64 padding RW LL/IC 16 padding RW LL/IC 32 padding RW LL/IC no padding
1 0.00 -5.81 -9.76 -10.70 -12.23 -10.91
8 0.00 -22.76 -33.34 -27.24 -32.77 -25.41
16 0.00 -12.59 -25.75 -25.80 -28.05 -27.46
24 0.00 -1.96 -6.00 -2.10 -6.47 -6.61
32 0.00 1.73 -11.61 -6.71 -10.84 -14.91
40 0.00 2.86 -11.66 -28.41 -15.19 -9.38
48 0.00 -1.48 -8.85 -19.53 -7.78 -28.75
56 0.00 -0.05 -5.30 -3.68 -7.88 -10.23
64 0.00 1.33 -12.25 -3.54 -7.44 -15.80

Table 6.3: Percentage improvement of LL/IC objects respect to Fetch&Increment
from 1 to 64 threads of execution.

Inner Experiments - Modular Queue Variants

The Enqueue - Dequeue Outer Experiment outcome for 64 processes appears in
Figure 6.7, and their respective percentage improvements are shown in Table 6.4.
In these experiments, we observe that our best version of the modular queue is
the combination of the Compare&Swap-based LL/IC object and the K-basket. In
particular, all the queue versions tested based on the N -basket performed worse
than those based on the K-basket. For example, taking the best version of the N -
basket, which is the one that uses LL/IC object Compare&Swap-based, they have a
lousy performance concerning the version conformed by LL/IC object Compare&Swap-
based and the K-basket ranging from -1.74% using one thread to -1229.5% using 64
threads. The queue based on the N -basket does not scale well. We observe similar
behavior in the queue based on N -basket with Read/WriteLL/IC objects (16 and 64
bytes of padding). They also range from -0.89% to -1356.19% of lousy performance
with respect to the performance of the queue that uses K-basket and Compare&Swap-
based LL/IC objects.

The queue with K-basket and Read/Write-based LL/IC objects also performed
worse, but not so severely. Its performance ranges from -0.79% to -281.49% concern-
ing using K-basket and Compare&Swap-based LL/IC objects. Based on the results
obtained, we have decided to test the modular queue that employs K-basket and
Compare&Swap-based LL/IC objects against the state-of-the-art queues mentioned
in Section 6.2.1. This queue version will be referred to as the Castañeda-Piña queue
in the following section.

Outer Experiments

The outcome of the Enqueue - Dequeue Outer Experiment for 64 processes appears
in Figure 6.8, and their respective percentage improvement is shown in Table 6.5. In

110 6. Experimental Evaluation and Results

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Na
no

Se
co

nd
s

1e9
LLIC CAS - N-Basket
LLIC CAS - K-Basket
LLIC RW16 - N-Basket
LLIC RW16 - K-Basket
LLIC RW64 - N-Basket
LLIC RW64 - K-Basket

Figure 6.7: Mean times for Enqueue - Dequeue in inner experiments. 1,000,000
interspersed calls to Enqueue and Dequeue for 64 threads

LLIC CAS - N-Basket LLIC CAS - K-Basket LLIC RW16 - N-Basket LLIC RW16 - K-Basket LLIC RW64 - N-Basket LLIC RW64 - K-Basket
1 -1.74 0.00 -1.62 -0.79 -0.89 -3.39
8 -258.89 0.00 -275.82 -62.07 -312.78 -106.99
16 -379.75 0.00 -430.37 -61.63 -427.12 -65.46
24 -667.53 0.00 -697.90 -96.02 -696.10 -103.47
32 -789.13 0.00 -872.14 -164.84 -872.05 -170.39
40 -902.46 0.00 -1034.40 -196.16 -1046.65 -209.51
48 -956.29 0.00 -1060.54 -188.44 -1066.28 -185.11
56 -1040.85 0.00 -1233.05 -227.03 -1239.22 -246.94
64 -1229.50 0.00 -1356.19 -270.04 -1355.10 -281.49

Table 6.4: Percentage improvement of Enqueue - Dequeue respect to LL/IC Com-
pare&Swap & K-Basket from 1 to 64 threads of execution.

these experiments, we observe that Yang-Mellor Crummey’s queue performed best
in almost every execution, followed closely by Ramalhete’s Fetch&Increment queue
(Fetch&Increment queue) and the LCRQ queue.

Their graphs look very similar; however, for executions using few cores occasion-
ally, LCRQ and the Fetch&Increment queues have some improvements over the per-
formance of the Yang-Mellor Crummey queue. The Fetch&Increment queue in some
executions has an improvement ranging from 0.87% to 6.92%, but after 16 threads, its
improvements begin to descend, ranging from -5.59% to -50.75%. LCRQ’s negative
improvement ranged from -6.96% to -193.12%. In some moments, its improvement
grows up to 5.61%.

6.2 Modular Basket Queues 111

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
Na

no
Se

co
nd

s
1e9

Obstruction-Free Fetch-and-Add Based Queue
Lock-Free LCRQ Queue
Lock-Free Castañeda-Piña Queue
Lock-Free Castañeda-Piña Queue Array Based
Lock-Free Castañeda-Piña Queue Segment Based
Lock-Free Michael&Scott Queue
Lock-Free Ostrovsky-Morrison Scalable Concurrent Queue
Wait-Free Yang-Mellor Crumey Queue

Figure 6.8: Mean times for Enqueue - Dequeue in outer experiments. 1,000,000
interspersed calls to Enqueue and Dequeue for 64 threads

According to performance analysis, the Castañeda-Piña list of arrays and its clas-
sic versions are the following queues that perform better among all queues. Although
their overall performance is similar, the list-of-arrays version outperforms the classic
version. The classic version shows a negative improvement ranging from -25.25% to -
1063.06%, whereas the list-of-array version ranges from -26.03% to -890.09%, both of
which are inferior to Yang-Mellor Crummey’s queue. However, they perform better
than other reported queues, as illustrated in Figure 6.8. A reason the list of arrays
performed better than the classic is due to the allocation/deallocation of small pieces
of memory instead of big chunks, like in the classic version.

Fetch-and-Add LCRQ Castañeda-Piña Castañeda-Piña Array Castañeda-Piña Segments Michael and Scott Ostrovsky-Morrison YMC
1 6.92 -6.96 -25.25 -29.12 -26.03 -55.65 -203.81 0.00
8 0.87 5.61 -121.32 -1112.60 -114.00 -355.21 -1738.11 0.00
16 -5.59 -19.50 -316.54 -2537.73 -271.74 -656.75 -2333.73 0.00
24 -20.50 -48.03 -540.67 -3112.91 -396.35 -1117.93 -2986.94 0.00
32 -25.66 -85.23 -717.10 -4067.25 -542.98 -1500.82 -3106.55 0.00
40 -33.56 -122.33 -843.99 -4849.80 -633.71 -1827.70 -3332.12 0.00
48 -34.40 -152.73 -895.45 -5358.40 -689.08 -1951.75 -3039.06 0.00
56 -38.72 -164.22 -957.90 -5195.85 -739.01 -2231.83 -2822.57 0.00
64 -50.75 -193.12 -1063.09 -5931.08 -890.09 -2538.04 -2897.45 0.00

Table 6.5: Percentage improvement of Enqueue - Dequeue respect to Yang and
Mellor-Crummey Queue from 1 to 64 threads of execution.

112 6. Experimental Evaluation and Results

It has been observed that the Michael-Scott and Ostrovsky-Morrison queues un-
derperformed compared to the previous queues. In the case of Michael-Scott’s queue,
we noticed a decline in performance ranging from -55.65% to -2,538.04% compared
to Yang-Mellor Crummey’s queue. However, the decline in performance is consistent
with the increase in the number of threads.

Similarly, for Ostrovsky-Morrison’s queue, the performance deteriorates as the
number of threads increases. For instance, the performance for one thread was found
to be close to -55% as compared to Yang-Mellor Crummey’s queue using one thread
as well. However, when the number of threads increased from 4 to 32, we observed
a further decline in performance ranging from -1738% to -3106%. After this number
of threads, the performance improvement began to reduce until it reached a value
close to -2807% compared to the performance of Yang-Mellor Crummey’s queue for
the same number of threads.

The Castañeda-Piña queue using dynamic arrays had the worst overall perfor-
mance, exhibiting a non-scalable behavior that only increases in time as the number
of threads increases, ranging from -29.12% to -5931.08%. A possible reason for the
bad performance is the time it takes to double its size and the contention while this
operation is performed.

CHAPTER 7

Discussion and Conclussions

This thesis delves into the evolution of concurrent computing and the shift from tra-
ditional to more flexible approaches when programming concurrent algorithms. The
primary objective of this study was to determine whether it is possible to implement
meaningful and useful objects using only synchronization mechanisms among the
simplest ones without compromising performance in practical settings.

In Chapter 4, the problem of work-stealing was addressed, and the limits of the
standard asynchronous Read/Write wait-free, shared memory model were explored.
In Chapter 5, the focus shifted towards building objects from a modular perspective
while keeping in mind the use of simple synchronization mechanisms. Specifically, a
modular queue was built, where some components can be implemented using only
Read/Write operations.

In Chapter 6, we present an experimental evaluation to measure the performance
of the algorithms presented in Chapters 4 and 5. For work-stealing, the study reveals
that the use of simple mechanisms can compete and even, in some cases, outperform
state-of-the-art algorithms. In the case of the modular queue, the study reveals
that the queue cannot compete directly against the fastest state-of-the-art queues.
However, its performance is good enough, and the performance lies in particular
implementations of its modules.

Case Study: Work-Stealing In Chapter 4, we studied the use of multiplicity
applied to work-stealing. We studied two relaxations for work-stealing, called mul-
tiplicity and weak multiplicity. Both of them allow a task to be extracted by more
than one Take/Steal operation, but each process can take the same task at most

114 7. Discussion and Conclussions

once; however, the relaxation can arise only in concurrency. For the first relaxation,
this property is directly guaranteed by the definition of set-linearizability. The sec-
ond relaxation follows from the fact that solutions must be sequentially-exact. We
presented two Read/Write, wait-free algorithms for the relaxations, both devoid of
Read-After-Write synchronization patterns. Moreover, the second algorithm is fence-
free with constant step complexity. To our knowledge, these are the first algorithms
for relaxations of work-stealing having all these properties, evading the known impos-
sibility result [9] in all their high-level operations. From the theoretical perspective
of the consensus number hierarchy [41], we have thus shown that work-stealing with
multiplicity and weak multiplicity lay at the lowest level with objects whose con-
sensus number is one. We also argued that the idempotent work-stealing [65] does
not solve either work-stealing with multiplicity or weak multiplicity. Therefore, the
relaxations and algorithms proposed here provide stronger guarantees. An experi-
mental evaluation showed that the benefits in the performance of work-stealing with
relaxed semantics depend on the type of application and the complexity of the work
associated with a task. Therefore, it cannot be guaranteed that relaxations of work-
stealing will always lead to improvements.

Viewed collectively, our results show that the simplest synchronization mecha-
nisms suffice to solve non-trivial coordination problems without compromising per-
formance in some practical applications.

Case Study: Modular Baskets Queue In Chapter 5, we adopted a modular
approach to building concurrent objects using simple synchronization mechanisms.
We designed a modular concurrent queue with multi-producer and multi-consumer
semantics. We proposed two concurrent objects that act as modules for the modular
queue: baskets and LL/IC objects. The baskets contain groups of items that were
enqueued concurrently and can be dequeued in any order. The LL/IC objects store
the head and tail of the queue and allow concurrent manipulation of the enqueues
and dequeues.

We introduced a general modular basket queue algorithm that utilizes an infi-
nite array of basket objects along with two LL/IC objects to store the head and the
tail. Two different LL/IC implementations were presented, one that relies solely on
Read/Write operations and another that utilizes the Compare&Swap instruction. In
addition, we presented two distinct basket implementations. The first implementa-
tion follows an approach similar to the LCRQ algorithm by Morrison and Afek [67].
In contrast, the second is reminiscent of locally generic data structure implementa-
tions based on the work of Henzinger et al. [33]. However, since the first approach
of this modular queue was designed using infinite arrays, we presented a second ap-

115

proach that considers the problem of a realistic implementation not relying on infinite
arrays. Therefore, two queue variants were presented: a dynamic array version and
a list-of-arrays version.

The results of an experimental evaluation revealed that the most efficient ap-
proach for implementing the modular queue was using the Compare&Swap-based
LL/IC object with the K-basket. With respect to the version of Read/Write, this one
was slightly less performant. Comparing the modular queue against state-of-the-
art queues shows that the queue cannot directly compete with the fastest queues.
However, its performance is still good enough, showing that the performance of the
modular queue lies in particular implementations of its modules. This last comes
from evaluating three distinct implementations of the modular queue. The first was
implementing the first approach with minimal changes, and the other two were based
on the variants mentioned at the end of the previous paragraph. Results showed that
the first approach and the list-of-arrays version had better performance, with the lat-
ter being the best performant. The version based on dynamic arrays does not scale
as well as expected.

Viewed collectively, our results show that modular and concurrent algorithms
can be built whose performance depends only on the performance of the algorithm’s
modules. They also show that a simple synchronization mechanism can still be used
to develop such algorithms.

Future Research The study of the simplest synchronization mechanisms to solve
concurrency problems is an ongoing field of research. Attiya et al.’s work [9] has
shown that it is impossible to eliminate expensive synchronization in classic and
ubiquitous specifications, which raises the question of whether it is possible to by-
pass this impossibility result in any way. We have considered two possible ways
to circumvent this result: (1) by considering relaxed semantics and (2) by making
additional assumptions about the model.

In the case of Work-Stealing, we have considered relaxed semantics like Multiplic-
ity [16, 20]. For future research, we are interested in designing algorithms for work-
stealing with multiplicity and weak-multiplicity that insert/extract tasks in orders
different from FIFO. Also, it is interesting to explore if the techniques in the algo-
rithms from Chapter 4 can be applied to solve relaxed versions of other concurrent
objects efficiently. For FIFO queues with multi-producer multi-consumer semantics,
we are interested in exploring if the modular design combined with techniques like
those mentioned in Chapter 4 can be used to obtain FIFO queues with multiplicity
or weak-multiplicity by manipulating the head and the tail through objects of type
MaxRead or RMaxRead.

116 7. Discussion and Conclussions

In the case of the modular basket queue and the techniques developed in Chap-
ter 5, we are interested in investigating if there are more efficient ways to implement
baskets, for example, using concurrent sets instead of arrays to store the concurrent
inputs. We are also interested in testing whether the use of baskets in algorithms
like LCRQ and Mellor-Crummey’s queue can improve their performance and help
with some problems like latency, as pointed out by Ramalhete [77], which are out of
the scope of this work.

Bibliography

[1] Adas, D., and Friedman, R. Brief announcement: Jiffy: A fast, memory
efficient, wait-free multi-producers single-consumer queue. In 34th International
Symposium on Distributed Computing, DISC 2020, October 12-16, 2020, Virtual
Conference (2020), pp. 50:1–50:3.

[2] Adve, S. V., and Boehm, H. Memory models: a case for rethinking parallel
languages and hardware. Commun. ACM 53, 8 (2010), 90–101.

[3] Adve, S. V., and Hill, M. D. Weak ordering - A new definition. In Proceed-
ings of the 17th Annual International Symposium on Computer Architecture,
Seattle, WA, USA, June 1990 (1990), pp. 2–14.

[4] Afek, Y., Korland, G., and Yanovsky, E. Quasi-linearizability: Relaxed
consistency for improved concurrency. In Principles of Distributed Systems -
14th International Conference, OPODIS 2010, Tozeur, Tunisia, December 14-
17, 2010. Proceedings (2010), pp. 395–410.

[5] Alistarh, D., Brown, T., Kopinsky, J., Li, J. Z., and Nadiradze,
G. Distributionally linearizable data structures. In Proceedings of the 30th
on Symposium on Parallelism in Algorithms and Architectures, SPAA 2018,
Vienna, Austria, July 16-18, 2018 (2018), pp. 133–142.

[6] AMD. Amd64 architecture programmer’s manual volume 2: System program-
ming. 2023 2 (2023).

[7] Aspnes, J., Attiya, H., and Censor-Hillel, K. Polylogarithmic concur-
rent data structures from monotone circuits. J. ACM 59, 1 (2012), 2:1–2:24.

[8] Attiya, H., Guerraoui, R., Hendler, D., and Kuznetsov, P. The
complexity of obstruction-free implementations. J. ACM 56, 4 (2009), 24:1–
24:33.

118 BIBLIOGRAPHY

[9] Attiya, H., Guerraoui, R., Hendler, D., Kuznetsov, P., Michael,
M. M., and Vechev, M. T. Laws of order: expensive synchroniza-
tion in concurrent algorithms cannot be eliminated. In Proceedings of the
38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2011, Austin, TX, USA, January 26-28, 2011 (2011), T. Ball
and M. Sagiv, Eds., ACM, pp. 487–498.

[10] Ayguadé, E., Copty, N., Duran, A., Hoeflinger, J. P., Lin, Y., Mas-
saioli, F., Teruel, X., Unnikrishnan, P., and Zhang, G. The design of
openmp tasks. IEEE Trans. Parallel Distributed Syst. 20, 3 (2009), 404–418.

[11] Bader, D. A., and Cong, G. A fast, parallel spanning tree algorithm for
symmetric multiprocessors. In 18th International Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. (April 2004), pp. 38–.

[12] Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E.,
Randall, K. H., and Zhou, Y. Cilk: An efficient multithreaded runtime
system. J. Parallel Distributed Comput. 37, 1 (1996), 55–69.

[13] Boehm, H., and Adve, S. V. Foundations of the C++ concurrency memory
model. In Proceedings of the ACM SIGPLAN 2008 Conference on Program-
ming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008
(2008), pp. 68–78.

[14] Böhm, M., and Speckenmeyer, E. A fast parallel sat-solver - efficient
workload balancing. Ann. Math. Artif. Intell. 17, 3-4 (1996), 381–400.

[15] Castañeda, A., Rajsbaum, S., and Raynal, M. Unifying concurrent
objects and distributed tasks: Interval-linearizability. J. ACM 65, 6 (2018),
45:1–45:42.

[16] Castañeda, A., Rajsbaum, S., and Raynal, M. Set-linearizable imple-
mentations from read/write operations: Sets, fetch &increment, stacks and
queues with multiplicity. Distributed Comput. 36, 2 (2023), 89–106.

[17] Castañeda, A., and Piña, M. Fully read/write fence-free work-stealing
with multiplicity. In 35th International Symposium on Distributed Computing,
DISC 2021, October 4-8, 2021, Freiburg, Germany (Virtual Conference) (2021),
S. Gilbert, Ed., vol. 209 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, pp. 16:1–16:20.

BIBLIOGRAPHY 119

[18] Castañeda, A., and Piña, M. Modular baskets queue. ArXiv.org, 2022.
https://arxiv.org/abs/2205.06323.

[19] Castañeda, A., and Piña, M. Read/write fence-free work-stealing with
multiplicity. J. Parallel Distributed Comput. 186 (2024), 104816.

[20] Castañeda, A., Rajsbaum, S., and Raynal, M. Relaxed queues and stacks
from read/write operations. In 24th International Conference on Principles of
Distributed Systems, OPODIS 2020, December 14-16, 2020, Strasbourg, France
(Virtual Conference) (2020), Q. Bramas, R. Oshman, and P. Romano, Eds.,
vol. 184 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, pp. 13:1–
13:19.

[21] Charles, P., Grothoff, C., Saraswat, V. A., Donawa, C., Kielstra,
A., Ebcioglu, K., von Praun, C., and Sarkar, V. X10: an object-
oriented approach to non-uniform cluster computing. In Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, OOPSLA 2005, October 16-20, 2005, San Diego,
CA, USA (2005), pp. 519–538.

[22] Chase, D., and Lev, Y. Dynamic circular work-stealing deque. In Proceed-
ings of the Seventeenth Annual ACM Symposium on Parallelism in Algorithms
and Architectures (New York, NY, USA, 2005), SPAA ’05, Association for Com-
puting Machinery, p. 21–28.

[23] Ellen, F., Hendler, D., and Shavit, N. On the inherent sequentiality of
concurrent objects. SIAM J. Comput. 41, 3 (2012), 519–536.

[24] Fatourou, P., and Kallimanis, N. D. A highly-efficient wait-free universal
construction. In SPAA 2011: Proceedings of the 23rd Annual ACM Symposium
on Parallelism in Algorithms and Architectures, San Jose, CA, USA, June 4-6,
2011 (Co-located with FCRC 2011) (2011), pp. 325–334.

[25] Fatourou, P., and Kallimanis, N. D. Revisiting the combining synchro-
nization technique. In Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPOPP 2012, New Orleans,
LA, USA, February 25-29, 2012 (2012), pp. 257–266.

[26] Feldman, Y., Dershowitz, N., and Hanna, Z. Parallel multithreaded
satisfiability solver: Design and implementation. In Proceedings of the 3rd Inter-
national Workshop on Parallel and Distributed Methods in Verification, PDMC
2004, London, UK, September 4, 2004 (2004), pp. 75–90.

https://arxiv.org/abs/2205.06323

120 BIBLIOGRAPHY

[27] Flood, C. H., Detlefs, D., Shavit, N., and Zhang, X. Parallel garbage
collection for shared memory multiprocessors. In Proceedings of the 1st Java
Virtual Machine Research and Technology Symposium, April 23-24, 2001, Mon-
terey, CA, USA (2001).

[28] Forsyth, D. Probability and statistics for computer science. Springer, 2018.

[29] Fraser, K. Practical lock-freedom. PhD thesis, University of Cambridge, UK,
2004.

[30] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation
of the cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Implementation (PLDI),
Montreal, Canada, June 17-19, 1998 (1998), pp. 212–223.

[31] Frigo, M., Leiserson, C. E., and Randall, K. H. The implementation
of the cilk-5 multithreaded language. In Proceedings of the ACM SIGPLAN
’98 Conference on Programming Language Design and Implementation (PLDI),
Montreal, Canada, June 17-19, 1998 (1998), pp. 212–223.

[32] Georges, A., Buytaert, D., and Eeckhout, L. Statistically rigorous
java performance evaluation. In Proceedings of the 22nd Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications, OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada
(2007), R. P. Gabriel, D. F. Bacon, C. V. Lopes, and G. L. S. Jr., Eds., ACM,
pp. 57–76.

[33] Haas, A., Henzinger, T. A., Holzer, A., Kirsch, C. M., Lippautz, M.,
Payer, H., Sezgin, A., Sokolova, A., and Veith, H. Local linearizability
for concurrent container-type data structures. In 27th International Conference
on Concurrency Theory, CONCUR 2016, August 23-26, 2016, Québec City,
Canada (2016), pp. 6:1–6:15.

[34] Haas, A., Lippautz, M., Henzinger, T. A., Payer, H., Sokolova, A.,
Kirsch, C. M., and Sezgin, A. Distributed queues in shared memory: multi-
core performance and scalability through quantitative relaxation. In Computing
Frontiers Conference, CF’13, Ischia, Italy, May 14 - 16, 2013 (2013), pp. 17:1–
17:9.

[35] Hamadi, Y., and Sais, L., Eds. Handbook of Parallel Constraint Reasoning.
Springer, 2018.

BIBLIOGRAPHY 121

[36] Hendler, D., Lev, Y., Moir, M., and Shavit, N. A dynamic-sized non-
blocking work stealing deque. Distributed Comput. 18, 3 (2006), 189–207.

[37] Hendler, D., and Shavit, N. Non-blocking steal-half work queues. In
Proceedings of the Twenty-First Annual Symposium on Principles of Distributed
Computing (New York, NY, USA, 2002), PODC ’02, Association for Computing
Machinery, p. 280–289.

[38] Henzinger, T. A., Kirsch, C. M., Payer, H., Sezgin, A., and
Sokolova, A. Quantitative relaxation of concurrent data structures. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’13, Rome, Italy - January 23 - 25, 2013 (2013),
pp. 317–328.

[39] Henzinger, T. A., Sezgin, A., and Vafeiadis, V. Aspect-oriented linea-
rizability proofs. In CONCUR 2013 - Concurrency Theory - 24th International
Conference, CONCUR 2013, Buenos Aires, Argentina, August 27-30, 2013. Pro-
ceedings (2013), pp. 242–256.

[40] Herlihy, M. Impossibility results for asynchronous PRAM (extended ab-
stract). In Proceedings of the 3rd Annual ACM Symposium on Parallel Algo-
rithms and Architectures, SPAA ’91, Hilton Head, South Carolina, USA, July
21-24, 1991 (1991), pp. 327–336.

[41] Herlihy, M. Wait-free synchronization. ACM Trans. Program. Lang. Syst.
13, 1 (1991), 124–149.

[42] Herlihy, M., Luchangco, V., and Moir, M. The repeat offender prob-
lem: A mechanism for supporting dynamic-sized, lock-free data structures. In
Distributed Computing, 16th International Conference, DISC 2002, Toulouse,
France, October 28-30, 2002 Proceedings (2002), pp. 339–353.

[43] Herlihy, M., Luchangco, V., and Moir, M. Obstruction-free synchro-
nization: Double-ended queues as an example. In 23rd International Conference
on Distributed Computing Systems (ICDCS 2003), 19-22 May 2003, Providence,
RI, USA (2003), pp. 522–529.

[44] Herlihy, M., and Shavit, N. The art of multiprocessor programming. Mor-
gan Kaufmann, 2008.

[45] Herlihy, M., and Wing, J. M. Linearizability: A correctness condition for
concurrent objects. ACM Trans. Program. Lang. Syst. 12, 3 (1990), 463–492.

122 BIBLIOGRAPHY

[46] Hoffman, M., Shalev, O., and Shavit, N. The baskets queue. In Proceed-
ings of the 11th International Conference on Principles of Distributed Systems
(Berlin, Heidelberg, 2007), OPODIS’07, Springer-Verlag, p. 401–414.

[47] IBM. IBM100 - Power 4 : The First Multi-Core, 1GHz Processor — ibm.com.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/#:~:
text=In%202001%2C%20IBM%20introduced%20the,more%20than%20170%
20million%20transistors. [Accessed 02-Jan-2023].

[48] Intel. Intel® 64 and ia-32 architectures software developer’s manual. 2023 2,
11 (2023), 0–40.

[49] ISO International Standard, I. std::memory_order, 2020.

[50] J., W. B., and Scott, M. L. False sharing and its effect on shared memory
performance. In USENIX SEDMS 1993 (USA, 1993), USENIX Association,
p. 3.

[51] Jayanti, P., Tan, K., and Toueg, S. Time and space lower bounds for
nonblocking implementations. SIAM J. Comput. 30, 2 (2000), 438–456.

[52] Johnen, C., Khattabi, A., and Milani, A. Efficient wait-free queue algo-
rithms with multiple enqueuers and multiple dequeuers. In 26th International
Conference on Principles of Distributed Systems, OPODIS 2022, December 13-
15, 2022, Brussels, Belgium (2022), pp. 4:1–4:19.

[53] Kirsch, C. M., Lippautz, M., and Payer, H. Fast and scalable, lock-free k-
fifo queues. In Parallel Computing Technologies - 12th International Conference,
PaCT 2013, St. Petersburg, Russia, September 30 - October 4, 2013. Proceedings
(2013), pp. 208–223.

[54] Kirsch, C. M., Payer, H., Röck, H., and Sokolova, A. Performance,
scalability, and semantics of concurrent FIFO queues. In Algorithms and Archi-
tectures for Parallel Processing - 12th International Conference, ICA3PP 2012,
Fukuoka, Japan, September 4-7, 2012, Proceedings, Part I (2012), pp. 273–287.

[55] Kogan, A., and Petrank, E. Wait-free queues with multiple enqueuers and
dequeuers. In Proceedings of the 16th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPOPP 2011, San Antonio, TX, USA,
February 12-16, 2011 (2011), pp. 223–234.

https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/#:~:text=In%202001%2C%20IBM%20introduced%20the,more%20than%20170%20million%20transistors.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/#:~:text=In%202001%2C%20IBM%20introduced%20the,more%20than%20170%20million%20transistors.
https://www.ibm.com/ibm/history/ibm100/us/en/icons/power4/#:~:text=In%202001%2C%20IBM%20introduced%20the,more%20than%20170%20million%20transistors.

BIBLIOGRAPHY 123

[56] Ladan-Mozes, E., and Shavit, N. An optimistic approach to lock-free FIFO
queues. Distributed Comput. 20, 5 (2008), 323–341.

[57] Lamport, L. How to make a multiprocessor computer that correctly executes
multiprocess programs. IEEE Transactions on Computers C-28 9 (September
1979), 690–691.

[58] Lea, D. A java fork/join framework. In Proceedings of the ACM 2000 Java
Grande Conference, San Francisco, CA, USA, June 3-5, 2000 (2000), pp. 36–43.

[59] Lilja, D. J. Measuring Computer Performance. Cambridge University Press,
Jul 2000.

[60] Manson, J., Pugh, W. W., and Adve, S. V. The java memory model. In
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2005, Long Beach, California, USA, January
12-14, 2005 (2005), pp. 378–391.

[61] McKenney, P. E., Appavoo, J., Kleen, A., Krieger, O., Russell,
R., Sarma, D., and Soni, M. Read-copy update. In AUUG Conference
Proceedings (2001), AUUG, Inc., p. 175.

[62] Michael, M. M. Safe memory reclamation for dynamic lock-free objects us-
ing atomic reads and writes. In Proceedings of the Twenty-First Annual ACM
Symposium on Principles of Distributed Computing, PODC 2002, Monterey,
California, USA, July 21-24, 2002 (2002), pp. 21–30.

[63] Michael, M. M. Hazard pointers: Safe memory reclamation for lock-free
objects. IEEE Trans. Parallel Distributed Syst. 15, 6 (2004), 491–504.

[64] Michael, M. M., and Scott, M. L. Simple, fast, and practical non-blocking
and blocking concurrent queue algorithms. In Proceedings of the Fifteenth An-
nual ACM Symposium on Principles of Distributed Computing, Philadelphia,
Pennsylvania, USA, May 23-26, 1996 (1996), J. E. Burns and Y. Moses, Eds.,
ACM, pp. 267–275.

[65] Michael, M. M., Vechev, M. T., and Saraswat, V. A. Idempotent
work stealing. In Proceedings of the 14th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, PPOPP 2009, Raleigh, NC, USA,
February 14-18, 2009 (2009), D. A. Reed and V. Sarkar, Eds., ACM, pp. 45–54.

124 BIBLIOGRAPHY

[66] Milman-Sela, G., Kogan, A., Lev, Y., Luchangco, V., and Petrank,
E. BQ: A lock-free queue with batching. ACM Trans. Parallel Comput. 9, 1
(2022), 5:1–5:49.

[67] Morrison, A., and Afek, Y. Fast concurrent queues for x86 processors.
SIGPLAN Not. 48, 8 (Feb. 2013), 103–112.

[68] Morrison, A., and Afek, Y. Fence-free work stealing on bounded tso pro-
cessors. SIGPLAN Not. 49, 4 (Feb. 2014), 413–426.

[69] Morrison, A., and Afek, Y. Fence-free work stealing on bounded tso pro-
cessors. In Proceedings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems (New York, NY,
USA, 2014), ASPLOS ’14, Association for Computing Machinery, p. 413–426.

[70] Nagarajan, V., Sorin, D. J., Hill, M. D., and Wood, D. A. A Primer
on Memory Consistency and Cache Coherence, Second Edition. Synthesis Lec-
tures on Computer Architecture. Morgan & Claypool Publishers, 2020.

[71] Neiger, G. Set-linearizability. In Proceedings of the Thirteenth Annual ACM
Symposium on Principles of Distributed Computing, Los Angeles, California,
USA, August 14-17, 1994 (1994), p. 396.

[72] Oracle. Java language specification: Chapter 17. threads and locks, 2017.

[73] Oracle. Varhandle: Java api, 2017.

[74] Ostrovsky, O., and Morrison, A. Scaling concurrent queues by using htm
to profit from failed atomic operations. In Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming (New
York, NY, USA, 2020), PPoPP ’20, Association for Computing Machinery,
p. 89–101.

[75] Owens, S., Sarkar, S., and Sewell, P. A better x86 memory model:
x86-tso. In Theorem Proving in Higher Order Logics, 22nd International Con-
ference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings
(2009), pp. 391–407.

[76] Papadimitriou, C. H. The serializability of concurrent database updates. J.
ACM 26, 4 (1979), 631–653.

BIBLIOGRAPHY 125

[77] Ramalhete, P., and Correia, A. Fetch-and-add array queue - mpmc lock-
free queue, Nov 2016.

[78] Ranger, C., Raghuraman, R., Penmetsa, A., Bradski, G. R., and
Kozyrakis, C. Evaluating mapreduce for multi-core and multiprocessor sys-
tems. In 13st International Conference on High-Performance Computer Archi-
tecture (HPCA-13 2007), 10-14 February 2007, Phoenix, Arizona, USA (2007),
pp. 13–24.

[79] Rihani, H., Sanders, P., and Dementiev, R. Brief announcement: Mul-
tiqueues: Simple relaxed concurrent priority queues. In Proceedings of the 27th
ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA
2015, Portland, OR, USA, June 13-15, 2015 (2015), pp. 80–82.

[80] Scott, M. L. Shared-Memory Synchronization. Synthesis Lectures on Com-
puter Architecture. Morgan & Claypool Publishers, 2013.

[81] Sewell, P., Sarkar, S., Owens, S., Nardelli, F. Z., and Myreen,
M. O. x86-tso: a rigorous and usable programmer’s model for x86 multiproces-
sors. Commun. ACM 53, 7 (2010), 89–97.

[82] Shavit, N. Data structures in the multicore age. Commun. ACM 54, 3 (2011),
76–84.

[83] Shavit, N., and Taubenfeld, G. The computability of relaxed data struc-
tures: queues and stacks as examples. Distributed Comput. 29, 5 (2016), 395–
407.

[84] SPARC International, Inc, C. The SPARC architecture manual: version
8. Prentice-Hall, Inc., 1992.

[85] Sundell, H. Wait-free reference counting and memory management. In 19th
International Parallel and Distributed Processing Symposium (IPDPS 2005),
CD-ROM / Abstracts Proceedings, 4-8 April 2005, Denver, CO, USA (2005),
IEEE Computer Society.

[86] Talmage, E., and Welch, J. L. Relaxed data types as consistency condi-
tions. Algorithms 11, 5 (2018), 61.

[87] Turing, A. M. On computable numbers, with an application to the entschei-
dungsproblem. Proc. London Math. Soc. s2-42, 1 (1937), 230–265.

126 BIBLIOGRAPHY

[88] Valois, J. D. Lock-free linked lists using compare-and-swap. In Proceedings
of the Fourteenth Annual ACM Symposium on Principles of Distributed Com-
puting, Ottawa, Ontario, Canada, August 20-23, 1995 (1995), J. H. Anderson,
Ed., ACM, pp. 214–222.

[89] von Neumann, J. First draft of a report on the EDVAC. IEEE Ann. Hist.
Comput. 15, 4 (1993), 27–75.

[90] Yang, C., and Mellor-Crummey, J. M. A wait-free queue as fast as fetch-
and-add. In Proceedings of the 21st ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March
12-16, 2016 (2016), R. Asenjo and T. Harris, Eds., ACM, pp. 16:1–16:13.

APPENDIX A

Work-Stealing Results

A.1

Results of Zero Cost Experiments

This appendix shows the results obtained by executing the zero-cost experiments
following the methodology suggested by Georges, Buytaert, and Eeckout [32]. The
data is divided in the case of the experiment of Puts-Takes and the case of Puts-Steals.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Lock-Free LCRQ Queue 403572408.43 187820883.50 116026264.60 94770156.63 84622830.50 93050854.37 97720927.97 95509834.43 99412632.57 101217631.23 108716588.03 113385554.47 116865624.87 122543525.30 126754099.80 127109938.03 126730354.90
Obstruction-Free Fetch-and-Add Based Queue 351200027.63 169692112.77 121854879.07 88994036.27 74776242.40 78627962.80 79543299.43 71817559.87 67443713.50 63240889.47 65311551.40 63473601.93 62148500.10 64238033.60 66547657.57 65885871.70 65178512.30
Lock-Free Castañeda-Piña Queue Array Based 487165396.30 1077150109.93 1490503277.57 1783321075.57 1867961323.20 2023925634.47 2120916067.10 2166062984.03 2236554396.10 2429715567.90 2420424604.93 2464267895.70 2523987255.27 2514987713.47 2540588509.17 2575744556.40 2607573629.43
Lock-Free Michael&Scott Queue 587248865.70 471544279.67 559538345.73 541606321.37 535908982.53 684008030.47 803985551.10 837462016.30 859154816.23 875829430.07 942633485.97 946151498.10 948736421.87 1024468571.63 1118652395.07 1140158428.23 1140572453.10
Lock-Free Castañeda-Piña Queue 472555550.90 301829643.73 272038021.70 281703838.03 294978630.73 379995043.80 422919854.07 432414808.13 438538137.47 437121875.30 461605337.17 460308301.33 460302515.57 484756656.03 507507288.80 505315540.43 502870762.67
Wait-Free Yang-Mellor Crumey Queue 377297171.80 197394522.23 122918448.70 87396589.83 70816962.53 67941366.37 66012273.80 59065987.40 53669770.97 48970421.20 48899447.00 46628124.97 46240439.33 47095151.57 47973167.30 46690629.67 43235588.63
Lock-Free Castañeda-Piña Queue Segment Based 475511479.40 288435581.67 263046870.43 227342770.57 263256036.93 312408909.57 327654824.50 341570968.90 345087614.40 350204025.40 358781500.57 360854102.40 364872124.93 379651287.00 402499664.00 416756883.57 428069875.03
Lock-Free Ostrovsky-Morrison Scalable Concurrent Queue 1146251708.13 3387292159.17 2259382162.50 2026162066.43 1723493401.93 1932146663.93 2037756243.03 1897402494.37 1720945612.37 1629208308.67 1678287663.47 1534113476.07 1451514990.13 1413332353.37 1402048064.73 1337866333.20 1295963945.30

Table A.1: Mean times for Enqueue - Dequeue experiment for 64 threads

A.1.1 Puts-Takes

A.1.2 Puts-Steals

128 A. Work-Stealing Results

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 206105723.49 211217590.84 222570807.61 187686110.36 311857192.28 107167632.11 952902162.60 223914128.86 375494492.90
Low Limit 205713311.48 210753568.00 222029102.93 187305885.73 311337719.28 106944566.24 932470976.30 221872884.15 355430610.14
High Limit 206498135.50 211681613.68 223112512.29 188066334.99 312376665.28 107390697.98 973333348.90 225955373.57 395558375.66
Confidence Interval 784824.01 928045.67 1083409.37 760449.26 1038946.01 446131.74 40862372.61 4082489.43 40127765.52

Table A.2: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The zero
cost experiment for puts and takes was performed with an initial structure size of
256 items for each worker. The amount of operations to perform was of 10000000
operations.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 197232290.46 202217219.83 209743459.03 184687931.23 285572059.50 107538022.02 883850090.93 180476312.87 311215062.70
Low Limit 196858011.16 201778117.71 209441782.36 184346868.43 284992355.03 107304017.73 853055195.43 179441832.20 296671676.50
High Limit 197606569.76 202656321.95 210045135.70 185028994.03 286151763.97 107772026.31 914644986.43 181510793.54 325758448.90
Confidence Interval 748558.61 878204.23 603353.34 682125.60 1159408.95 468008.59 61589791.00 2068961.35 29086772.40

Table A.3: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The zero
cost experiment for puts and takes was performed with an initial structure size of
1000000 items for each worker. The amount of operations to perform was of 10000000
operations.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 124295472.28 122986153.27 104572052.73 159480162.96 180129261.80 89607898.79 311403582.39 168305627.62 361147626.67
Low Limit 124085001.89 122774139.69 103932958.18 159024771.73 179516019.76 89485513.68 306677492.57 167645846.38 357881600.91
High Limit 124505942.67 123198166.85 105211147.28 159935554.19 180742503.84 89730283.90 316129672.21 168965408.86 364413652.43
Confidence Interval 420940.77 424027.16 1278189.10 910782.45 1226484.07 244770.22 9452179.63 1319562.48 6532051.52

Table A.4: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The
zero cost experiment for puts and takes was performed with an initial structure size
of 10000000 items for each worker. The amount of operations to perform was of
10000000 operations.

A.1 Results of Zero Cost Experiments 129

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 198416960.62 293803996.52 216277326.98 220720524.13 319510678.37 106704209.84 1012954992.34 225121073.52 454634203.16
Low Limit 197939052.88 293090297.22 215818699.72 219989525.44 318822843.61 106447024.18 997435581.59 223531813.39 427898503.65
High Limit 198894868.36 294517695.82 216735954.24 221451522.82 320198513.13 106961395.50 1028474403.09 226710333.65 481369902.67
Confidence Interval 955815.48 1427398.60 917254.52 1461997.39 1375669.52 514371.33 31038821.50 3178520.26 53471399.03

Table A.5: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The zero
cost experiment for puts and steals was performed with an initial structure size of
256 items for each worker. The amount of operations to perform was of 10000000
operations.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 188742815.65 285389986.59 204578776.35 219054343.94 294326647.21 105862001.14 946421899.22 179108873.00 359239862.76
Low Limit 188321766.63 284765322.59 204200829.72 218248707.65 293747378.70 105465468.28 927800797.17 177966882.72 343069305.85
High Limit 189163864.67 286014650.59 204956722.98 219859980.23 294905915.72 106258534.00 965043001.27 180250863.28 375410419.67
Confidence Interval 842098.03 1249328.01 755893.26 1611272.57 1158537.02 793065.71 37242204.11 2283980.57 32341113.83

Table A.6: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The zero
cost experiment for puts and steals was performed with an initial structure size of
1000000 items for each worker. The amount of operations to perform was of 10000000
operations.

Chase-Lev Cilk THE Idempotent FIFO Idempotent LIFO Idempotent DEQUE WS WMult B. WS WMult WS WMult Lists B. WS WMult Lists
Mean 119167926.10 212595892.45 98402983.58 193260103.58 188956689.55 89542389.85 358625879.40 166818125.62 402391945.69
Low Limit 118432187.01 212092094.09 97987902.47 192623917.53 188514507.55 89384931.83 355364057.87 166082636.81 392057077.47
High Limit 119903665.19 213099690.81 98818064.69 193896289.63 189398871.55 89699847.87 361887700.93 167553614.43 412726813.91
Confidence Interval 1471478.18 1007596.71 830162.22 1272372.10 884364.00 314916.03 6523643.06 1470977.62 20669736.45

Table A.7: The values shown in the table were calculated under the methodology
suggested in [32]. These values in nanoseconds, are the mean time, the confidence
interval limits (high and low) and the size region of the confidence interval. The
zero cost experiment for puts and steals was performed with an initial structure size
of 10000000 items for each worker. The amount of operations to perform was of
10000000 operations.

130 A. Work-Stealing Results

A.2

Results of Parallel Spanning Tree experiments

A.2.1 Time measurements of Parallel Spanning Tree exper-
iment

In this section, we report the measurements of the executions of the spanning tree
experiment, which were carried out using rigorous statistical methodology and thus
have reliable values. The executions are shown for the following graphs: Torus 2D,
Torus 2D 60%, Torus 3D, Torus 3D 40%, and Random. Each one has a million
vertices, and evaluations are made on its directed and undirected versions. In the
experiments, for all instances of the work-stealing algorithms, an initial size of 256
and 1,000,000 elements to store was established. The order of these figures and tables
is as follows:

1. Directed and undirected Torus 2D with 256 and 1,000,000 of items for the
starting size for work-stealing structures. Figure A.1, and tables A.8, A.9,
A.10 and A.11.

2. Directed and undirected Torus 2D 60% with 256 and 1,0000,000 of items for the
starting size for work-stealing structures. Figure A.2, and tables A.12, A.13,
A.14, and A.15.

3. Directed and undirected Torus 3D with 256 and 1,000,000 items for the starting
size for work-stealing structures. Figure A.3, and tables A.16, A.17, A.18,
and A.19.

4. Directed and undirected Torus 3D 40% with 256 and 1,000,000 items for the
starting size for work-stealing structures. Figure A.4, and tables A.20, A.21,
A.22, and A.23.

5. Directed and undirected Random Graph with 256 and 1,000,000 items for the
starting size for work-stealing structures. Figure A.5, and tables A.24, A.25,
A.26, and A.27.

A.2 Results of Parallel Spanning Tree experiments 131

1 8 16 24 32 40 48 56 64
Threads

2

4

6

8

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Mean times for the graph application
benchmark. These are the results for the 2D
Torus Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

0.2

0.4

0.6

0.8

1.0

1.2

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Mean times for the graph application
benchmark. These are the results for the 2D
Torus Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of 1,000,000 entries.

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(c) Mean times for the graph application
benchmark. These are the results for the
2D Torus Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 256 en-
tries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Mean times for the graph application
benchmark. These are the results for the
2D Torus Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 1,000,000
entries.

Figure A.1: 2D Torus Directed and Undirected Graph with 256 and 1,000,000 initial
sizes respectively.

132 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 275477463.00 136788862.74 74324477.77 60730736.43 53505251.35 50743232.51 50292847.11 54089550.83 56234022.28
B. WS WMult 270377949.90 135945596.35 74881098.84 61011775.05 55033500.39 51617389.18 50911385.25 54141726.30 60230204.70
Chase-Lev 245820345.21 229356624.44 132371426.13 100919202.73 85931100.37 79043201.15 78056439.48 77733696.92 85279360.99
Cilk THE 263677364.18 311281988.58 322321281.34 337196064.37 346876936.91 353384223.55 364851039.81 381583332.07 380634053.09
Idempotent DEQUE 268351478.04 890041843.06 271731282.68 196719701.28 169542956.14 175498130.08 185603584.54 191766131.46 179564368.52
Idempotent FIFO 240555867.99 130412115.53 71135466.76 59469052.26 52425282.13 50053083.46 48699445.66 51530675.32 54082623.12
Idempotent LIFO 268557944.01 121240023.29 80842396.35 73393176.30 68756656.08 62265055.27 59531339.13 60499769.67 65800153.04
WS WMult Lists 264386117.47 135442458.17 74359990.60 60075063.34 53356451.31 51045223.01 49362511.61 56191157.64 55810986.14
WS WMult 247514986.11 130992091.43 71628084.25 59275666.19 54259775.64 49197376.25 48457494.80 52845091.43 51699244.96

Table A.8: Mean times for the graph application benchmark. These are the results
for the 2D Torus Directed graph. Each algorithm begin its execution with an initial
size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 282032101.13 143069494.72 85534815.94 78504149.89 78699282.75 81141869.21 86677012.58 101372180.23 107427536.39
B. W WMult 254029656.93 147059256.57 89875139.77 81711438.58 81440512.00 83371685.71 87706342.83 103781818.41 110569292.18
Chase-Lev 246442791.95 237923122.57 144322166.44 112347776.21 100841004.28 97312919.02 96845768.48 105140083.88 118527697.40
Cilk THE 264300653.34 323239004.94 343356947.48 354030678.14 368922285.60 381228576.03 388191674.43 402911552.15 408918000.97
Idempotent DEQUE 260815108.20 1209548909.30 412614106.02 234745065.18 190273084.36 175218721.12 166271433.10 176938712.66 166152657.38
Idempotent FIFO 241691715.81 147779277.84 86794723.48 74580951.70 71319113.57 69953403.69 72951557.67 76481707.91 88300511.33
Idempotent LIFO 274669968.74 132876867.01 92359758.62 84527174.06 80000747.41 79918156.55 81057426.41 87742754.73 93122905.36
WS WMult Lists 266732948.81 139727360.22 81166332.81 71537631.71 68838660.20 68622394.33 70694380.57 76278304.11 82762680.50
WS WMult 253102197.42 144215742.72 83755232.58 73098841.65 69905539.84 70307884.91 71467092.10 81326080.28 86772858.87

Table A.9: Mean times for the graph application benchmark. These are the results
for the 2D Torus Directed graph. Each algorithm begins its execution with an initial
size of 1000000 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 310159873.86 140439779.78 75432726.40 60406182.71 53911161.76 51430777.91 50753159.38 55951600.18 56137962.96
B. WS WMult 314452637.35 139249013.63 76542543.20 62311010.87 55528149.56 52097619.34 52246241.13 57724836.67 59747465.26
Chase-Lev 138828051.42 138897518.79 87292876.34 70522950.03 63105704.93 59978683.77 56908800.75 60120171.07 63348521.30
Cilk THE 138028046.12 139574907.75 86992872.27 69182659.71 61861841.16 59163947.75 58000268.78 57943903.04 59164952.68
Idempotent DEQUE 162061744.20 94795698.28 79606910.26 74293432.40 68175669.64 63633505.52 59008790.10 58410327.72 56516387.48
Idempotent FIFO 285722944.41 137771932.41 74313817.07 59775880.18 54199431.72 49858050.44 48473814.48 50603478.05 54748949.06
Idempotent LIFO 139329399.29 91652023.21 66936992.03 58831954.84 53465545.93 51570670.85 51610279.19 53622297.77 54754410.32
WS WMult Lists 294863903.34 137331873.11 74299658.78 60022488.79 53029369.50 50656621.07 48692765.58 53784545.47 53296961.05
WS WMult 281148635.39 137928573.11 73505852.13 60207428.55 53334767.43 49825802.09 49308366.02 51896274.03 52172465.28

Table A.10: Mean times for the graph application benchmark. These are the results
for the 2D Torus Undirected graph. Each algorithm begins its execution with an
initial size of 256 items.

A.2 Results of Parallel Spanning Tree experiments 133

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 313137477.28 146059161.29 87094776.55 78679883.57 78976895.23 81553430.32 86244666.42 99783595.98 110398812.46
B. WS WMult 293784827.34 147980221.95 88731594.96 81121304.79 80579591.88 82813668.25 89143510.85 103539594.14 107036269.51
Chase-Lev 135739209.18 143310608.07 95323139.46 81052618.70 76940451.27 76699127.81 79395479.61 85791529.95 92214170.11
Cilk THE 134426266.75 138584211.69 88507523.61 76405888.32 74084595.82 74632761.47 76161617.37 80595336.35 82538974.04
Idempotent DEQUE 160055984.00 102061319.64 90198138.78 82973638.50 81645834.10 82150883.36 83227444.86 84420556.12 86499396.64
Idempotent FIFO 281355092.48 149030688.81 85883852.60 74176611.42 70542525.74 70451746.00 72308567.54 81236910.85 86493594.23
Idempotent LIFO 135852779.09 101491242.31 74122390.31 71756053.52 70549755.43 69617711.32 72795329.85 78634423.92 88549939.13
WS WMult Lists 293649514.77 143351585.30 82231696.72 71153322.35 68221248.95 68690573.69 70317039.66 80917247.72 81000767.24
WS WMult 280609111.62 146014648.66 84057327.09 73737753.72 69754078.34 70027563.45 72554542.24 79464648.48 84181768.65

Table A.11: Mean times for the graph application benchmark. These are the results
for the 2D Torus Undirected graph. Each algorithm begins its execution with an
initial size of 1000000 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 271606510.37 112596991.25 68569676.02 57301051.36 50764719.52 48888215.29 48355334.41 54134929.14 57394951.90
B. WS WMult 267846777.75 110997123.47 68040897.63 57020102.54 52278828.53 50189180.68 50565768.85 59297832.00 61153079.83
Chase-Lev 158506506.33 143484647.03 84147418.00 68976751.32 62140583.83 57845418.33 58101207.31 62954762.83 66131499.15
Cilk THE 169847040.68 144015298.42 82866364.81 66790422.97 60273306.47 58391753.66 59823679.89 61730076.35 63568056.79
Idempotent DEQUE 160055984.00 102061319.64 90198138.78 82973638.50 81645834.10 82150883.36 83227444.86 84420556.12 86499396.64
Idempotent FIFO 246549072.59 108976897.48 65641256.85 55840030.43 50411383.53 47746138.13 47814235.24 52140361.59 54387574.39
Idempotent LIFO 176418657.30 136781388.73 79376036.88 65015427.06 58639994.94 54894622.52 54955449.08 59872541.30 63279878.32
WS WMult Lists 258595656.45 109902199.41 66031946.41 56068001.08 50130919.94 47661233.40 48538151.53 52661930.18 57048192.31
WS WMult 244164548.83 106927739.38 64424631.37 55088020.64 49565809.86 47789569.96 47079594.83 52927191.06 53077060.64

Table A.12: Mean times for the graph application benchmark. These are the results
for the 2D Torus 60% Directed graph. Each algorithm begins its execution with an
initial size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 276019680.35 118608819.28 79879863.83 75368321.91 76921962.09 80232098.52 85462153.81 100530174.03 104015378.66
B. WS WMult 250827613.38 127704204.84 86842336.67 80203663.41 78982977.31 81987558.65 89238292.37 102066852.80 108750912.15
Chase-Lev 159671850.22 147428688.35 91156625.45 79026716.82 75869090.23 75450430.54 77846602.34 87578990.75 96827608.33
Cilk THE 170751689.40 145787527.82 87660021.64 76220044.95 71997062.28 74177705.44 79934972.24 83618370.09 88110479.39
Idempotent DEQUE 182658961.84 144968223.58 91149682.18 83740629.10 82285138.84 82047462.08 80435457.82 85897624.22 90689999.84
Idempotent FIFO 244991185.08 140245626.99 85598340.14 74238515.55 70912264.52 71469675.60 73935154.93 80825298.37 90538667.68
Idempotent LIFO 176481668.10 144272589.64 89256520.53 78199274.43 75257101.72 75557372.58 75999435.33 86619269.45 92537025.58
WS WMult Lists 258286193.60 122279814.84 76291996.09 68133590.83 66153163.63 66865654.60 69070482.60 76900557.87 80688747.87
WS WMult 242540777.49 124338868.84 77031753.27 70801264.40 68030449.61 67980027.38 70670605.67 82555005.58 82774264.49

Table A.13: Mean times for the graph application benchmark. These are the results
for the 2D Torus 60% Directed graph. Each algorithm begins its execution with an
initial size of 1000000 items.

134 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Mean times for the graph application
benchmark. These are the results of the 2D
Torus 60% Directed graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 256 en-
tries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Mean times for the graph application
benchmark. These are the results of the 2D
Torus 60% Directed graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 1,000,000
entries.

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(c) Mean times for the graph application
benchmark. These are the results of the 2D
Torus 60% Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 256 en-
tries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Mean times for the graph application
benchmark. These are the results of the 2D
Torus 60% Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 1,000,000
entries.

Figure A.2: 2D Torus 60% Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively.

A.2 Results of Parallel Spanning Tree experiments 135

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 315547343.65 128360940.38 72648802.92 58927358.92 52792408.11 50039481.98 48804691.21 51732128.93 56555628.45
B. WS WMult 313326495.26 127723398.79 73483161.75 60717597.04 54443097.02 51433412.83 51552878.37 55703893.17 61765110.29
Chase-Lev 227181330.71 150290622.08 103416065.16 82380750.85 78577017.18 72905889.61 71494636.33 74295370.35 76825437.30
Cilk THE 241733376.13 158313912.20 111680955.02 95495931.87 101569649.50 108395508.88 107417568.44 112791812.70 123995328.19
Idempotent DEQUE 253631054.34 150531220.36 106522134.60 93301475.32 100813833.08 95285547.84 97328945.64 93391967.26 102039301.48
Idempotent FIFO 293454305.80 126736415.05 71307930.79 58829639.90 52462841.41 49072818.39 47060387.78 52425106.09 50348606.01
Idempotent LIFO 244193909.45 109910536.53 76506588.60 64495660.08 57956406.18 55706367.83 55631734.30 56756671.07 58952951.58
WS WMult Lists 297318338.24 126209394.42 71354059.76 58646037.82 51841644.46 49599705.40 48392678.56 54069070.60 52808540.08
WS WMult 285278176.72 124107241.78 70627418.10 58085150.05 51669687.98 49369980.00 47603702.40 51037809.72 53382542.26

Table A.14: Mean times for the graph application benchmark. These are the results
for the 2D Torus 60% Undirected graph. Each algorithm begins its execution with
an initial size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 309856315.98 136303438.88 84801109.48 77676595.01 77760793.85 81481981.85 85896394.19 100627631.63 106309709.93
B. WS WMult 290354542.52 142736854.03 87950406.31 79587545.45 78588242.76 81475207.56 86517784.67 103123341.20 103949351.04
Chase-Lev 224603931.97 160504055.83 114446930.51 98575701.24 91205053.43 92858685.79 96642196.09 100917291.75 106538505.87
Cilk THE 238559704.41 163907735.92 119766251.42 115236994.47 110200387.50 133250227.29 135537288.52 141820918.53 146968210.28
Idempotent DEQUE 242414652.28 169993061.78 126641918.18 117239442.28 112027599.84 112470998.08 111536200.72 115373385.14 119482468.00
Idempotent FIFO 290306090.80 146658908.67 86560565.57 74055672.27 70429908.94 69865238.79 71211933.45 79175134.19 87616728.40
Idempotent LIFO 241003755.68 120340684.91 86919528.18 78779290.43 75678791.80 76471373.39 78683534.58 84196068.70 89505827.99
WS WMult Lists 296513168.96 135982366.57 79425785.45 70076106.00 66821235.21 67149530.26 70754231.29 77729508.08 80592631.25
WS WMult 284133861.51 138538767.64 83190684.63 71858766.90 68338658.79 68446034.77 71509952.60 78648218.58 83889876.34

Table A.15: Mean times for the graph application benchmark. These are the results
for the 2D Torus 60% Undirected graph. Each algorithm begins its execution with
an initial size of 1000000 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 301624917.75 141866549.86 83541479.95 65138808.25 56914186.43 52423454.12 51989751.02 56527527.81 56014742.33
B. WS WMult 307030538.52 135703652.72 78782482.95 65127326.79 57715887.45 54287146.47 52865866.01 57975637.71 61597515.65
Chase-Lev 280392485.15 228490657.84 144625861.02 109098309.70 92276276.37 83024023.87 79330745.40 81379045.57 85906640.40
Cilk THE 299818699.91 242544084.79 160037649.11 127730079.75 120478873.41 113797574.00 114802833.54 122864155.78 126030085.89
Idempotent DEQUE 299736006.28 258097839.40 225742191.98 184364046.70 166686299.08 141299789.18 221591062.68 273390848.52 292214859.04
Idempotent FIFO 281603607.82 136152638.28 78509517.98 64302364.58 56427898.85 52667607.33 50843691.96 51910053.16 56209351.97
Idempotent LIFO 306122801.62 145650799.53 94241295.91 79193284.39 71350221.69 66482956.94 64179470.43 65091183.51 67905411.43
WS WMult Lists 288758130.76 141026789.51 82019900.84 64081744.46 56705351.91 52060495.93 51302462.90 53337902.56 59025199.96
WS WMult 273827102.97 132030977.87 76413364.21 63917969.81 56562794.21 51825154.68 50271924.64 54089613.78 56571351.07

Table A.16: Mean times for the graph application benchmark. These are the results
for the 3D Torus Directed graph. Each algorithm begins its execution with an initial
size of 256 items.

136 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Mean times for the graph application
benchmark. These are the results of the 3D
Torus Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Mean times for the graph application
benchmark. These are the results of the 3D
Torus Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of 1,000,00 entries.

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(c) Mean times for the graph application
benchmark. These are the results of the
3D Torus Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 256 en-
tries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Mean times for the graph application
benchmark. These are the results of the
3D Torus Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 1,000,000
entries.

Figure A.3: 3D Torus Directed and Undirected Graph with 256 and 1,000,000 initial
sizes respectively.

A.2 Results of Parallel Spanning Tree experiments 137

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 305386171.91 149046365.13 95194976.05 83089189.21 81849733.73 84456797.58 88612485.27 103127683.01 111643788.60
B. WS WMult 286170202.17 155416147.14 98692484.33 85463352.85 83512427.37 85456104.05 88874130.18 103205452.01 111004273.95
Chase-Lev 278736420.94 271617495.59 164154925.33 125110061.65 106566596.33 101604051.41 99166808.03 105596223.23 117346843.22
Cilk THE 296880199.62 237861235.97 162585819.44 141211156.01 131884833.85 133994568.66 144624731.92 140846305.32 152922059.48
Idempotent DEQUE 291164788.92 386607331.02 202531346.52 176731787.64 154063302.46 146056409.62 135880453.30 134783560.36 138854522.50
Idempotent FIFO 278180866.51 159103860.27 98048277.27 79703731.70 74716915.26 73100122.13 75161749.36 84572371.02 89422809.81
Idempotent LIFO 301046988.65 159255115.41 107324698.34 94007081.70 88918399.30 85772169.76 86925836.93 92797785.35 97037925.58
WS WMult Lists 289429455.36 149254306.51 90492036.98 75025116.54 71479061.67 71015053.44 71581342.57 80150110.38 84911758.39
WS WMult 272901359.61 147192902.24 91605903.29 77732968.05 72367652.95 72288630.73 73772772.47 81914543.31 85625911.00

Table A.17: Mean times for the graph application benchmark. These are the results
for the 3D Torus Directed graph. Each algorithm begins its execution with an initial
size of 1000000 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 329963181.86 151237154.92 84869838.17 67958542.51 59713831.95 54468184.21 53567371.26 56654627.98 60827191.22
B. WS WMult 331185252.48 146485279.46 84701527.73 68272626.35 60861442.11 55445870.97 56134319.33 59038658.18 62044348.75
Chase-Lev 263083757.40 179485868.93 108749102.80 89621581.64 82340911.59 78506473.93 76517833.65 76532206.85 76983181.99
Cilk THE 288413877.71 179880361.54 109264333.28 87696126.26 80130481.87 77436833.45 75972286.49 76154694.41 75715301.52
Idempotent DEQUE 293601547.68 138258919.26 100495723.16 92474474.20 86429098.06 81863930.54 81369974.02 78652635.16 81262219.14
Idempotent FIFO 307245700.44 147417337.93 83189889.36 67974190.23 58801237.69 53994442.80 51875146.32 58401317.40 59453077.65
Idempotent LIFO 283722458.29 134208645.80 93649945.13 83971242.41 78331924.14 76256331.63 75417609.21 76412158.70 78572650.04
WS WMult Lists 316728772.49 147223826.60 83985379.30 65631752.33 58718689.24 54261373.97 52678773.73 56547641.85 58570046.69
WS WMult 301154107.56 145915148.41 82284655.05 66963616.84 58307819.83 53742415.50 52712760.46 55935847.51 58660468.71

Table A.18: Mean times for the graph application benchmark. These are the results
for the 3D Torus Undirected graph. Each algorithm begins its execution with an
initial size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 327707616.44 156712246.64 96753448.36 85516751.68 83516731.27 85541958.28 88430855.09 103074767.38 109510162.32
B. WS WMult 307644871.81 158759098.92 99763923.60 86807733.13 84602962.87 87048309.48 90879164.43 102032203.69 108190237.33
Chase-Lev 255662963.74 182008226.94 116576204.10 99491054.93 93867107.54 93663588.23 95350740.85 98024792.96 102423692.66
Cilk THE 277586748.65 164994070.46 107628297.54 94664444.99 90367736.38 90586973.10 91502227.94 94433445.56 98434700.61
Idempotent DEQUE 270934340.74 148410630.10 110685130.22 102702609.18 98250872.80 98132701.26 99675589.20 101358720.78 104287965.50
Idempotent FIFO 306233859.67 161649052.10 97163877.14 80651172.49 75172044.83 74370372.54 75250964.27 82449397.40 89552225.15
Idempotent LIFO 280588358.87 139279241.39 104076830.09 96289342.68 93469834.15 94179853.38 96572950.01 101111485.48 106344477.16
WS WMult Lists 314355211.34 155150671.36 91510527.90 78208152.20 73170127.05 73027834.68 74104343.61 80636998.43 89670216.57
WS WMult 295011609.38 155384336.91 93245752.33 78940618.11 73342410.83 73015917.47 73924488.32 82844202.73 87369619.10

Table A.19: Mean times for the graph application benchmark. These are the results
for the 3D Torus Undirected graph. Each algorithm begins its execution with an
initial size of 1000000 items.

138 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Mean times for the graph application
benchmark. These are the results of the 3D
Torus 40% Directed graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of 256 en-
tries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Mean times for the graph application
benchmark. These are the results of the 3D
Torus 40% Directed graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of the bench-
mark. Each algorithm begins execution with
an initial size of 1,000,000 entries.

1 8 16 24 32 40 48 56 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
Chase-Lev
Cilk THE
Idempotent FIFO
Idempotent LIFO
WSMULT
B. WSMULT
WSMULT Lists
B. WSMULT Lists

(c) Mean times for the graph application
benchmark. These are the results of the 3D
Torus 40% Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of the bench-
mark. Each algorithm begins execution with
an initial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

3.5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Mean times for the graph application
benchmark. These are the results of the 3D
Torus 40% Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of the bench-
mark. Each algorithm begins execution with
an initial size of 1,000,000 entries.

Figure A.4: 3D Torus 40% Directed and Undirected Graph with 256 and 1,000,000
initial sizes respectively.

A.2 Results of Parallel Spanning Tree experiments 139

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 294432517.37 120021425.55 73823501.16 61390038.43 54354181.95 51833900.64 52023575.33 57131362.05 59648865.02
B. WS WMult 298663678.64 115054783.47 73453047.11 62747462.27 54920691.10 52001289.43 51681136.53 59499980.10 61377477.24
Chase-Lev 287240600.88 152115465.89 89012227.38 72023688.99 63761750.39 58658047.86 58004155.86 63342223.89 64548293.28
Cilk THE 314871019.02 153049093.83 87438645.82 69353428.09 61776800.67 58530855.79 57804129.29 56974132.59 56592253.73
Idempotent DEQUE 312830298.62 116142320.22 85066483.24 73484481.82 67703602.98 62678789.22 60261928.04 61803224.08 64834634.28
Idempotent FIFO 281784801.76 110651097.78 69253386.17 59583683.11 53682754.00 49991330.61 49891748.90 56450615.25 56486785.18
Idempotent LIFO 319435336.99 134334876.65 80042328.23 66562292.68 60604520.16 56610182.19 57532942.70 61246247.57 66680269.13
WS WMult Lists 287387470.69 114685026.00 71794869.08 59806522.26 53452614.01 51173585.38 50070658.75 55112170.91 58297658.11
WS WMult 277155350.79 110607845.40 68713507.66 59139515.09 54219708.89 50765966.96 49719089.51 55809517.26 55806848.41

Table A.20: Mean times for the graph application benchmark. These are the results
for the 3D Torus 40% Directed graph. Each algorithm begins its execution with an
initial size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 301763957.74 126292839.15 84887857.49 79272185.13 79154954.71 83335257.72 89510324.32 101238037.04 109048106.48
B. WS WMult 281186009.17 134302281.87 92202552.27 82636217.31 81748787.41 84392048.40 89105290.52 103621912.52 109658658.31
Chase-Lev 293916625.21 154585238.00 97856281.89 83025587.50 77807388.15 78126159.57 79948552.74 85725727.08 92310399.45
Cilk THE 315191868.24 153424659.25 89517444.61 77694402.78 74875845.38 74071535.76 77838585.82 80591541.79 81821539.23
Idempotent DEQUE 308537573.96 149211106.90 93096120.06 86063667.52 82913118.38 82531620.54 83710627.36 87052170.00 92779273.54
Idempotent FIFO 278383663.89 144757144.09 89903067.87 77336892.60 73423810.85 72991479.36 74251359.12 83638031.97 90377859.79
Idempotent LIFO 319638620.35 144624689.59 88959163.63 80275708.29 76970703.88 76881719.75 78838337.38 87078149.69 91934674.19
WS WMult Lists 285576627.83 126550275.57 81652075.25 72512300.43 69779523.11 69421029.67 70961813.29 82500795.31 83848751.96
WS WMult 271697926.58 128486529.15 83368234.66 74191411.95 69519514.10 69521643.56 70943495.75 82417635.97 85894721.48

Table A.21: Mean times for the graph application benchmark. These are the results
for the 3D Torus 40% Directed graph. Each algorithm begins its execution with an
initial size of 1000000 items.

1 8 16 24 32 40 48 56 64
Chase-Lev 329816027.99 166018668.00 101194304.00 82693813.55 75637331.26 72548609.15 70421774.27 69807147.69 72606679.43
Cilk THE 356916317.95 167055350.86 100233817.43 81074173.36 74222943.72 70749147.75 70338848.18 70562136.49 69687049.08
Idempotent FIFO 314791538.27 124518727.11 77680336.73 63919327.65 56394746.44 53229205.73 51781643.96 55674948.38 54641531.71
Idempotent LIFO 358165273.94 125105689.07 86102533.77 77056873.00 71960543.09 68881040.65 69877008.87 71220489.02 71125362.10
WS WMULT 310482623.44 123277866.27 75627540.46 63491941.48 57072664.51 53150879.35 51860315.85 55971221.94 56381071.13
B. WS WMULT 333148110.98 128544299.77 80629725.80 66742869.48 59245808.63 54831212.23 53350917.70 60339368.99 61904545.78
WS WMULT Lists 318598312.42 126984605.65 79327818.59 64873208.49 57030534.60 52973456.00 51696004.73 55958368.16 58612461.28
B. WS WMULT Lists 334232009.92 134058201.59 82287300.73 66418704.09 58477222.64 54223431.95 52443567.62 55004602.31 58013627.62

Table A.22: Mean times for the graph application benchmark. These are the results
for the 3D Torus 40% Undirected graph. Each algorithm begins its execution with
an initial size of 256 items.

140 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 334464593.22 139869441.62 93118738.82 84202596.98 83980353.63 85865325.35 89570045.81 103955321.31 108082353.61
B. WS WMult 311579693.68 145881522.20 98130498.61 85629026.30 83509625.99 85149457.30 91105762.40 103885268.05 110346559.14
Chase-Lev 332908360.24 170224669.95 109220232.75 93343788.98 89389033.42 87979103.86 89744702.88 93698982.84 97875180.09
Cilk THE 352562123.61 150060951.66 99760520.74 87126086.44 84656500.65 84533702.71 87602278.89 90333960.91 92750637.97
Idempotent DEQUE 345947619.04 144885937.88 104036420.18 96097964.76 91840290.82 92917394.80 94867142.72 97202251.38 100523216.90
Idempotent FIFO 311553075.87 155166420.27 97058448.94 80591951.38 75066314.78 73895334.04 75520212.03 82801873.16 90442958.12
Idempotent LIFO 357016153.83 133154299.38 96322449.36 88612359.68 87952279.63 88014320.73 91586087.90 95690280.32 100364216.97
WS WMult Lists 312648264.91 138383488.50 88072075.50 76709536.59 72390868.09 71909451.21 73524758.08 81289669.58 83682658.43
WS WMult 304293026.00 139635085.90 91022803.16 77301315.95 71943494.11 71677604.62 73267315.81 82367515.38 85539771.68

Table A.23: Mean times for the graph application benchmark. These are the results
for the 3D Torus 40% Undirected graph. Each algorithm begins its execution with
an initial size of 1000000 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 492263536.51 185833977.72 110426588.40 88710895.63 80108599.36 75622130.99 74978359.76 75920034.33 79101590.74
B. WS WMult 464920786.36 174035456.11 106386422.68 88570436.72 79898215.19 77502739.17 75394325.17 77090345.63 82158396.11
Chase-Lev 388237323.37 168767464.73 100412992.35 81817160.73 74211385.42 70332957.26 69280621.13 69033972.39 73297305.92
Cilk THE 414885668.90 169415076.62 100124493.84 79805125.83 72108213.75 68273252.47 68369272.70 68145787.43 67390061.84
Idempotent DEQUE 417685137.16 123250084.16 101264250.42 86142952.92 79690817.06 77644288.80 76110697.96 72222956.16 75078709.50
Idempotent FIFO 431714806.10 153648343.56 96384410.52 82515552.81 75213108.75 70371870.20 67562026.30 69506128.03 71745378.98
Idempotent LIFO 434271558.65 146245687.74 91764425.56 78334009.50 72611394.64 69217120.27 67916615.78 71863500.28 73252446.32
WS WMult Lists 458274872.50 172752713.06 105669957.09 86870765.39 77646018.05 73957764.17 71841786.10 74602240.90 77254487.10
WS WMult 423361253.32 151414860.14 95985749.42 81696821.86 74922903.38 71679742.34 70944246.68 73027424.41 74832776.27

Table A.24: Mean times for the graph application benchmark. These are the results
for the Random Directed graph. Each algorithm begins its execution with an initial
size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 482160068.48 188336095.42 120700826.52 105196857.53 102113641.09 105162929.44 109584170.31 119487423.69 129451320.56
B. WS WMult 441884607.61 189459191.22 123728462.81 107166435.55 103353938.65 106676865.57 109881300.60 119661581.70 129178737.27
Chase-Lev 385340577.40 174664858.65 109232027.31 92202519.86 87016638.92 86185560.86 88905638.86 95454735.65 100458140.05
Cilk THE 405144969.95 162520672.80 103929415.16 87591486.16 83002578.54 83794041.85 85119207.59 88656720.05 91558486.63
Idempotent DEQUE 414733560.90 165342618.80 111167218.22 97768702.72 95273218.10 92395813.22 94765056.90 98724645.98 101022772.80
Idempotent FIFO 426842811.31 189062631.20 117185450.64 98759795.45 92265610.82 90328848.01 92077270.18 98034222.72 102493646.11
Idempotent LIFO 425017719.73 152344725.60 99461217.11 90006238.62 87681136.21 88206820.36 90283254.07 95488801.00 102316035.46
WS WMult Lists 453825844.09 180552914.55 115121584.18 97398795.85 90786582.21 89502129.75 91607446.68 96029389.94 101519435.08
WS WMult 409944339.41 171618034.92 110920773.91 95664656.10 90049503.96 89225431.26 90197459.73 95304067.23 100696398.66

Table A.25: Mean times for the graph application benchmark. These are the results
for the Random Directed graph. Each algorithm begins its execution with an initial
size of 1000000 items.

A.2 Results of Parallel Spanning Tree experiments 141

1 8 16 24 32 40 48 56 64
Threads

1

2

3

4

5

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(a) Mean times for the graph application
benchmark. These are the results of the Ran-
dom Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of the benchmark.
Each algorithm begins execution with an ini-
tial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(b) Mean times for the graph application
benchmark. These are the results of the Ran-
dom Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of the benchmark.
Each algorithm begins execution with an ini-
tial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(c) Mean times for the graph application
benchmark. These are the results of the Ran-
dom Directed graph. For each work-stealing
algorithm’s data structure, it begins its exe-
cution with an initial size of the benchmark.
Each algorithm begins execution with an ini-
tial size of 256 entries.

1 8 16 24 32 40 48 56 64
Threads

1

2

3

4

5

6

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e8
B. WS WMult Lists
B. WS-WMult
Chase-Lev
Cilk THE
Idempotent DEQUE
Idempotent FIFO
Idempotent LIFO
WS WMult Lists
WS WMult

(d) Mean times for the graph application
benchmark. These are the results of the
Random Undirected graph. For each work-
stealing algorithm’s data structure, it begins
its execution with an initial size of the bench-
mark. Each algorithm begins execution with
an initial size of 1,000,000 entries.

Figure A.5: Random Directed and Undirected Graph with 256 and 1,000,000 initial
sizes respectively.

142 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 652599333.99 212017984.57 137665783.14 117554752.46 110222245.73 106698088.43 104742436.78 107187587.60 109281820.92
B. WS WMult 654074473.51 201163088.41 131849720.51 116574987.43 108857132.28 106226178.52 104760944.68 105417615.98 108921032.66
Chase-Lev 591680426.65 229336231.17 142109070.85 119283686.27 110387662.00 105982878.56 105258463.21 104349248.85 105506659.24
Cilk THE 628957009.63 226012672.44 139882962.01 118098897.42 109379482.56 105188663.35 103293630.32 104095251.74 104713698.81
Idempotent DEQUE 646148838.78 199370245.96 132641626.64 118901933.56 113004891.32 110191577.76 106606170.40 107039317.74 109154609.76
Idempotent FIFO 638027662.94 180713367.95 121445354.47 109490247.72 103656997.95 101075641.68 101095735.40 101566154.53 102251728.23
Idempotent LIFO 634327156.00 187644988.26 126163770.06 112724494.01 107319262.19 104627987.26 104663456.64 106040748.03 107394458.73
WS WMult Lists 641436399.23 198037184.55 129737047.19 112688727.80 107659841.75 103953948.28 103050511.01 103532647.86 105339241.71
WS WMult 622307814.91 178968825.24 120324249.12 108599936.53 104330814.77 102432961.97 101552823.38 102759165.67 105269567.75

Table A.26: Mean times for the graph application benchmark. These are the results
for the Random Undirected graph. Each algorithm begins its execution with an
initial size of 256 items.

1 8 16 24 32 40 48 56 64
B. WS WMult Lists 646541284.19 216263265.20 146759280.43 132541176.53 130512193.85 131523019.65 135918877.69 142989655.30 156049348.80
B. WS WMult 622923092.34 216837946.90 146021906.28 131696898.21 128922852.74 132160589.40 134643408.57 142655863.73 150954630.75
Chase-Lev 593236904.85 235082293.49 149973065.80 128300559.06 121496061.31 120640561.49 121437035.74 126943494.15 130407001.13
Cilk THE 620863347.51 209168448.86 137197146.35 122570308.33 117931034.32 116320400.08 118205988.97 122554842.13 125001132.55
Idempotent DEQUE 620533697.72 206167259.40 141569448.10 126905708.14 122788765.72 121143353.94 122235287.98 126617596.40 127807686.04
Idempotent FIFO 611933226.01 223162610.33 141521019.59 123592991.13 118780262.20 118437149.38 119279944.51 124372070.49 127962219.33
Idempotent LIFO 615205002.42 197693607.26 134245575.36 123088544.61 119117560.12 119495674.49 121411201.90 126847418.11 130739705.03
WS WMult Lists 630514406.43 211180985.60 140475330.14 123174961.72 117468510.92 116733496.47 117762755.18 123778079.83 128006874.12
WS WMult 610832074.69 197574834.99 131195696.62 117332821.11 113455313.17 114436181.30 115915780.99 123082517.02 127229090.01

Table A.27: Mean times for the graph application benchmark. These are the results
for the Random Undirected graph. Each algorithm begins its execution with an
initial size of 1000000 items.

A.2 Results of Parallel Spanning Tree experiments 143

A.2.2 Puts and takes performed in the Paralled Spanning
Tree experiment

This section reports the number of puts and takes performed during the execution
of the parallel spanning tree. This evaluation was performed for each graph and all
work-stealing algorithms. Additionally, the difference between the total number of
puts and the total number of takes is calculated. Finally, the total surplus work
is calculated as the difference between the total put and the total available work
(number of vertices). For purposes of visualizing the amount of surplus work, this is
displayed as a graph in terms of the percentage of total available work.

Directed Torus 2D. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1459383.80 1041490.20 28.63 31.48 3.98 1033699.60 1000020.40 3.26 3.26 0.00 1000583.40 1000241.00 0.03 0.06 0.02
16 1448842.40 1033211.00 28.69 30.98 3.21 1044556.60 1000118.60 4.25 4.27 0.01 1001805.40 1000745.80 0.11 0.18 0.07
24 1454352.20 1028947.20 29.25 31.24 2.81 1041856.20 1000150.40 4.00 4.02 0.02 1003160.00 1000912.80 0.22 0.32 0.09
28 1433539.00 1022538.80 28.67 30.24 2.20 1041198.80 1000140.00 3.94 3.96 0.01 1002856.20 1000665.40 0.22 0.28 0.07
32 1461140.80 1023658.80 29.94 31.56 2.31 1037250.60 1000150.00 3.58 3.59 0.01 1003144.40 1000718.80 0.24 0.31 0.07
40 1417516.60 1018013.40 28.18 29.45 1.77 1038668.60 1000147.00 3.71 3.72 0.01 1004017.00 1000873.80 0.31 0.40 0.09
48 1407082.60 1016505.40 27.76 28.93 1.62 1037384.00 1000138.00 3.59 3.60 0.01 1005458.80 1001351.00 0.41 0.54 0.13
56 1412557.20 1016545.60 28.04 29.21 1.63 1039636.00 1000179.00 3.80 3.81 0.02 1011643.20 1003597.60 0.80 1.15 0.36
64 1436173.00 1017850.20 29.13 30.37 1.75 1038216.20 1000176.20 3.66 3.68 0.02 1006204.40 1001809.40 0.44 0.62 0.18

Table A.28: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Chase-Lev, Cilk THE, and
Idempotent LIFO. Furthermore, we present the percentage difference between the
number of puts and takes for each available thread, relative to the total number of
puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

144 A. Work-Stealing Results

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1902357.20 1495215.60 21.40 47.43 33.12 1000080.80 1000036.40 0.00 0.01 0.00 1000153.00 1000088.80 0.01 0.02 0.01
16 1934233.20 1590823.80 17.75 48.30 37.14 1000267.60 1000117.20 0.02 0.03 0.01 1000292.00 1000190.20 0.01 0.03 0.02
24 1941439.00 1607217.20 17.22 48.49 37.78 1000312.40 1000107.60 0.02 0.03 0.01 1000390.20 1000246.40 0.01 0.04 0.02
28 2224206.20 1940711.00 12.75 55.04 48.47 1000467.00 1000141.60 0.03 0.05 0.01 1000552.80 1000332.20 0.02 0.06 0.03
32 2288846.00 1967366.40 14.05 56.31 49.17 1000690.40 1000225.40 0.05 0.07 0.02 1000609.20 1000351.60 0.03 0.06 0.04
40 1827589.80 1496496.80 18.12 45.28 33.18 1000863.60 1000198.60 0.07 0.09 0.02 1000914.60 1000481.80 0.04 0.09 0.05
48 2137192.80 1780388.20 16.70 53.21 43.83 1001107.80 1000279.20 0.08 0.11 0.03 1001438.80 1000844.20 0.06 0.14 0.08
56 2320612.60 1972625.40 15.00 56.91 49.31 1001801.20 1000437.60 0.14 0.18 0.04 1001633.40 1000978.40 0.07 0.16 0.10
64 2256633.40 1950514.60 13.57 55.69 48.73 1001345.40 1000333.40 0.10 0.13 0.03 1002296.20 1001442.80 0.09 0.23 0.14

Table A.29: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 2D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000328.80 1000182.20 0.01 0.03 0.02 1000185.80 1000133.80 0.01 0.02 0.01 1000192.80 1000146.20 0.00 0.02 0.01
16 1000481.60 1000293.20 0.02 0.05 0.03 1000379.60 1000247.20 0.01 0.04 0.02 1000332.80 1000236.60 0.01 0.03 0.02
24 1000553.60 1000303.60 0.02 0.06 0.03 1000465.00 1000297.00 0.02 0.05 0.03 1000512.60 1000345.40 0.02 0.05 0.03
28 1000707.00 1000384.00 0.03 0.07 0.04 1000572.80 1000357.80 0.02 0.06 0.04 1000539.80 1000365.60 0.02 0.05 0.04
32 1000720.00 1000389.60 0.03 0.07 0.04 1000599.80 1000375.20 0.02 0.06 0.04 1000835.40 1000524.80 0.03 0.08 0.05
40 1001108.40 1000652.20 0.05 0.11 0.07 1001085.40 1000721.80 0.04 0.11 0.07 1001161.20 1000725.60 0.04 0.12 0.07
48 1001236.00 1000693.40 0.05 0.12 0.07 1001267.80 1000791.20 0.05 0.13 0.08 1001099.80 1000695.80 0.04 0.11 0.07
56 1002056.60 1001285.20 0.08 0.21 0.13 1001683.20 1001116.60 0.06 0.17 0.11 1001527.80 1000939.60 0.06 0.15 0.09
64 1001891.20 1001111.80 0.08 0.19 0.11 1001977.00 1001245.60 0.07 0.20 0.12 1001780.80 1001181.40 0.06 0.18 0.12

Table A.30: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: B. WS WMult, WS WMult
Lists, and B. WS WMult Lists. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 145

Directed Torus 2D. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1412180.00 1000301.80 29.17 29.19 0.03 1037307.20 999999.00 3.60 3.60 -0.00 1000616.60 1000271.00 0.03 0.06 0.03
16 1408743.20 1000469.20 28.98 29.01 0.05 1038837.80 1000006.80 3.74 3.74 0.00 1001289.60 1000452.60 0.08 0.13 0.05
24 1411153.20 1000544.80 29.10 29.14 0.05 1041228.60 1000011.20 3.96 3.96 0.00 1001875.00 1000549.40 0.13 0.19 0.05
28 1422954.60 1000678.80 29.68 29.72 0.07 1040132.20 1000009.60 3.86 3.86 0.00 1002199.40 1000833.60 0.14 0.22 0.08
32 1419592.60 1000673.00 29.51 29.56 0.07 1036052.20 1000013.00 3.48 3.48 0.00 1002494.00 1000762.00 0.17 0.25 0.08
40 1430669.20 1000874.40 30.04 30.10 0.09 1037476.20 1000008.40 3.61 3.61 0.00 1003855.80 1000973.60 0.29 0.38 0.10
48 1420825.60 1001096.40 29.54 29.62 0.11 1039141.40 1000043.80 3.76 3.77 0.00 1005325.20 1001255.60 0.40 0.53 0.13
56 1418509.40 1000987.20 29.43 29.50 0.10 1041312.20 1000033.00 3.96 3.97 0.00 1008324.60 1002621.20 0.57 0.83 0.26
64 1412314.60 1001042.00 29.12 29.19 0.10 1035602.80 1000062.20 3.43 3.44 0.01 1008637.20 1002190.80 0.64 0.86 0.22

Table A.31: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 2341456.60 1897128.00 18.98 57.29 47.29 1000082.00 1000044.60 0.00 0.01 0.00 1000169.20 1000124.60 0.00 0.02 0.01
16 1789294.20 1339375.40 25.15 44.11 25.34 1000253.80 1000162.80 0.01 0.03 0.02 1000321.80 1000218.60 0.01 0.03 0.02
24 1638609.20 1211498.80 26.07 38.97 17.46 1000384.00 1000157.40 0.02 0.04 0.02 1000442.00 1000233.00 0.02 0.04 0.02
28 1569116.60 1172962.00 25.25 36.27 14.75 1000476.80 1000166.20 0.03 0.05 0.02 1000510.80 1000243.40 0.03 0.05 0.02
32 1564781.20 1148789.40 26.58 36.09 12.95 1000658.40 1000208.60 0.04 0.07 0.02 1000618.20 1000290.00 0.03 0.06 0.03
40 1577941.40 1179196.40 25.27 36.63 15.20 1000783.20 1000220.40 0.06 0.08 0.02 1001053.60 1000444.80 0.06 0.11 0.04
48 1554558.20 1160841.00 25.33 35.67 13.86 1001201.80 1000313.20 0.09 0.12 0.03 1001365.80 1000574.80 0.08 0.14 0.06
56 1504966.80 1126507.20 25.15 33.55 11.23 1001396.40 1000343.00 0.11 0.14 0.03 1001310.20 1000518.00 0.08 0.13 0.05
64 1496983.60 1124354.40 24.89 33.20 11.06 1001243.60 1000327.40 0.09 0.12 0.03 1001638.80 1000641.80 0.10 0.16 0.06

Table A.32: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 2D directed graph with an initial size of 1000000 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

146 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000149.80 1000112.40 0.00 0.01 0.01 1000143.00 1000085.40 0.01 0.01 0.01 1000203.20 1000143.60 0.01 0.02 0.01
16 1000341.20 1000244.80 0.01 0.03 0.02 1000347.60 1000207.20 0.01 0.03 0.02 1000356.40 1000288.40 0.01 0.04 0.03
24 1000392.60 1000236.00 0.02 0.04 0.02 1000578.40 1000302.20 0.03 0.06 0.03 1000447.80 1000269.20 0.02 0.04 0.03
28 1000588.00 1000342.20 0.02 0.06 0.03 1000689.60 1000352.00 0.03 0.07 0.04 1000719.40 1000439.60 0.03 0.07 0.04
32 1000625.60 1000350.20 0.03 0.06 0.04 1000822.40 1000378.20 0.04 0.08 0.04 1000652.80 1000336.60 0.03 0.07 0.03
40 1000919.80 1000499.60 0.04 0.09 0.05 1001063.60 1000457.20 0.06 0.11 0.05 1001033.40 1000550.80 0.05 0.10 0.06
48 1001096.00 1000495.40 0.06 0.11 0.05 1001533.60 1000634.40 0.09 0.15 0.06 1001381.00 1000670.00 0.07 0.14 0.07
56 1001013.60 1000438.00 0.06 0.10 0.04 1001744.80 1000803.00 0.09 0.17 0.08 1001672.60 1000910.40 0.08 0.17 0.09
64 1001565.00 1000766.60 0.08 0.16 0.08 1001901.20 1000743.60 0.12 0.19 0.07 1002036.20 1001157.40 0.09 0.20 0.12

Table A.33: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 147

Undirected Torus 2D. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1005802.20 1000299.00 0.55 0.58 0.03 1005609.00 1000267.00 0.53 0.56 0.03 1000642.20 1000589.00 0.01 0.06 0.06
16 1006274.20 1000635.60 0.56 0.62 0.06 1012449.40 1000720.60 1.16 1.23 0.07 1001783.60 1001413.80 0.04 0.18 0.14
24 1014993.80 1001002.80 1.38 1.48 0.10 1017575.40 1001520.40 1.58 1.73 0.15 1002208.20 1001296.80 0.09 0.22 0.13
28 1026536.20 1001682.40 2.42 2.59 0.17 1016091.60 1000982.00 1.49 1.58 0.10 1003306.80 1001993.00 0.13 0.33 0.20
32 1015987.60 1001424.40 1.43 1.57 0.14 1018616.00 1000944.80 1.73 1.83 0.09 1002711.40 1001281.80 0.14 0.27 0.13
40 1030795.60 1001357.40 2.86 2.99 0.14 1017967.00 1001503.80 1.62 1.76 0.15 1003790.40 1001714.80 0.21 0.38 0.17
48 1041349.40 1002717.40 3.71 3.97 0.27 1021047.60 1001816.20 1.88 2.06 0.18 1008262.00 1003388.40 0.48 0.82 0.34
56 1034852.20 1002225.60 3.15 3.37 0.22 1031250.40 1001911.80 2.84 3.03 0.19 1005978.00 1002870.00 0.31 0.59 0.29
64 1052953.60 1002509.60 4.79 5.03 0.25 1023687.20 1001614.20 2.16 2.31 0.16 1010531.40 1004579.80 0.59 1.04 0.46

Table A.34: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1007652.80 1002225.20 0.54 0.76 0.22 1000038.80 1000023.00 0.00 0.00 0.00 1000034.80 1000020.60 0.00 0.00 0.00
16 1010227.60 1002944.60 0.72 1.01 0.29 1000082.20 1000054.80 0.00 0.01 0.01 1000097.60 1000062.20 0.00 0.01 0.01
24 1022708.40 1006915.20 1.54 2.22 0.69 1000149.60 1000073.80 0.01 0.01 0.01 1000207.00 1000128.00 0.01 0.02 0.01
28 1021754.40 1005416.60 1.60 2.13 0.54 1000209.00 1000099.00 0.01 0.02 0.01 1000265.40 1000154.60 0.01 0.03 0.02
32 1025247.20 1005598.00 1.92 2.46 0.56 1000252.40 1000108.40 0.01 0.03 0.01 1000343.60 1000204.40 0.01 0.03 0.02
40 1035406.20 1008212.00 2.63 3.42 0.81 1000515.20 1000242.20 0.03 0.05 0.02 1000560.20 1000304.20 0.03 0.06 0.03
48 1045111.20 1010315.80 3.33 4.32 1.02 1000569.40 1000246.20 0.03 0.06 0.02 1000794.80 1000443.20 0.04 0.08 0.04
56 1037480.40 1007844.80 2.86 3.61 0.78 1001077.60 1000399.80 0.07 0.11 0.04 1001056.00 1000618.80 0.04 0.11 0.06
64 1053497.60 1012477.80 3.89 5.08 1.23 1000975.00 1000367.00 0.06 0.10 0.04 1001043.80 1000604.00 0.04 0.10 0.06

Table A.35: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 2D undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

148 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000052.40 1000032.00 0.00 0.01 0.00 1000052.40 1000036.20 0.00 0.01 0.00 1000116.80 1000103.00 0.00 0.01 0.01
16 1000131.20 1000080.60 0.01 0.01 0.01 1000099.40 1000068.20 0.00 0.01 0.01 1000102.60 1000072.20 0.00 0.01 0.01
24 1000195.60 1000128.60 0.01 0.02 0.01 1000179.80 1000121.80 0.01 0.02 0.01 1000193.80 1000136.60 0.01 0.02 0.01
28 1000310.20 1000186.60 0.01 0.03 0.02 1000956.20 1000859.20 0.01 0.10 0.09 1000262.20 1000179.80 0.01 0.03 0.02
32 1000383.20 1000258.00 0.01 0.04 0.03 1000291.20 1000163.20 0.01 0.03 0.02 1000302.60 1000197.60 0.01 0.03 0.02
40 1000646.60 1000430.80 0.02 0.06 0.04 1000492.60 1000315.20 0.02 0.05 0.03 1000500.60 1000297.20 0.02 0.05 0.03
48 1000905.80 1000577.60 0.03 0.09 0.06 1000823.00 1000502.00 0.03 0.08 0.05 1000801.00 1000522.20 0.03 0.08 0.05
56 1000981.60 1000609.40 0.04 0.10 0.06 1001089.20 1000632.80 0.05 0.11 0.06 1001093.60 1000638.40 0.05 0.11 0.06
64 1001431.00 1000862.40 0.06 0.14 0.09 1001267.20 1000791.00 0.05 0.13 0.08 1001504.80 1001047.80 0.05 0.15 0.10

Table A.36: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 149

Undirected Torus 2D. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1004333.80 1000319.80 0.40 0.43 0.03 1005854.60 1000312.00 0.55 0.58 0.03 1000644.80 1000575.00 0.01 0.06 0.06
16 1013695.40 1000731.40 1.28 1.35 0.07 1010464.20 1000652.40 0.97 1.04 0.07 1001762.40 1001352.00 0.04 0.18 0.14
24 1020985.00 1001456.20 1.91 2.06 0.15 1009914.40 1000805.40 0.90 0.98 0.08 1002361.60 1001356.60 0.10 0.24 0.14
28 1020140.20 1001042.40 1.87 1.97 0.10 1016056.80 1000913.00 1.49 1.58 0.09 1002467.20 1001390.40 0.11 0.25 0.14
32 1016086.20 1000828.20 1.50 1.58 0.08 1017728.80 1001498.20 1.59 1.74 0.15 1002958.80 1001593.60 0.14 0.30 0.16
40 1024334.60 1001527.00 2.23 2.38 0.15 1018041.20 1001206.80 1.65 1.77 0.12 1004015.20 1001884.80 0.21 0.40 0.19
48 1036484.40 1001674.60 3.36 3.52 0.17 1030817.40 1001003.00 2.89 2.99 0.10 1005163.80 1002497.80 0.27 0.51 0.25
56 1044977.40 1002189.80 4.09 4.30 0.22 1021632.40 1001473.40 1.97 2.12 0.15 1006869.40 1003188.80 0.37 0.68 0.32
64 1044545.80 1001234.00 4.15 4.26 0.12 1026773.00 1001678.60 2.44 2.61 0.17 1007726.60 1004101.40 0.36 0.77 0.41

Table A.37: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1005282.80 1001761.80 0.35 0.53 0.18 1000039.40 1000025.20 0.00 0.00 0.00 1000044.60 1000031.20 0.00 0.00 0.00
16 1008602.80 1002598.00 0.60 0.85 0.26 1000094.80 1000064.00 0.00 0.01 0.01 1000101.20 1000070.40 0.00 0.01 0.01
24 1027203.80 1007382.00 1.93 2.65 0.73 1000152.20 1000071.60 0.01 0.02 0.01 1000175.40 1000098.00 0.01 0.02 0.01
28 1016077.40 1004284.60 1.16 1.58 0.43 1000189.20 1000094.20 0.01 0.02 0.01 1000269.40 1000163.80 0.01 0.03 0.02
32 1030261.40 1010193.40 1.95 2.94 1.01 1000287.60 1000118.60 0.02 0.03 0.01 1000270.20 1000147.40 0.01 0.03 0.01
40 1036930.00 1007912.60 2.80 3.56 0.79 1000369.60 1000148.80 0.02 0.04 0.01 1000432.80 1000234.00 0.02 0.04 0.02
48 1047548.20 1009787.80 3.60 4.54 0.97 1000608.20 1000260.80 0.03 0.06 0.03 1000730.20 1000380.20 0.03 0.07 0.04
56 1034493.40 1008468.00 2.52 3.33 0.84 1000716.60 1000274.60 0.04 0.07 0.03 1000850.00 1000486.60 0.04 0.08 0.05
64 1048158.40 1011917.60 3.46 4.59 1.18 1000914.00 1000384.00 0.05 0.09 0.04 1001207.00 1000764.20 0.04 0.12 0.08

Table A.38: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

150 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000045.80 1000033.60 0.00 0.00 0.00 1000047.80 1000036.00 0.00 0.00 0.00 1000091.00 1000077.80 0.00 0.01 0.01
16 1000125.20 1000092.80 0.00 0.01 0.01 1000113.20 1000078.60 0.00 0.01 0.01 1000114.40 1000082.40 0.00 0.01 0.01
24 1000198.20 1000128.00 0.01 0.02 0.01 1000177.20 1000108.00 0.01 0.02 0.01 1000180.20 1000125.40 0.01 0.02 0.01
28 1000215.40 1000141.20 0.01 0.02 0.01 1000228.80 1000133.40 0.01 0.02 0.01 1000259.00 1000164.60 0.01 0.03 0.02
32 1000327.00 1000220.60 0.01 0.03 0.02 1000277.40 1000153.20 0.01 0.03 0.02 1000328.60 1000221.40 0.01 0.03 0.02
40 1000481.80 1000291.80 0.02 0.05 0.03 1000507.40 1000281.00 0.02 0.05 0.03 1000488.00 1000337.00 0.02 0.05 0.03
48 1000721.60 1000449.20 0.03 0.07 0.04 1000788.20 1000505.60 0.03 0.08 0.05 1000717.40 1000417.60 0.03 0.07 0.04
56 1000751.80 1000474.00 0.03 0.08 0.05 1001097.00 1000550.20 0.05 0.11 0.05 1000849.00 1000481.60 0.04 0.08 0.05
64 1000844.40 1000448.80 0.04 0.08 0.04 1001115.40 1000564.20 0.06 0.11 0.06 1001020.00 1000581.00 0.04 0.10 0.06

Table A.39: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D undirected graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 151

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Torus 2D. Initial
size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

60

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Torus 2D. Initial
size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Undirected Torus 2D. Ini-
tial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Undirected Torus 2D. Ini-
tial size of 1,000,000 items

Figure A.6: Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

152 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

50

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Torus
2D. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Torus
2D. Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed surplus work: Undirected Torus
2D. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Undirected Torus
2D. Initial size of 1,000,000 items

Figure A.7: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

A.2 Results of Parallel Spanning Tree experiments 153

Directed Torus 2D 60%. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1020806.00 1000143.60 2.02 2.04 0.01 1023550.20 1000084.60 2.29 2.30 0.01 1027143.60 1008311.80 1.83 2.64 0.82
16 1037467.40 1000165.40 3.60 3.61 0.02 1042807.00 1000167.00 4.09 4.10 0.02 1050478.40 1012666.40 3.60 4.81 1.25
24 1064950.60 1000357.80 6.07 6.10 0.04 1050968.80 1000198.80 4.83 4.85 0.02 1060968.00 1010891.40 4.72 5.75 1.08
28 1068789.20 1000359.00 6.40 6.44 0.04 1059995.60 1000244.20 5.64 5.66 0.02 1073664.80 1010931.40 5.84 6.86 1.08
32 1073080.40 1000402.40 6.77 6.81 0.04 1073922.60 1000298.60 6.86 6.88 0.03 1069279.20 1015430.60 5.04 6.48 1.52
40 1097050.60 1000536.00 8.80 8.85 0.05 1060958.00 1000283.80 5.72 5.75 0.03 1092589.80 1012147.40 7.36 8.47 1.20
48 1117179.80 1000760.00 10.42 10.49 0.08 1079921.60 1000413.00 7.36 7.40 0.04 1105993.60 1014937.40 8.23 9.58 1.47
56 1119717.40 1000970.80 10.61 10.69 0.10 1070216.20 1000368.00 6.53 6.56 0.04 1100948.60 1014673.40 7.84 9.17 1.45
64 1117871.00 1000870.80 10.47 10.54 0.09 1077195.00 1000351.00 7.13 7.17 0.04 1098635.00 1013103.20 7.79 8.98 1.29

Table A.40: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 directed graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1055143.40 1015515.40 3.76 5.23 1.53 1000134.60 1000038.40 0.01 0.01 0.00 1000215.20 1000105.60 0.01 0.02 0.01
16 1041253.00 1008765.60 3.12 3.96 0.87 1000561.80 1000128.00 0.04 0.06 0.01 1000843.20 1000328.20 0.05 0.08 0.03
24 1059020.40 1010059.40 4.62 5.57 1.00 1001149.40 1000203.00 0.09 0.11 0.02 1000893.80 1000267.00 0.06 0.09 0.03
28 1071630.20 1012417.60 5.53 6.68 1.23 1000978.00 1000192.00 0.08 0.10 0.02 1000972.60 1000295.60 0.07 0.10 0.03
32 1092837.20 1016400.60 6.99 8.50 1.61 1001236.40 1000249.00 0.10 0.12 0.02 1001161.20 1000368.80 0.08 0.12 0.04
40 1098742.40 1018963.40 7.26 8.99 1.86 1001562.80 1000264.80 0.13 0.16 0.03 1001804.60 1000528.80 0.13 0.18 0.05
48 1111491.40 1019119.20 8.31 10.03 1.88 1002043.40 1000303.80 0.17 0.20 0.03 1002361.20 1000712.20 0.16 0.24 0.07
56 1134282.80 1022720.40 9.84 11.84 2.22 1001972.00 1000315.60 0.17 0.20 0.03 1002196.60 1000640.40 0.16 0.22 0.06
64 1142434.60 1024968.60 10.28 12.47 2.44 1002755.00 1000401.40 0.23 0.27 0.04 1003306.60 1001347.80 0.20 0.33 0.13

Table A.41: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 2D 60 directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

154 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000316.80 1000157.80 0.02 0.03 0.02 1000259.60 1000127.80 0.01 0.03 0.01 1000272.00 1000170.80 0.01 0.03 0.02
16 1000800.20 1000386.80 0.04 0.08 0.04 1000788.60 1000396.20 0.04 0.08 0.04 1000540.80 1000279.40 0.03 0.05 0.03
24 1000965.00 1000379.00 0.06 0.10 0.04 1001005.40 1000443.00 0.06 0.10 0.04 1000848.60 1000386.60 0.05 0.08 0.04
28 1001255.60 1000588.60 0.07 0.13 0.06 1001240.40 1000485.40 0.08 0.12 0.05 1001522.40 1000718.00 0.08 0.15 0.07
32 1001309.80 1000466.00 0.08 0.13 0.05 1001597.60 1000711.40 0.09 0.16 0.07 1001534.00 1000711.40 0.08 0.15 0.07
40 1001733.20 1000668.60 0.11 0.17 0.07 1002056.00 1000908.20 0.11 0.21 0.09 1001854.40 1000821.00 0.10 0.19 0.08
48 1002386.80 1000831.00 0.16 0.24 0.08 1002334.00 1000961.80 0.14 0.23 0.10 1002596.20 1001169.20 0.14 0.26 0.12
56 1002905.80 1001200.40 0.17 0.29 0.12 1003004.60 1001336.40 0.17 0.30 0.13 1002587.40 1001248.00 0.13 0.26 0.12
64 1002694.80 1000990.00 0.17 0.27 0.10 1002972.80 1001159.80 0.18 0.30 0.12 1003686.00 1001759.00 0.19 0.37 0.18

Table A.42: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 directed graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 155

Directed Torus 2D 60%. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1025175.60 1000138.80 2.44 2.46 0.01 1024845.60 1000102.40 2.41 2.42 0.01 1026934.20 1007803.20 1.86 2.62 0.77
16 1035440.00 1000209.40 3.40 3.42 0.02 1030896.00 1000106.80 2.99 3.00 0.01 1039888.60 1010166.80 2.86 3.84 1.01
24 1048179.80 1000201.00 4.58 4.60 0.02 1049445.80 1000216.20 4.69 4.71 0.02 1054200.40 1008389.60 4.35 5.14 0.83
28 1063140.80 1000313.60 5.91 5.94 0.03 1054725.80 1000222.80 5.17 5.19 0.02 1057040.00 1008122.20 4.63 5.40 0.81
32 1071357.80 1000335.60 6.63 6.66 0.03 1068250.60 1000250.00 6.37 6.39 0.02 1059531.00 1007431.60 4.92 5.62 0.74
40 1095432.60 1000462.00 8.67 8.71 0.05 1089231.20 1000408.00 8.15 8.19 0.04 1076395.00 1009218.60 6.24 7.10 0.91
48 1104878.20 1000583.20 9.44 9.49 0.06 1082717.20 1000373.40 7.61 7.64 0.04 1086233.00 1010473.60 6.97 7.94 1.04
56 1113319.60 1000719.00 10.11 10.18 0.07 1079389.80 1000353.40 7.32 7.36 0.04 1090696.60 1010237.40 7.38 8.32 1.01
64 1104270.40 1000584.80 9.39 9.44 0.06 1077770.20 1000360.40 7.18 7.22 0.04 1089794.00 1011644.40 7.17 8.24 1.15

Table A.43: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1025842.00 1005123.20 2.02 2.52 0.51 1000123.00 1000039.00 0.01 0.01 0.00 1000301.40 1000149.60 0.02 0.03 0.01
16 1046681.40 1010157.60 3.49 4.46 1.01 1000450.80 1000107.60 0.03 0.05 0.01 1000686.20 1000285.40 0.04 0.07 0.03
24 1058272.40 1009314.40 4.63 5.51 0.92 1001161.20 1000237.00 0.09 0.12 0.02 1000730.80 1000249.80 0.05 0.07 0.02
28 1073096.00 1014384.00 5.47 6.81 1.42 1001102.80 1000202.00 0.09 0.11 0.02 1001206.00 1000391.20 0.08 0.12 0.04
32 1078527.80 1012209.60 6.15 7.28 1.21 1001080.00 1000165.80 0.09 0.11 0.02 1001670.00 1000495.80 0.12 0.17 0.05
40 1100400.40 1018060.60 7.48 9.12 1.77 1001490.60 1000242.40 0.12 0.15 0.02 1001779.40 1000504.00 0.13 0.18 0.05
48 1122020.80 1018072.80 9.26 10.88 1.78 1002240.80 1000358.80 0.19 0.22 0.04 1002334.00 1000691.00 0.16 0.23 0.07
56 1135747.60 1023634.80 9.87 11.95 2.31 1002077.40 1000340.60 0.17 0.21 0.03 1002878.00 1000802.40 0.21 0.29 0.08
64 1143298.40 1018276.20 10.94 12.53 1.79 1002330.80 1000346.40 0.20 0.23 0.03 1002949.40 1001015.80 0.19 0.29 0.10

Table A.44: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 2D 60 directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

156 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000270.80 1000170.40 0.01 0.03 0.02 1000284.60 1000121.20 0.02 0.03 0.01 1000336.40 1000184.60 0.02 0.03 0.02
16 1000653.60 1000361.00 0.03 0.07 0.04 1000498.80 1000211.00 0.03 0.05 0.02 1000598.20 1000300.60 0.03 0.06 0.03
24 1001416.60 1000766.40 0.06 0.14 0.08 1001630.00 1001148.80 0.05 0.16 0.11 1000971.00 1000429.20 0.05 0.10 0.04
28 1001197.00 1000499.20 0.07 0.12 0.05 1001101.20 1000328.00 0.08 0.11 0.03 1001178.20 1000492.60 0.07 0.12 0.05
32 1001631.60 1000773.40 0.09 0.16 0.08 1001289.60 1000404.60 0.09 0.13 0.04 1001458.20 1000694.20 0.08 0.15 0.07
40 1001923.40 1000808.40 0.11 0.19 0.08 1001757.40 1000538.20 0.12 0.18 0.05 1001854.40 1000776.80 0.11 0.19 0.08
48 1002054.40 1000666.60 0.14 0.21 0.07 1002171.60 1000781.40 0.14 0.22 0.08 1002693.60 1001078.80 0.16 0.27 0.11
56 1002239.40 1000873.40 0.14 0.22 0.09 1002582.40 1000726.20 0.19 0.26 0.07 1002769.00 1001239.80 0.15 0.28 0.12
64 1002380.00 1000918.80 0.15 0.24 0.09 1002292.00 1000762.40 0.15 0.23 0.08 1002695.20 1001221.80 0.15 0.27 0.12

Table A.45: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 directed graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 157

Undirected Torus 2D 60%. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1082651.80 1000242.40 7.61 7.63 0.02 1063099.40 1000081.80 5.93 5.94 0.01 1015008.20 1006389.00 0.85 1.48 0.63
16 1190434.80 1001568.20 15.87 16.00 0.16 1092441.80 1000196.40 8.44 8.46 0.02 1016436.40 1007097.00 0.92 1.62 0.70
24 1232420.20 1001869.00 18.71 18.86 0.19 1111028.00 1000172.40 9.98 9.99 0.02 1016585.20 1005068.60 1.13 1.63 0.50
28 1273800.40 1003398.60 21.23 21.49 0.34 1090600.00 1000155.80 8.29 8.31 0.02 1019334.80 1006844.20 1.23 1.90 0.68
32 1313017.20 1003624.60 23.56 23.84 0.36 1108379.00 1000206.60 9.76 9.78 0.02 1013934.80 1004031.60 0.98 1.37 0.40
40 1268782.40 1003778.80 20.89 21.18 0.38 1118167.20 1000243.40 10.55 10.57 0.02 1025509.00 1007804.20 1.73 2.49 0.77
48 1301853.80 1004452.00 22.84 23.19 0.44 1078986.40 1000199.20 7.30 7.32 0.02 1027885.20 1007215.40 2.01 2.71 0.72
56 1337093.00 1004828.60 24.85 25.21 0.48 1095201.20 1000176.80 8.68 8.69 0.02 1037988.40 1010988.40 2.60 3.66 1.09
64 1378929.80 1005921.80 27.05 27.48 0.59 1078281.00 1000188.60 7.24 7.26 0.02 1038693.20 1010601.20 2.70 3.73 1.05

Table A.46: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1120475.40 1056299.20 5.73 10.75 5.33 1000032.80 1000022.40 0.00 0.00 0.00 1000033.20 1000021.80 0.00 0.00 0.00
16 1136410.60 1045044.80 8.04 12.00 4.31 1000076.60 1000049.80 0.00 0.01 0.00 1000106.80 1000068.60 0.00 0.01 0.01
24 1146217.40 1040549.60 9.22 12.76 3.90 1000157.20 1000075.80 0.01 0.02 0.01 1000179.40 1000103.60 0.01 0.02 0.01
28 1268897.80 1081951.60 14.73 21.19 7.57 1000211.40 1000092.40 0.01 0.02 0.01 1000230.00 1000132.40 0.01 0.02 0.01
32 1267577.20 1066799.40 15.84 21.11 6.26 1000312.00 1000149.80 0.02 0.03 0.01 1000282.60 1000158.40 0.01 0.03 0.02
40 1355016.40 1084539.80 19.96 26.20 7.79 1000457.40 1000148.00 0.03 0.05 0.01 1000600.00 1000294.80 0.03 0.06 0.03
48 1325575.60 1067129.20 19.50 24.56 6.29 1000677.20 1000292.60 0.04 0.07 0.03 1000770.20 1000385.20 0.04 0.08 0.04
56 1405648.40 1087529.60 22.63 28.86 8.05 1000916.20 1000367.80 0.05 0.09 0.04 1000938.40 1000455.60 0.05 0.09 0.05
64 1383867.00 1083713.80 21.69 27.74 7.72 1000917.40 1000327.00 0.06 0.09 0.03 1001373.20 1000823.80 0.05 0.14 0.08

Table A.47: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

158 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000066.80 1000029.80 0.00 0.01 0.00 1000039.80 1000028.00 0.00 0.00 0.00 1000047.00 1000034.80 0.00 0.00 0.00
16 1000115.40 1000074.00 0.00 0.01 0.01 1000095.40 1000066.20 0.00 0.01 0.01 1000106.20 1000075.80 0.00 0.01 0.01
24 1000189.60 1000115.00 0.01 0.02 0.01 1000179.40 1000113.20 0.01 0.02 0.01 1000176.20 1000118.00 0.01 0.02 0.01
28 1000286.80 1000161.60 0.01 0.03 0.02 1000230.00 1000146.00 0.01 0.02 0.01 1000251.40 1000174.20 0.01 0.03 0.02
32 1000334.20 1000186.60 0.01 0.03 0.02 1000289.00 1000165.60 0.01 0.03 0.02 1000283.40 1000175.20 0.01 0.03 0.02
40 1000536.60 1000305.20 0.02 0.05 0.03 1000497.40 1000282.00 0.02 0.05 0.03 1000471.00 1000296.00 0.02 0.05 0.03
48 1000764.00 1000489.00 0.03 0.08 0.05 1000716.40 1000428.00 0.03 0.07 0.04 1000636.40 1000390.60 0.02 0.06 0.04
56 1001162.60 1000686.40 0.05 0.12 0.07 1000981.80 1000585.60 0.04 0.10 0.06 1000915.60 1000593.20 0.03 0.09 0.06
64 1000952.80 1000557.60 0.04 0.10 0.06 1001459.40 1000924.40 0.05 0.15 0.09 1001155.80 1000685.60 0.05 0.12 0.07

Table A.48: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 159

Undirected Torus 2D 60%. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1112582.60 1000231.00 10.10 10.12 0.02 1067912.60 1000053.20 6.35 6.36 0.01 1012152.40 1005565.40 0.65 1.20 0.55
16 1173239.20 1001615.60 14.63 14.77 0.16 1072525.20 1000120.40 6.75 6.76 0.01 1017683.20 1006878.60 1.06 1.74 0.68
24 1251781.80 1002965.60 19.88 20.11 0.30 1087262.20 1000188.00 8.01 8.03 0.02 1026943.80 1010741.00 1.58 2.62 1.06
28 1320410.80 1003479.40 24.00 24.27 0.35 1075167.00 1000119.40 6.98 6.99 0.01 1028850.40 1009456.40 1.89 2.80 0.94
32 1385489.00 1005180.60 27.45 27.82 0.52 1089971.20 1000149.00 8.24 8.25 0.01 1026137.00 1007941.00 1.77 2.55 0.79
40 1321151.20 1004953.60 23.93 24.31 0.49 1111391.20 1000184.20 10.01 10.02 0.02 1032877.60 1009386.40 2.27 3.18 0.93
48 1386393.80 1005561.40 27.47 27.87 0.55 1094168.40 1000152.00 8.59 8.61 0.02 1019789.20 1005502.40 1.40 1.94 0.55
56 1371865.60 1005792.40 26.68 27.11 0.58 1095965.40 1000166.20 8.74 8.76 0.02 1033268.60 1007121.40 2.53 3.22 0.71
64 1420248.60 1008221.40 29.01 29.59 0.82 1092770.00 1000175.20 8.47 8.49 0.02 1056644.80 1012537.00 4.17 5.36 1.24

Table A.49: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1122378.40 1048091.20 6.62 10.90 4.59 1000031.80 1000020.40 0.00 0.00 0.00 1000039.20 1000028.20 0.00 0.00 0.00
16 1264133.60 1092552.00 13.57 20.89 8.47 1000082.60 1000057.00 0.00 0.01 0.01 1000096.00 1000064.60 0.00 0.01 0.01
24 1331263.80 1092263.20 17.95 24.88 8.45 1000148.40 1000074.00 0.01 0.01 0.01 1000210.00 1000142.80 0.01 0.02 0.01
28 1322992.00 1078581.40 18.47 24.41 7.29 1000196.60 1000093.40 0.01 0.02 0.01 1000215.60 1000132.40 0.01 0.02 0.01
32 1376831.40 1094660.40 20.49 27.37 8.65 1000296.20 1000139.20 0.02 0.03 0.01 1000306.20 1000169.00 0.01 0.03 0.02
40 1393376.60 1091114.20 21.69 28.23 8.35 1000454.60 1000162.40 0.03 0.05 0.02 1000418.20 1000203.20 0.02 0.04 0.02
48 1302068.20 1066873.00 18.06 23.20 6.27 1000485.00 1000202.20 0.03 0.05 0.02 1000669.20 1000335.00 0.03 0.07 0.03
56 1371225.80 1068227.80 22.10 27.07 6.39 1000779.00 1000293.60 0.05 0.08 0.03 1001079.20 1000576.40 0.05 0.11 0.06
64 1408743.20 1079272.40 23.39 29.01 7.34 1000845.80 1000302.60 0.05 0.08 0.03 1001079.40 1000588.40 0.05 0.11 0.06

Table A.50: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 2D 60 undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

160 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000076.60 1000052.00 0.00 0.01 0.01 1000044.80 1000032.80 0.00 0.00 0.00 1000131.00 1000121.40 0.00 0.01 0.01
16 1000102.80 1000075.60 0.00 0.01 0.01 1000104.80 1000075.20 0.00 0.01 0.01 1000093.40 1000067.80 0.00 0.01 0.01
24 1000166.80 1000106.40 0.01 0.02 0.01 1000172.60 1000103.20 0.01 0.02 0.01 1000242.40 1000178.40 0.01 0.02 0.02
28 1000217.60 1000138.40 0.01 0.02 0.01 1000225.40 1000126.40 0.01 0.02 0.01 1000251.00 1000179.00 0.01 0.03 0.02
32 1000388.40 1000257.40 0.01 0.04 0.03 1000311.80 1000203.20 0.01 0.03 0.02 1000368.20 1000268.60 0.01 0.04 0.03
40 1000494.40 1000288.40 0.02 0.05 0.03 1000457.60 1000237.20 0.02 0.05 0.02 1000458.00 1000279.60 0.02 0.05 0.03
48 1000700.60 1000446.80 0.03 0.07 0.04 1000655.40 1000335.20 0.03 0.07 0.03 1000841.00 1000484.40 0.04 0.08 0.05
56 1000793.40 1000432.80 0.04 0.08 0.04 1000984.60 1000607.00 0.04 0.10 0.06 1000735.40 1000403.40 0.03 0.07 0.04
64 1001009.80 1000573.80 0.04 0.10 0.06 1001190.80 1000569.20 0.06 0.12 0.06 1000992.80 1000564.00 0.04 0.10 0.06

Table A.51: The number of puts and takes performed during the spanning tree
experiment on a Torus 2D 60 undirected graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 161

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Torus 2D 60%.
Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Torus 2D 60%.
Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

5

10

15

20

25

30

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Undirected Torus 2D 60%.
Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

5

10

15

20

25

30

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Undirected Torus 2D 60%.
Initial size of 1,000,000 items

Figure A.8: Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

162 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Torus
2D 60%. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Torus
2D 60%. Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

7

8

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed Surplus work: Undirected Torus
2D 60%. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Undirected Torus
2D 60%. Initial size of 1,000,000 items

Figure A.9: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

A.2 Results of Parallel Spanning Tree experiments 163

Directed Torus 3D. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1518382.80 1002729.80 33.96 34.14 0.27 1114649.40 1000045.60 10.28 10.29 0.00 1098251.40 1026479.20 6.54 8.95 2.58
16 1464633.60 1001836.80 31.60 31.72 0.18 1139491.40 1000081.80 12.23 12.24 0.01 1071382.80 1019950.80 4.80 6.66 1.96
24 1488988.60 1001817.80 32.72 32.84 0.18 1109569.60 1000095.40 9.87 9.87 0.01 1066547.60 1019358.00 4.42 6.24 1.90
28 1401148.20 1001090.00 28.55 28.63 0.11 1118098.60 1000104.80 10.55 10.56 0.01 1060865.60 1017061.20 4.13 5.74 1.68
32 1428766.60 1001228.60 29.92 30.01 0.12 1108755.80 1000092.20 9.80 9.81 0.01 1058670.80 1016389.00 3.99 5.54 1.61
40 1402662.80 1000773.60 28.65 28.71 0.08 1118007.40 1000136.80 10.54 10.56 0.01 1057805.80 1015497.60 4.00 5.46 1.53
48 1419858.00 1001236.40 29.48 29.57 0.12 1114775.00 1000101.40 10.29 10.30 0.01 1068424.80 1018635.00 4.66 6.40 1.83
56 1444332.80 1001655.20 30.65 30.76 0.17 1121852.40 1000118.20 10.85 10.86 0.01 1080560.40 1019777.80 5.63 7.46 1.94
64 1428939.60 1002321.20 29.86 30.02 0.23 1085480.00 1000122.40 7.86 7.87 0.01 1080866.60 1023482.20 5.31 7.48 2.29

Table A.52: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Chase-Lev, Cilk THE, and
Idempotent LIFO. Furthermore, we present the percentage difference between the
number of puts and takes for each available thread, relative to the total number of
puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1628867.80 1265167.80 22.33 38.61 20.96 1000414.20 1000398.60 0.00 0.04 0.04 1000310.60 1000286.60 0.00 0.03 0.03
16 1653954.80 1225914.00 25.88 39.54 18.43 1001764.20 1001724.80 0.00 0.18 0.17 1002291.40 1001867.80 0.04 0.23 0.19
24 1574299.20 1181708.80 24.94 36.48 15.38 1000944.60 1000684.60 0.03 0.09 0.07 1001082.80 1000976.80 0.01 0.11 0.10
28 1623697.60 1185717.00 26.97 38.41 15.66 1001322.40 1000952.00 0.04 0.13 0.10 1001658.40 1000991.80 0.07 0.17 0.10
32 1636044.00 1202424.20 26.50 38.88 16.83 1001061.40 1000741.60 0.03 0.11 0.07 1001306.60 1000690.20 0.06 0.13 0.07
40 1551282.60 1171691.40 24.47 35.54 14.65 1000989.80 1000481.40 0.05 0.10 0.05 1001691.40 1000946.00 0.07 0.17 0.09
48 1750071.00 1290436.00 26.26 42.86 22.51 1004021.80 1000727.80 0.33 0.40 0.07 1003146.40 1001578.40 0.16 0.31 0.16
56 1533304.40 1160251.40 24.33 34.78 13.81 1003050.00 1000705.60 0.23 0.30 0.07 1003658.00 1001941.00 0.17 0.36 0.19
64 1698806.60 1279848.40 24.66 41.14 21.87 1004193.20 1000838.80 0.33 0.42 0.08 1005172.80 1002514.80 0.26 0.51 0.25

Table A.53: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 3D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

164 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000512.20 1000367.40 0.01 0.05 0.04 1000903.80 1000891.00 0.00 0.09 0.09 1000700.40 1000686.60 0.00 0.07 0.07
16 1000832.80 1000705.00 0.01 0.08 0.07 1002111.00 1002073.40 0.00 0.21 0.21 1001943.60 1001889.60 0.01 0.19 0.19
24 1000730.80 1000478.40 0.03 0.07 0.05 1001042.40 1000933.20 0.01 0.10 0.09 1001613.60 1001425.80 0.02 0.16 0.14
28 1002505.80 1001286.60 0.12 0.25 0.13 1001728.20 1001212.20 0.05 0.17 0.12 1001119.80 1000932.20 0.02 0.11 0.09
32 1001376.00 1000711.20 0.07 0.14 0.07 1001091.00 1000958.20 0.01 0.11 0.10 1001096.80 1000720.60 0.04 0.11 0.07
40 1003103.00 1001514.20 0.16 0.31 0.15 1002010.40 1001200.20 0.08 0.20 0.12 1001492.80 1001108.40 0.04 0.15 0.11
48 1002573.80 1001210.40 0.14 0.26 0.12 1002963.20 1001781.00 0.12 0.30 0.18 1001636.40 1000914.20 0.07 0.16 0.09
56 1006062.00 1002658.60 0.34 0.60 0.27 1003712.80 1002003.20 0.17 0.37 0.20 1004573.40 1001954.40 0.26 0.46 0.20
64 1006329.00 1002971.80 0.33 0.63 0.30 1007954.20 1003634.60 0.43 0.79 0.36 1004020.40 1001714.00 0.23 0.40 0.17

Table A.54: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: B. WS WMult, WS WMult
Lists, and B. WS WMult Lists. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 165

Directed Torus 3D. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1372395.20 1001635.40 27.02 27.13 0.16 1122614.60 1000088.20 10.91 10.92 0.01 1059276.80 1024567.20 3.28 5.60 2.40
16 1433214.60 1000323.40 30.20 30.23 0.03 1127121.80 1000090.60 11.27 11.28 0.01 1057170.20 1021495.00 3.37 5.41 2.10
24 1448832.80 1000533.80 30.94 30.98 0.05 1114541.40 1000115.80 10.27 10.28 0.01 1059802.20 1020125.00 3.74 5.64 1.97
28 1385503.60 1001000.20 27.75 27.82 0.10 1111023.60 1000073.40 9.99 9.99 0.01 1064373.40 1019316.40 4.23 6.05 1.90
32 1416874.80 1000771.80 29.37 29.42 0.08 1101505.00 1000085.40 9.21 9.22 0.01 1060945.20 1019519.00 3.90 5.74 1.91
40 1419027.00 1000730.20 29.48 29.53 0.07 1106658.20 1000147.20 9.62 9.64 0.01 1059128.00 1017581.40 3.92 5.58 1.73
48 1342022.00 1000699.40 25.43 25.49 0.07 1122954.40 1000110.60 10.94 10.95 0.01 1066871.60 1019310.20 4.46 6.27 1.89
56 1378406.80 1000663.00 27.40 27.45 0.07 1095288.80 1000113.60 8.69 8.70 0.01 1065900.60 1017963.20 4.50 6.18 1.76
64 1349161.60 1001019.60 25.80 25.88 0.10 1107860.00 1000147.20 9.72 9.74 0.01 1067699.60 1018627.60 4.60 6.34 1.83

Table A.55: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1411172.60 1145740.00 18.81 29.14 12.72 1000993.40 1000972.00 0.00 0.10 0.10 1000764.60 1000752.00 0.00 0.08 0.08
16 1687686.20 1255514.00 25.61 40.75 20.35 1002500.00 1002471.40 0.00 0.25 0.25 1001408.00 1001336.40 0.01 0.14 0.13
24 1696765.80 1224102.60 27.86 41.06 18.31 1001302.40 1001198.80 0.01 0.13 0.12 1001260.00 1001009.60 0.03 0.13 0.10
28 1641905.20 1184651.60 27.85 39.10 15.59 1001690.80 1001322.80 0.04 0.17 0.13 1002090.00 1001566.00 0.05 0.21 0.16
32 1603087.60 1171833.40 26.90 37.62 14.66 1001271.80 1000695.20 0.06 0.13 0.07 1001681.60 1001116.40 0.06 0.17 0.11
40 1410310.80 1091270.80 22.62 29.09 8.36 1000720.40 1000444.60 0.03 0.07 0.04 1004530.20 1002401.60 0.21 0.45 0.24
48 1560914.00 1159006.60 25.75 35.93 13.72 1002612.60 1001084.40 0.15 0.26 0.11 1003340.60 1001872.80 0.15 0.33 0.19
56 1593918.80 1199605.40 24.74 37.26 16.64 1003855.60 1000798.40 0.30 0.38 0.08 1005926.20 1003121.40 0.28 0.59 0.31
64 1519171.60 1166243.60 23.23 34.17 14.25 1003976.00 1000806.60 0.32 0.40 0.08 1004574.40 1002374.00 0.22 0.46 0.24

Table A.56: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 3D directed graph with an initial size of 1000000 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

166 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1001618.60 1001247.60 0.04 0.16 0.12 1001379.00 1001365.00 0.00 0.14 0.14 1000828.60 1000821.00 0.00 0.08 0.08
16 1001677.60 1001638.40 0.00 0.17 0.16 1002739.40 1002661.80 0.01 0.27 0.27 1002436.40 1002410.60 0.00 0.24 0.24
24 1001148.20 1000935.80 0.02 0.11 0.09 1001889.40 1001561.80 0.03 0.19 0.16 1001531.20 1001391.40 0.01 0.15 0.14
28 1001631.20 1001572.00 0.01 0.16 0.16 1002189.20 1001866.80 0.03 0.22 0.19 1001543.80 1001294.40 0.02 0.15 0.13
32 1000783.60 1000616.60 0.02 0.08 0.06 1001376.80 1001014.80 0.04 0.14 0.10 1001528.60 1001371.20 0.02 0.15 0.14
40 1001286.80 1000786.60 0.05 0.13 0.08 1002312.60 1001193.40 0.11 0.23 0.12 1001227.20 1000858.40 0.04 0.12 0.09
48 1002554.80 1001447.00 0.11 0.25 0.14 1003279.00 1001647.80 0.16 0.33 0.16 1002338.00 1001087.40 0.12 0.23 0.11
56 1004276.80 1001896.40 0.24 0.43 0.19 1003606.00 1001852.00 0.17 0.36 0.18 1002938.80 1001639.80 0.13 0.29 0.16
64 1004331.00 1002208.80 0.21 0.43 0.22 1003899.20 1002418.40 0.15 0.39 0.24 1004068.00 1001807.20 0.23 0.41 0.18

Table A.57: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 167

Undirected Torus 3D. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1012480.80 1000075.60 1.23 1.23 0.01 1001764.60 1000048.60 0.17 0.18 0.00 1006449.60 1001777.80 0.46 0.64 0.18
16 1011540.40 1000119.80 1.13 1.14 0.01 1003511.00 1000097.60 0.34 0.35 0.01 1009970.00 1002425.20 0.75 0.99 0.24
24 1032579.00 1000137.20 3.14 3.16 0.01 1014026.80 1000154.40 1.37 1.38 0.02 1024091.80 1004787.40 1.89 2.35 0.48
28 1024871.20 1000147.00 2.41 2.43 0.01 1018743.00 1000119.60 1.83 1.84 0.01 1054275.20 1010015.00 4.20 5.15 0.99
32 1038443.40 1000195.40 3.68 3.70 0.02 1017599.60 1000141.40 1.72 1.73 0.01 1042960.20 1007669.60 3.38 4.12 0.76
40 1068735.80 1000163.40 6.42 6.43 0.02 1030333.60 1000163.20 2.93 2.94 0.02 1084445.80 1015863.00 6.32 7.79 1.56
48 1090499.80 1000194.40 8.28 8.30 0.02 1040533.80 1000186.00 3.88 3.90 0.02 1099221.20 1016691.80 7.51 9.03 1.64
56 1149163.00 1000275.20 12.96 12.98 0.03 1038258.40 1000210.00 3.66 3.68 0.02 1131282.40 1021065.00 9.74 11.60 2.06
64 1127615.20 1000292.20 11.29 11.32 0.03 1035878.80 1000245.20 3.44 3.46 0.02 1161668.60 1025824.80 11.69 13.92 2.52

Table A.58: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1008935.40 1002324.00 0.66 0.89 0.23 1000076.00 1000067.20 0.00 0.01 0.01 1000072.40 1000062.00 0.00 0.01 0.01
16 1005664.00 1000783.80 0.49 0.56 0.08 1000249.00 1000229.80 0.00 0.02 0.02 1000228.00 1000205.00 0.00 0.02 0.02
24 1019054.20 1004002.20 1.48 1.87 0.40 1000277.20 1000252.60 0.00 0.03 0.03 1000227.60 1000196.40 0.00 0.02 0.02
28 1040647.80 1009364.40 3.01 3.91 0.93 1000310.40 1000268.00 0.00 0.03 0.03 1000314.80 1000267.60 0.00 0.03 0.03
32 1034936.40 1006775.80 2.72 3.38 0.67 1000363.20 1000318.20 0.00 0.04 0.03 1000268.80 1000211.80 0.01 0.03 0.02
40 1091603.40 1020057.40 6.55 8.39 1.97 1000370.40 1000300.20 0.01 0.04 0.03 1000308.40 1000237.40 0.01 0.03 0.02
48 1096793.00 1017072.00 7.27 8.83 1.68 1000376.60 1000284.40 0.01 0.04 0.03 1000644.20 1000483.60 0.02 0.06 0.05
56 1139456.20 1028849.40 9.71 12.24 2.80 1000434.20 1000282.80 0.02 0.04 0.03 1000847.20 1000609.40 0.02 0.08 0.06
64 1170783.80 1031857.80 11.87 14.59 3.09 1000582.20 1000272.60 0.03 0.06 0.03 1002944.60 1002011.20 0.09 0.29 0.20

Table A.59: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 3D undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

168 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000093.60 1000056.20 0.00 0.01 0.01 1000098.20 1000092.40 0.00 0.01 0.01 1000071.20 1000066.20 0.00 0.01 0.01
16 1000127.20 1000089.80 0.00 0.01 0.01 1000255.40 1000238.60 0.00 0.03 0.02 1000243.80 1000227.80 0.00 0.02 0.02
24 1000152.60 1000119.20 0.00 0.02 0.01 1000236.80 1000204.00 0.00 0.02 0.02 1000215.40 1000181.00 0.00 0.02 0.02
28 1000263.00 1000153.00 0.01 0.03 0.02 1000269.40 1000216.40 0.01 0.03 0.02 1000284.60 1000248.60 0.00 0.03 0.02
32 1000399.20 1000189.60 0.02 0.04 0.02 1000340.40 1000286.20 0.01 0.03 0.03 1000289.60 1000247.80 0.00 0.03 0.02
40 1000306.40 1000234.00 0.01 0.03 0.02 1000324.40 1000260.40 0.01 0.03 0.03 1000350.40 1000281.20 0.01 0.04 0.03
48 1000529.40 1000335.40 0.02 0.05 0.03 1000423.40 1000322.60 0.01 0.04 0.03 1000376.60 1000296.60 0.01 0.04 0.03
56 1001127.00 1000344.40 0.08 0.11 0.03 1001306.60 1001000.80 0.03 0.13 0.10 1000621.40 1000389.80 0.02 0.06 0.04
64 1001016.60 1000428.80 0.06 0.10 0.04 1005599.20 1003886.20 0.17 0.56 0.39 1002100.20 1000660.00 0.14 0.21 0.07

Table A.60: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 169

Undirected Torus 3D. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1007042.80 1000047.20 0.69 0.70 0.00 1002218.40 1000051.20 0.22 0.22 0.01 1004675.40 1001251.40 0.34 0.47 0.12
16 1004167.80 1000118.60 0.40 0.42 0.01 1001520.40 1000105.20 0.14 0.15 0.01 1004673.20 1001481.20 0.32 0.47 0.15
24 1035109.00 1000155.00 3.38 3.39 0.02 1008261.00 1000124.40 0.81 0.82 0.01 1026903.20 1006133.40 2.02 2.62 0.61
28 1031260.40 1000129.40 3.02 3.03 0.01 1015662.00 1000117.40 1.53 1.54 0.01 1027101.20 1006384.60 2.02 2.64 0.63
32 1059586.40 1000160.20 5.61 5.62 0.02 1025879.80 1000162.80 2.51 2.52 0.02 1032898.80 1007668.40 2.44 3.19 0.76
40 1073014.20 1000190.40 6.79 6.80 0.02 1024220.60 1000202.20 2.35 2.36 0.02 1036169.20 1007405.40 2.78 3.49 0.74
48 1083288.40 1000192.80 7.67 7.69 0.02 1025092.00 1000183.00 2.43 2.45 0.02 1087383.00 1019444.60 6.25 8.04 1.91
56 1117937.00 1000232.20 10.53 10.55 0.02 1034225.00 1000243.00 3.29 3.31 0.02 1082462.20 1017152.00 6.03 7.62 1.69
64 1119506.60 1000232.60 10.65 10.67 0.02 1032297.00 1000199.00 3.11 3.13 0.02 1104746.20 1019559.20 7.71 9.48 1.92

Table A.61: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1008787.00 1002766.40 0.60 0.87 0.28 1000103.60 1000096.20 0.00 0.01 0.01 1000100.20 1000092.40 0.00 0.01 0.01
16 1012180.00 1004830.20 0.73 1.20 0.48 1000322.80 1000309.80 0.00 0.03 0.03 1000266.20 1000242.20 0.00 0.03 0.02
24 1020304.60 1004372.20 1.56 1.99 0.44 1000377.20 1000352.40 0.00 0.04 0.04 1000371.20 1000340.00 0.00 0.04 0.03
28 1033808.80 1007483.60 2.55 3.27 0.74 1000281.60 1000243.20 0.00 0.03 0.02 1000384.20 1000334.20 0.00 0.04 0.03
32 1053407.60 1012625.60 3.87 5.07 1.25 1000302.80 1000246.40 0.01 0.03 0.02 1000283.40 1000226.00 0.01 0.03 0.02
40 1046909.20 1010809.80 3.45 4.48 1.07 1000287.80 1000200.40 0.01 0.03 0.02 1000327.00 1000246.00 0.01 0.03 0.02
48 1094059.80 1019987.60 6.77 8.60 1.96 1000421.00 1000217.80 0.02 0.04 0.02 1000417.20 1000328.60 0.01 0.04 0.03
56 1111778.80 1023329.00 7.96 10.05 2.28 1000677.60 1000316.00 0.04 0.07 0.03 1000755.00 1000551.80 0.02 0.08 0.06
64 1116098.60 1020284.40 8.58 10.40 1.99 1000990.60 1000259.60 0.07 0.10 0.03 1003775.40 1002759.80 0.10 0.38 0.28

Table A.62: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

170 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000105.00 1000093.80 0.00 0.01 0.01 1000130.60 1000123.40 0.00 0.01 0.01 1000091.40 1000086.00 0.00 0.01 0.01
16 1000231.80 1000216.20 0.00 0.02 0.02 1000285.00 1000265.60 0.00 0.03 0.03 1000295.60 1000282.80 0.00 0.03 0.03
24 1000340.40 1000310.80 0.00 0.03 0.03 1000307.80 1000274.00 0.00 0.03 0.03 1000298.00 1000272.60 0.00 0.03 0.03
28 1000418.00 1000380.60 0.00 0.04 0.04 1000280.60 1000230.00 0.01 0.03 0.02 1000382.60 1000347.00 0.00 0.04 0.03
32 1000320.40 1000277.40 0.00 0.03 0.03 1000320.40 1000263.80 0.01 0.03 0.03 1000417.40 1000370.00 0.00 0.04 0.04
40 1000385.60 1000296.40 0.01 0.04 0.03 1000376.40 1000312.60 0.01 0.04 0.03 1000320.40 1000261.80 0.01 0.03 0.03
48 1000414.60 1000336.80 0.01 0.04 0.03 1001021.20 1000777.60 0.02 0.10 0.08 1000518.80 1000430.60 0.01 0.05 0.04
56 1000976.80 1000364.00 0.06 0.10 0.04 1002241.60 1001664.60 0.06 0.22 0.17 1001148.20 1000391.00 0.08 0.11 0.04
64 1000859.80 1000354.20 0.05 0.09 0.04 1003762.40 1002766.20 0.10 0.37 0.28 1000451.40 1000343.00 0.01 0.05 0.03

Table A.63: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D undirected graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 171

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Torus 3D. Initial
size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

10

20

30

40

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Torus 3D. Initial
size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

14

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Undirected Torus 3D. Ini-
tial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Undirected Torus 3D. Ini-
tial size of 1,000,000 items

Figure A.10: Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

172 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0

5

10

15

20

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Torus
3D. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Torus
3D. Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed surplus work: Undirected Torus
3D. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Undirected Torus
3D. Initial size of 1,000,000 items

Figure A.11: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

A.2 Results of Parallel Spanning Tree experiments 173

Directed Torus 3D 40%. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1005449.60 1000025.40 0.54 0.54 0.00 1003531.00 1000011.60 0.35 0.35 0.00 1007831.60 1003007.60 0.48 0.78 0.30
16 1007845.00 1000040.80 0.77 0.78 0.00 1003157.80 1000021.20 0.31 0.31 0.00 1007907.00 1002678.20 0.52 0.78 0.27
24 1010827.80 1000051.00 1.07 1.07 0.01 1014180.00 1000052.40 1.39 1.40 0.01 1012551.00 1003577.60 0.89 1.24 0.36
28 1018479.60 1000072.80 1.81 1.81 0.01 1009475.60 1000041.40 0.93 0.94 0.00 1025882.20 1006902.20 1.85 2.52 0.69
32 1020975.20 1000083.40 2.05 2.05 0.01 1018990.80 1000064.00 1.86 1.86 0.01 1031138.00 1009279.60 2.12 3.02 0.92
40 1034711.20 1000118.00 3.34 3.35 0.01 1020566.60 1000070.60 2.01 2.02 0.01 1050068.40 1012530.20 3.57 4.77 1.24
48 1057946.40 1000196.00 5.46 5.48 0.02 1033972.80 1000102.40 3.28 3.29 0.01 1068848.60 1016887.80 4.86 6.44 1.66
56 1068222.80 1000269.20 6.36 6.39 0.03 1026236.60 1000101.20 2.55 2.56 0.01 1072725.20 1018435.00 5.06 6.78 1.81
64 1081135.20 1000354.40 7.47 7.50 0.04 1034986.40 1000129.00 3.37 3.38 0.01 1084878.80 1019539.00 6.02 7.82 1.92

Table A.64: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 directed graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1008481.80 1003449.40 0.50 0.84 0.34 1000128.80 1000055.00 0.01 0.01 0.01 1000526.80 1000219.80 0.03 0.05 0.02
16 1005470.20 1001761.00 0.37 0.54 0.18 1000658.00 1000200.00 0.05 0.07 0.02 1000935.00 1000436.80 0.05 0.09 0.04
24 1009159.80 1002624.60 0.65 0.91 0.26 1000920.00 1000149.80 0.08 0.09 0.01 1003026.40 1001321.00 0.17 0.30 0.13
28 1015154.40 1003866.60 1.11 1.49 0.39 1001958.60 1000274.20 0.17 0.20 0.03 1002323.40 1000898.80 0.14 0.23 0.09
32 1017233.80 1004198.20 1.28 1.69 0.42 1001449.80 1000200.40 0.12 0.14 0.02 1002768.00 1001051.00 0.17 0.28 0.10
40 1046653.80 1011064.20 3.40 4.46 1.09 1003686.00 1000461.20 0.32 0.37 0.05 1004101.00 1001486.00 0.26 0.41 0.15
48 1068845.40 1016652.60 4.88 6.44 1.64 1005327.00 1000561.80 0.47 0.53 0.06 1007847.20 1003027.40 0.48 0.78 0.30
56 1070162.00 1013574.00 5.29 6.56 1.34 1008234.00 1000919.00 0.73 0.82 0.09 1009025.80 1002972.00 0.60 0.89 0.30
64 1105482.20 1023885.60 7.38 9.54 2.33 1006061.80 1000680.80 0.53 0.60 0.07 1010481.40 1003566.20 0.68 1.04 0.36

Table A.65: The number of puts and takes performed during the spanning tree exper-
iment on a Torus 3D 40 directed graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

174 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1001496.00 1000859.80 0.06 0.15 0.09 1000215.20 1000154.00 0.01 0.02 0.02 1000227.20 1000153.60 0.01 0.02 0.02
16 1001202.00 1000555.00 0.06 0.12 0.06 1000642.80 1000386.60 0.03 0.06 0.04 1000830.00 1000488.00 0.03 0.08 0.05
24 1001979.40 1000864.40 0.11 0.20 0.09 1001499.00 1000901.80 0.06 0.15 0.09 1001272.00 1000702.20 0.06 0.13 0.07
28 1001512.20 1000549.40 0.10 0.15 0.05 1001234.40 1000620.80 0.06 0.12 0.06 1001945.00 1000943.60 0.10 0.19 0.09
32 1003173.60 1001363.80 0.18 0.32 0.14 1003907.80 1001866.60 0.20 0.39 0.19 1002539.80 1001121.60 0.14 0.25 0.11
40 1003953.20 1001584.80 0.24 0.39 0.16 1003717.00 1001515.40 0.22 0.37 0.15 1003422.80 1001369.80 0.20 0.34 0.14
48 1004153.40 1001451.40 0.27 0.41 0.14 1008118.80 1003261.20 0.48 0.81 0.33 1003330.80 1001519.80 0.18 0.33 0.15
56 1004527.40 1001453.00 0.31 0.45 0.15 1008654.00 1003760.60 0.49 0.86 0.37 1005827.80 1002499.80 0.33 0.58 0.25
64 1008753.40 1003547.40 0.52 0.87 0.35 1008999.20 1003677.20 0.53 0.89 0.37 1007851.60 1002852.00 0.50 0.78 0.28

Table A.66: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 directed graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 175

Directed Torus 3D 40%. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1004781.60 1000020.20 0.47 0.48 0.00 1003283.60 1000008.40 0.33 0.33 0.00 1006380.40 1002846.20 0.35 0.63 0.28
16 1006512.20 1000034.60 0.64 0.65 0.00 1002174.40 1000019.80 0.21 0.22 0.00 1005317.20 1002013.00 0.33 0.53 0.20
24 1014385.20 1000063.80 1.41 1.42 0.01 1005093.20 1000034.20 0.50 0.51 0.00 1010438.20 1002924.40 0.74 1.03 0.29
28 1022011.60 1000084.60 2.15 2.15 0.01 1004570.20 1000035.40 0.45 0.45 0.00 1015315.40 1004004.00 1.11 1.51 0.40
32 1021742.80 1000087.60 2.12 2.13 0.01 1010249.40 1000051.00 1.01 1.01 0.01 1021117.00 1005840.20 1.50 2.07 0.58
40 1037049.80 1000134.80 3.56 3.57 0.01 1020277.40 1000074.20 1.98 1.99 0.01 1041185.00 1010045.20 2.99 3.96 0.99
48 1051062.80 1000184.20 4.84 4.86 0.02 1022430.20 1000086.60 2.19 2.19 0.01 1057283.00 1012886.80 4.20 5.42 1.27
56 1074435.40 1000252.80 6.90 6.93 0.03 1030442.80 1000108.00 2.94 2.95 0.01 1068879.60 1018493.40 4.71 6.44 1.82
64 1056956.00 1000211.00 5.37 5.39 0.02 1029732.00 1000106.40 2.88 2.89 0.01 1084300.60 1019628.00 5.96 7.77 1.93

Table A.67: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1005001.40 1002014.20 0.30 0.50 0.20 1000122.00 1000075.60 0.00 0.01 0.01 1000217.00 1000138.80 0.01 0.02 0.01
16 1004703.20 1001704.00 0.30 0.47 0.17 1000770.20 1000267.00 0.05 0.08 0.03 1000395.20 1000321.20 0.01 0.04 0.03
24 1009500.80 1002804.60 0.66 0.94 0.28 1000797.00 1000188.00 0.06 0.08 0.02 1002385.40 1001090.60 0.13 0.24 0.11
28 1019746.40 1004967.60 1.45 1.94 0.49 1002046.40 1000323.60 0.17 0.20 0.03 1002226.00 1001122.20 0.11 0.22 0.11
32 1022973.00 1006644.20 1.60 2.25 0.66 1002253.60 1000343.20 0.19 0.22 0.03 1004358.40 1002140.60 0.22 0.43 0.21
40 1037510.20 1007760.60 2.87 3.62 0.77 1002563.40 1000389.40 0.22 0.26 0.04 1004019.20 1001589.80 0.24 0.40 0.16
48 1064999.20 1015797.00 4.62 6.10 1.56 1004420.80 1000568.80 0.38 0.44 0.06 1004806.60 1001815.60 0.30 0.48 0.18
56 1061730.80 1012102.60 4.67 5.81 1.20 1006483.40 1000712.60 0.57 0.64 0.07 1006010.40 1002515.40 0.35 0.60 0.25
64 1066844.20 1014133.80 4.94 6.27 1.39 1005115.40 1000629.20 0.45 0.51 0.06 1007441.40 1002877.60 0.45 0.74 0.29

Table A.68: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 3D 40 directed graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

176 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000210.60 1000149.60 0.01 0.02 0.01 1000323.80 1000266.00 0.01 0.03 0.03 1000296.00 1000256.40 0.00 0.03 0.03
16 1000692.80 1000428.00 0.03 0.07 0.04 1000723.00 1000457.40 0.03 0.07 0.05 1000523.20 1000335.40 0.02 0.05 0.03
24 1000685.80 1000359.00 0.03 0.07 0.04 1001289.80 1000686.20 0.06 0.13 0.07 1001071.80 1000511.80 0.06 0.11 0.05
28 1001066.80 1000540.60 0.05 0.11 0.05 1001539.40 1000735.00 0.08 0.15 0.07 1001075.00 1000473.00 0.06 0.11 0.05
32 1002309.00 1000954.80 0.14 0.23 0.10 1002734.80 1001197.00 0.15 0.27 0.12 1003033.60 1001503.40 0.15 0.30 0.15
40 1002858.20 1001243.00 0.16 0.29 0.12 1003612.00 1001454.60 0.21 0.36 0.15 1002216.20 1000841.80 0.14 0.22 0.08
48 1002879.00 1001330.40 0.15 0.29 0.13 1005406.20 1002005.60 0.34 0.54 0.20 1004107.80 1001592.60 0.25 0.41 0.16
56 1005787.80 1002161.40 0.36 0.58 0.22 1008493.40 1003380.40 0.51 0.84 0.34 1006130.40 1002085.20 0.40 0.61 0.21
64 1005020.00 1001893.40 0.31 0.50 0.19 1009661.60 1003703.00 0.59 0.96 0.37 1006580.60 1002327.00 0.42 0.65 0.23

Table A.69: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 directed graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 177

Undirected Torus 3D 40%. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1017995.80 1000015.00 1.77 1.77 0.00 1003827.00 1000010.20 0.38 0.38 0.00 1014102.20 1003530.20 1.04 1.39 0.35
16 1017650.00 1000027.40 1.73 1.73 0.00 1006828.60 1000026.60 0.68 0.68 0.00 1025272.40 1004920.80 1.98 2.46 0.49
24 1037891.20 1000048.20 3.65 3.65 0.00 1012529.80 1000042.40 1.23 1.24 0.00 1031634.60 1006082.80 2.48 3.07 0.60
28 1042682.60 1000046.20 4.09 4.09 0.00 1013805.20 1000034.00 1.36 1.36 0.00 1035589.20 1006250.20 2.83 3.44 0.62
32 1063334.80 1000060.20 5.95 5.96 0.01 1017024.40 1000060.40 1.67 1.67 0.01 1062079.60 1012646.00 4.65 5.85 1.25
40 1065346.20 1000072.40 6.13 6.13 0.01 1022461.80 1000062.20 2.19 2.20 0.01 1093480.20 1018313.60 6.87 8.55 1.80
48 1091432.20 1000092.40 8.37 8.38 0.01 1039476.20 1000079.80 3.79 3.80 0.01 1076567.60 1013001.80 5.90 7.11 1.28
56 1139723.40 1000176.20 12.24 12.26 0.02 1038957.20 1000095.40 3.74 3.75 0.01 1121967.00 1024412.20 8.69 10.87 2.38
64 1144039.40 1000169.80 12.58 12.59 0.02 1042307.80 1000097.80 4.05 4.06 0.01 1111321.60 1017669.40 8.43 10.02 1.74

Table A.70: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1012364.60 1002952.80 0.93 1.22 0.29 1000045.00 1000037.80 0.00 0.00 0.00 1000040.80 1000030.40 0.00 0.00 0.00
16 1015285.00 1004607.00 1.05 1.51 0.46 1000103.60 1000087.00 0.00 0.01 0.01 1000111.80 1000086.80 0.00 0.01 0.01
24 1024174.00 1006047.20 1.77 2.36 0.60 1000125.60 1000098.20 0.00 0.01 0.01 1000163.60 1000122.60 0.00 0.02 0.01
28 1043091.00 1009550.40 3.22 4.13 0.95 1000159.00 1000109.40 0.00 0.02 0.01 1000191.80 1000138.60 0.01 0.02 0.01
32 1045208.20 1009458.40 3.42 4.33 0.94 1000175.60 1000112.40 0.01 0.02 0.01 1000183.00 1000123.80 0.01 0.02 0.01
40 1093916.80 1019826.00 6.77 8.59 1.94 1000204.40 1000129.60 0.01 0.02 0.01 1000251.80 1000163.20 0.01 0.03 0.02
48 1090897.60 1018033.80 6.68 8.33 1.77 1000246.00 1000137.60 0.01 0.02 0.01 1001355.40 1000927.00 0.04 0.14 0.09
56 1126565.20 1026626.60 8.87 11.23 2.59 1001315.60 1000141.60 0.12 0.13 0.01 1000574.40 1000364.40 0.02 0.06 0.04
64 1128948.20 1023499.80 9.34 11.42 2.30 1001102.40 1000172.40 0.09 0.11 0.02 1003930.20 1002669.60 0.13 0.39 0.27

Table A.71: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

178 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000097.80 1000032.60 0.01 0.01 0.00 1000037.20 1000029.20 0.00 0.00 0.00 1000042.60 1000034.60 0.00 0.00 0.00
16 1000144.00 1000082.60 0.01 0.01 0.01 1000110.60 1000090.20 0.00 0.01 0.01 1000113.40 1000094.00 0.00 0.01 0.01
24 1000142.00 1000089.80 0.01 0.01 0.01 1000150.60 1000121.60 0.00 0.02 0.01 1000146.00 1000114.60 0.00 0.01 0.01
28 1000202.20 1000113.80 0.01 0.02 0.01 1000171.80 1000117.00 0.01 0.02 0.01 1000172.60 1000124.60 0.00 0.02 0.01
32 1000230.40 1000144.00 0.01 0.02 0.01 1000185.80 1000126.80 0.01 0.02 0.01 1000216.60 1000162.60 0.01 0.02 0.02
40 1000306.60 1000193.60 0.01 0.03 0.02 1000218.40 1000149.00 0.01 0.02 0.01 1000234.60 1000168.40 0.01 0.02 0.02
48 1000651.80 1000237.80 0.04 0.07 0.02 1000293.40 1000201.80 0.01 0.03 0.02 1000295.60 1000211.20 0.01 0.03 0.02
56 1000916.80 1000281.00 0.06 0.09 0.03 1002471.20 1001770.60 0.07 0.25 0.18 1000659.20 1000273.00 0.04 0.07 0.03
64 1001691.80 1000395.80 0.13 0.17 0.04 1003185.40 1002393.20 0.08 0.32 0.24 1001787.80 1000506.40 0.13 0.18 0.05

Table A.72: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 undirected graph with an initial size of 256 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 179

Undirected Torus 3D 40%. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO Idempotent DEQUE Idempotent FIFO
Operation Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00
8 1010972.00 1000014.20 1.08 1.09 1003617.80 1000009.20 0.36 0.36 1009566.40 1002906.80 0.66 0.95 1013092.00 1003388.60 0.96 1.29 1000047.20 1000039.20 0.00 0.00
16 1009884.40 1000030.40 0.98 0.98 1004682.40 1000028.80 0.46 0.47 1007973.80 1002418.80 0.55 0.79 1011237.40 1003333.40 0.78 1.11 1000109.00 1000090.60 0.00 0.01
24 1039995.00 1000052.00 3.84 3.85 1011143.80 1000056.00 1.10 1.10 1036845.60 1010304.40 2.56 3.55 1026754.80 1006000.00 2.02 2.61 1000125.40 1000091.00 0.00 0.01
28 1044321.40 1000043.40 4.24 4.24 1014743.20 1000049.00 1.45 1.45 1033028.60 1009013.40 2.32 3.20 1036250.40 1008419.00 2.69 3.50 1000163.60 1000115.40 0.00 0.02
32 1056481.80 1000054.80 5.34 5.35 1019167.00 1000057.20 1.88 1.88 1049470.80 1012449.80 3.53 4.71 1052996.60 1012604.80 3.84 5.03 1000177.80 1000119.20 0.01 0.02
40 1069169.40 1000073.60 6.46 6.47 1021383.60 1000066.80 2.09 2.09 1054736.60 1012277.00 4.03 5.19 1062180.80 1014550.00 4.48 5.85 1000191.40 1000114.80 0.01 0.02
48 1081696.80 1000078.00 7.55 7.55 1020685.80 1000083.60 2.02 2.03 1091483.80 1020718.40 6.48 8.38 1085018.00 1017446.00 6.23 7.84 1000244.00 1000151.00 0.01 0.02
56 1115203.20 1000117.20 10.32 10.33 1033933.60 1000101.20 3.27 3.28 1109457.80 1023300.40 7.77 9.87 1127022.00 1026420.80 8.93 11.27 1001294.40 1000152.00 0.11 0.13
64 1125126.20 1000147.20 11.11 11.12 1032473.00 1000106.00 3.13 3.15 1124086.80 1031452.20 8.24 11.04 1133354.60 1025677.80 9.50 11.77 1001170.60 1000225.00 0.09 0.12

Table A.73: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 undirected graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: Chase-Lev, Cilk
THE, Idempotent LIFO, Idempotent DEQUE, and Idempotent FIFO. Furthermore,
we present the percentage difference between the number of puts and takes for each
available thread, relative to the total number of puts. Finally, also we show the
"surplus" work, which is the difference of the scheduled tasks and the total work
avalaible (total of vertices).

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1122378.40 1048091.20 6.62 10.90 4.59 1000031.80 1000020.40 0.00 0.00 0.00 1000039.20 1000028.20 0.00 0.00 0.00
16 1264133.60 1092552.00 13.57 20.89 8.47 1000082.60 1000057.00 0.00 0.01 0.01 1000096.00 1000064.60 0.00 0.01 0.01
24 1331263.80 1092263.20 17.95 24.88 8.45 1000148.40 1000074.00 0.01 0.01 0.01 1000210.00 1000142.80 0.01 0.02 0.01
28 1322992.00 1078581.40 18.47 24.41 7.29 1000196.60 1000093.40 0.01 0.02 0.01 1000215.60 1000132.40 0.01 0.02 0.01
32 1376831.40 1094660.40 20.49 27.37 8.65 1000296.20 1000139.20 0.02 0.03 0.01 1000306.20 1000169.00 0.01 0.03 0.02
40 1393376.60 1091114.20 21.69 28.23 8.35 1000454.60 1000162.40 0.03 0.05 0.02 1000418.20 1000203.20 0.02 0.04 0.02
48 1302068.20 1066873.00 18.06 23.20 6.27 1000485.00 1000202.20 0.03 0.05 0.02 1000669.20 1000335.00 0.03 0.07 0.03
56 1371225.80 1068227.80 22.10 27.07 6.39 1000779.00 1000293.60 0.05 0.08 0.03 1001079.20 1000576.40 0.05 0.11 0.06
64 1408743.20 1079272.40 23.39 29.01 7.34 1000845.80 1000302.60 0.05 0.08 0.03 1001079.40 1000588.40 0.05 0.11 0.06

Table A.74: The number of puts and takes performed during the spanning tree ex-
periment on a Torus 3D 40 undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

180 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000076.60 1000052.00 0.00 0.01 0.01 1000044.80 1000032.80 0.00 0.00 0.00 1000131.00 1000121.40 0.00 0.01 0.01
16 1000102.80 1000075.60 0.00 0.01 0.01 1000104.80 1000075.20 0.00 0.01 0.01 1000093.40 1000067.80 0.00 0.01 0.01
24 1000166.80 1000106.40 0.01 0.02 0.01 1000172.60 1000103.20 0.01 0.02 0.01 1000242.40 1000178.40 0.01 0.02 0.02
28 1000217.60 1000138.40 0.01 0.02 0.01 1000225.40 1000126.40 0.01 0.02 0.01 1000251.00 1000179.00 0.01 0.03 0.02
32 1000388.40 1000257.40 0.01 0.04 0.03 1000311.80 1000203.20 0.01 0.03 0.02 1000368.20 1000268.60 0.01 0.04 0.03
40 1000494.40 1000288.40 0.02 0.05 0.03 1000457.60 1000237.20 0.02 0.05 0.02 1000458.00 1000279.60 0.02 0.05 0.03
48 1000700.60 1000446.80 0.03 0.07 0.04 1000655.40 1000335.20 0.03 0.07 0.03 1000841.00 1000484.40 0.04 0.08 0.05
56 1000793.40 1000432.80 0.04 0.08 0.04 1000984.60 1000607.00 0.04 0.10 0.06 1000735.40 1000403.40 0.03 0.07 0.04
64 1001009.80 1000573.80 0.04 0.10 0.06 1001190.80 1000569.20 0.06 0.12 0.06 1000992.80 1000564.00 0.04 0.10 0.06

Table A.75: The number of puts and takes performed during the spanning tree
experiment on a Torus 3D 40 undirected graph with an initial size of 1000000 items
is provided. The table presents data on the following algorithms: B. WS WMult,
WS WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 181

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Torus 3D 40%.
Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

7

8

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Torus 2D 60%.
Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Undirected Torus 3D 40%.
Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Undirected Torus 3D 40%.
Initial size of 1,000,000 items

Figure A.12: Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

182 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Torus
3D 40%. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Torus
2D 60%. Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed surplus work: Undirected Torus
3D 40%. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Undirected Torus
3D 40%. Initial size of 1,000,000 items

Figure A.13: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

A.2 Results of Parallel Spanning Tree experiments 183

Directed Random. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1010376.60 1000004.60 1.03 1.03 0.00 1006004.60 1000007.00 0.60 0.60 0.00 1009841.20 1003227.40 0.65 0.97 0.32
16 1013402.20 1000012.60 1.32 1.32 0.00 1003361.20 1000015.00 0.33 0.33 0.00 1016342.40 1004681.00 1.15 1.61 0.47
24 1013500.80 1000022.60 1.33 1.33 0.00 1009018.20 1000024.40 0.89 0.89 0.00 1019164.80 1005003.80 1.39 1.88 0.50
28 1029575.80 1000028.20 2.87 2.87 0.00 1010834.80 1000029.60 1.07 1.07 0.00 1043575.20 1011793.80 3.05 4.18 1.17
32 1030755.60 1000028.40 2.98 2.98 0.00 1018235.40 1000036.20 1.79 1.79 0.00 1026127.60 1006960.80 1.87 2.55 0.69
40 1038680.20 1000039.40 3.72 3.72 0.00 1020048.60 1000042.40 1.96 1.97 0.00 1058921.20 1014816.40 4.17 5.56 1.46
48 1065990.80 1000049.20 6.19 6.19 0.00 1030244.00 1000048.80 2.93 2.94 0.00 1089436.60 1021604.20 6.23 8.21 2.11
56 1093318.80 1000055.80 8.53 8.54 0.01 1036149.60 1000058.60 3.48 3.49 0.01 1094043.80 1022734.20 6.52 8.60 2.22
64 1121298.40 1000065.20 10.81 10.82 0.01 1037715.40 1000064.80 3.63 3.63 0.01 1122813.60 1027289.40 8.51 10.94 2.66

Table A.76: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Chase-Lev, Cilk THE, and
Idempotent LIFO. Furthermore, we present the percentage difference between the
number of puts and takes for each available thread, relative to the total number of
puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1007270.40 1002469.20 0.48 0.72 0.25 1017301.80 1003871.60 1.32 1.70 0.39 1016594.00 1007466.80 0.90 1.63 0.74
16 1010265.20 1003156.80 0.70 1.02 0.31 1020638.60 1005089.60 1.52 2.02 0.51 1023145.60 1009440.60 1.34 2.26 0.94
24 1015514.60 1003715.20 1.16 1.53 0.37 1022334.40 1004281.20 1.77 2.18 0.43 1031111.00 1015066.60 1.56 3.02 1.48
28 1016363.20 1004100.00 1.21 1.61 0.41 1027849.80 1004393.20 2.28 2.71 0.44 1064811.20 1026901.40 3.56 6.09 2.62
32 1052398.60 1013426.00 3.70 4.98 1.32 1049329.80 1009179.80 3.83 4.70 0.91 1048733.00 1021542.60 2.59 4.65 2.11
40 1049780.40 1012542.40 3.55 4.74 1.24 1068649.60 1009808.20 5.51 6.42 0.97 1087231.20 1036120.80 4.70 8.02 3.49
48 1086571.00 1022005.00 5.94 7.97 2.15 1093902.20 1011951.80 7.49 8.58 1.18 1118815.00 1051030.60 6.06 10.62 4.86
56 1107383.00 1027598.00 7.20 9.70 2.69 1099169.80 1011793.00 7.95 9.02 1.17 1146516.00 1063355.60 7.25 12.78 5.96
64 1133525.00 1030556.20 9.08 11.78 2.97 1118209.20 1015841.20 9.15 10.57 1.56 1170370.40 1065732.40 8.94 14.56 6.17

Table A.77: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

184 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1014371.60 1008044.20 0.62 1.42 0.80 1014159.80 1006525.80 0.75 1.40 0.65 1011005.20 1007182.00 0.38 1.09 0.71
16 1014463.00 1009346.20 0.50 1.43 0.93 1016470.80 1008468.60 0.79 1.62 0.84 1014230.00 1009122.00 0.50 1.40 0.90
24 1024233.20 1015111.60 0.89 2.37 1.49 1020183.80 1009737.60 1.02 1.98 0.96 1030887.20 1020534.80 1.00 3.00 2.01
28 1032665.80 1019667.00 1.26 3.16 1.93 1027046.00 1012317.80 1.43 2.63 1.22 1024738.00 1016588.00 0.80 2.41 1.63
32 1042648.80 1025679.40 1.63 4.09 2.50 1051207.40 1021926.80 2.79 4.87 2.15 1031164.60 1020148.80 1.07 3.02 1.98
40 1054389.60 1029050.00 2.40 5.16 2.82 1071398.00 1031291.00 3.74 6.66 3.03 1056291.40 1032001.60 2.30 5.33 3.10
48 1088046.40 1040259.40 4.39 8.09 3.87 1108918.40 1047254.00 5.56 9.82 4.51 1084315.60 1045354.40 3.59 7.78 4.34
56 1095902.00 1041798.00 4.94 8.75 4.01 1128059.60 1055091.80 6.47 11.35 5.22 1091565.20 1050216.40 3.79 8.39 4.78
64 1180099.80 1075089.40 8.90 15.26 6.98 1126343.60 1058193.80 6.05 11.22 5.50 1119308.00 1058057.60 5.47 10.66 5.49

Table A.78: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: B. WS WMult, WS WMult
Lists, and B. WS WMult Lists. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 185

Directed Random. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000018.20 1000004.80 0.00 0.00 0.00 1000018.40 1000001.80 0.00 0.00 0.00 1000018.80 1000006.80 0.00 0.00 0.00
16 1000039.40 1000009.20 0.00 0.00 0.00 1000041.20 1000013.20 0.00 0.00 0.00 1000038.80 1000015.60 0.00 0.00 0.00
24 1000510.60 1000016.40 0.05 0.05 0.00 1000261.60 1000013.80 0.02 0.03 0.00 1000133.40 1000033.00 0.01 0.01 0.00
28 1004930.80 1000016.20 0.49 0.49 0.00 1003804.80 1000021.60 0.38 0.38 0.00 1004964.60 1000489.80 0.45 0.49 0.05
32 1005807.00 1000016.20 0.58 0.58 0.00 1008753.80 1000022.40 0.87 0.87 0.00 1005759.20 1000494.80 0.52 0.57 0.05
40 1021093.80 1000029.80 2.06 2.07 0.00 1018513.20 1000031.80 1.81 1.82 0.00 1016913.20 1001447.60 1.52 1.66 0.14
48 1015945.00 1000030.40 1.57 1.57 0.00 1043088.80 1000030.00 4.13 4.13 0.00 1025256.60 1001997.20 2.27 2.46 0.20
56 1060381.80 1000043.20 5.69 5.69 0.00 1041672.40 1000043.20 4.00 4.00 0.00 1064961.60 1005538.20 5.58 6.10 0.55
64 1088914.60 1000042.40 8.16 8.17 0.00 1049740.00 1000050.40 4.73 4.74 0.01 1074591.40 1005933.40 6.39 6.94 0.59

Table A.79: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk THE,
and Idempotent LIFO. Furthermore, we present the percentage difference between
the number of puts and takes for each available thread, relative to the total number
of puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000020.20 1000007.80 0.00 0.00 0.00 1000016.60 1000004.00 0.00 0.00 0.00 1000239.60 1000098.80 0.01 0.02 0.01
16 1000046.60 1000019.40 0.00 0.00 0.00 1000027.40 1000008.40 0.00 0.00 0.00 1000847.40 1000314.20 0.05 0.08 0.03
24 1000326.40 1000030.80 0.03 0.03 0.00 1001083.00 1000074.80 0.10 0.11 0.01 1000951.00 1000240.40 0.07 0.10 0.02
28 1004643.20 1000264.80 0.44 0.46 0.03 1004168.60 1000301.00 0.39 0.42 0.03 1005449.60 1001284.20 0.41 0.54 0.13
32 1006258.40 1000273.60 0.59 0.62 0.03 1004946.60 1000354.20 0.46 0.49 0.04 1015911.60 1003828.00 1.19 1.57 0.38
40 1005879.80 1000392.60 0.55 0.58 0.04 1012025.00 1000774.20 1.11 1.19 0.08 1043118.00 1009668.00 3.21 4.13 0.96
48 1035772.40 1003179.60 3.15 3.45 0.32 1054191.20 1004105.20 4.75 5.14 0.41 1022970.40 1005817.80 1.68 2.25 0.58
56 1072659.20 1005832.60 6.23 6.77 0.58 1056553.60 1003397.80 5.03 5.35 0.34 1082621.80 1019145.80 5.86 7.63 1.88
64 1065156.80 1004712.00 5.67 6.12 0.47 1119496.00 1008768.80 9.89 10.67 0.87 1095691.60 1025332.60 6.42 8.73 2.47

Table A.80: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

186 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000013.60 1000006.00 0.00 0.00 0.00 1000014.00 1000007.20 0.00 0.00 0.00 1000013.40 1000006.40 0.00 0.00 0.00
16 1000022.60 1000015.60 0.00 0.00 0.00 1000026.20 1000012.00 0.00 0.00 0.00 1000026.00 1000014.80 0.00 0.00 0.00
24 1000244.20 1000152.20 0.01 0.02 0.02 1000830.40 1000105.00 0.07 0.08 0.01 1000042.40 1000020.80 0.00 0.00 0.00
28 1000964.20 1000503.40 0.05 0.10 0.05 1003826.40 1000623.40 0.32 0.38 0.06 1003124.00 1001179.60 0.19 0.31 0.12
32 1005632.20 1002692.80 0.29 0.56 0.27 1003712.40 1000352.40 0.33 0.37 0.04 1001447.40 1000502.40 0.09 0.14 0.05
40 1018807.80 1007936.60 1.07 1.85 0.79 1017450.80 1002580.40 1.46 1.72 0.26 1018311.00 1006735.00 1.14 1.80 0.67
48 1053572.40 1018307.40 3.35 5.08 1.80 1037995.20 1006740.60 3.01 3.66 0.67 1033461.40 1009894.40 2.28 3.24 0.98
56 1035705.00 1012473.60 2.24 3.45 1.23 1077590.60 1013753.00 5.92 7.20 1.36 1039675.60 1011814.60 2.68 3.82 1.17
64 1084255.60 1027541.80 5.23 7.77 2.68 1076885.20 1013112.00 5.92 7.14 1.29 1076659.60 1022538.00 5.03 7.12 2.20

Table A.81: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 187

Undirected Random. Initial size of 256 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000018.80 1000006.00 0.00 0.00 0.00 1000017.40 1000004.20 0.00 0.00 0.00 1000020.60 1000009.20 0.00 0.00 0.00
16 1000476.00 1000013.00 0.05 0.05 0.00 1000260.20 1000010.20 0.02 0.03 0.00 1000037.20 1000017.60 0.00 0.00 0.00
24 1000366.20 1000013.80 0.04 0.04 0.00 1001121.80 1000011.40 0.11 0.11 0.00 1003924.00 1000330.40 0.36 0.39 0.03
28 1013758.40 1000017.00 1.36 1.36 0.00 1001877.80 1000011.60 0.19 0.19 0.00 1002989.00 1000233.80 0.27 0.30 0.02
32 1007197.20 1000018.60 0.71 0.71 0.00 1005250.00 1000021.40 0.52 0.52 0.00 1002835.00 1000186.60 0.26 0.28 0.02
40 1020710.20 1000030.40 2.03 2.03 0.00 1020256.80 1000026.40 1.98 1.99 0.00 1019875.00 1001324.00 1.82 1.95 0.13
48 1042370.60 1000027.40 4.06 4.06 0.00 1046451.00 1000038.00 4.44 4.44 0.00 1069346.40 1005433.40 5.98 6.48 0.54
56 1116503.20 1000043.80 10.43 10.43 0.00 1053478.00 1000043.80 5.07 5.08 0.00 1080183.40 1005619.40 6.90 7.42 0.56
64 1113287.80 1000048.40 10.17 10.18 0.00 1055949.80 1000039.80 5.29 5.30 0.00 1154413.60 1012866.80 12.26 13.38 1.27

Table A.82: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Chase-Lev, Cilk THE, and
Idempotent LIFO. Furthermore, we present the percentage difference between the
number of puts and takes for each available thread, relative to the total number of
puts. Finally, also we show the "surplus" work, which is the difference of the total
number of Puts (Work to be scheduled) and the total number of Puts in sequential
executions (i.e., 1,000,000), and the "executed surplus work", which is the difference
between the total number of Takes (actual work executed) and the total of Takes in
sequential executions.

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000023.00 1000010.60 0.00 0.00 0.00 1000015.40 1000006.80 0.00 0.00 0.00 1000015.80 1000010.00 0.00 0.00 0.00
16 1000046.40 1000015.80 0.00 0.00 0.00 1000027.00 1000011.40 0.00 0.00 0.00 1000027.40 1000012.80 0.00 0.00 0.00
24 1000339.80 1000033.80 0.03 0.03 0.00 1000596.00 1000040.20 0.06 0.06 0.00 1002022.60 1000278.20 0.17 0.20 0.03
28 1000315.00 1000030.80 0.03 0.03 0.00 1003849.00 1000154.60 0.37 0.38 0.02 1010325.00 1001209.60 0.90 1.02 0.12
32 1014743.60 1001100.40 1.34 1.45 0.11 1015855.80 1000799.00 1.48 1.56 0.08 1028760.80 1003780.20 2.43 2.80 0.38
40 1027781.00 1002153.00 2.49 2.70 0.21 1036343.40 1001090.60 3.40 3.51 0.11 1029849.60 1004925.40 2.42 2.90 0.49
48 1052371.40 1004724.00 4.53 4.98 0.47 1072843.80 1002135.00 6.59 6.79 0.21 1052163.80 1007264.60 4.27 4.96 0.72
56 1101924.60 1009423.20 8.39 9.25 0.93 1089803.00 1002223.00 8.04 8.24 0.22 1167712.00 1043092.40 10.67 14.36 4.13
64 1125583.40 1011713.80 10.12 11.16 1.16 1151217.60 1004626.40 12.73 13.14 0.46 1161370.00 1035727.00 10.82 13.89 3.45

Table A.83: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: Idempotent DEQUE, Idem-
potent FIFO, and WS WMult. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

188 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000012.00 1000006.40 0.00 0.00 0.00 1000013.60 1000007.60 0.00 0.00 0.00 1000017.60 1000009.80 0.00 0.00 0.00
16 1000029.60 1000016.20 0.00 0.00 0.00 1000027.00 1000015.20 0.00 0.00 0.00 1000028.60 1000015.20 0.00 0.00 0.00
24 1000135.20 1000059.20 0.01 0.01 0.01 1000616.60 1000096.80 0.05 0.06 0.01 1000302.20 1000142.80 0.02 0.03 0.01
28 1003249.60 1001104.00 0.21 0.32 0.11 1006872.80 1001182.20 0.57 0.68 0.12 1003740.80 1001998.80 0.17 0.37 0.20
32 1005261.20 1001713.20 0.35 0.52 0.17 1011898.00 1001469.80 1.03 1.18 0.15 1009561.00 1003831.60 0.57 0.95 0.38
40 1022896.60 1006463.60 1.61 2.24 0.64 1026421.20 1004840.00 2.10 2.57 0.48 1024850.20 1007092.00 1.73 2.42 0.70
48 1049618.40 1012988.20 3.49 4.73 1.28 1053696.80 1008819.20 4.26 5.10 0.87 1032677.00 1009754.60 2.22 3.16 0.97
56 1112410.40 1027408.40 7.64 10.11 2.67 1130562.40 1032846.60 8.64 11.55 3.18 1075503.40 1020879.40 5.08 7.02 2.05
64 1151473.80 1040264.20 9.66 13.15 3.87 1172624.40 1048693.60 10.57 14.72 4.64 1109762.60 1031496.40 7.05 9.89 3.05

Table A.84: The number of puts and takes performed during the spanning tree exper-
iment on a Random undirected graph with an initial size of 256 items is provided.
The table presents data on the following algorithms: B. WS WMult, WS WMult
Lists, and B. WS WMult Lists. Furthermore, we present the percentage difference
between the number of puts and takes for each available thread, relative to the total
number of puts. Finally, also we show the "surplus" work, which is the difference of
the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 189

Undirected Random. Initial size of 1,000,000 items.

Algorithm Chase-Lev Cilk THE Idempotent LIFO Idempotent DEQUE Idempotent FIFO
Operation Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%) Puts Takes Difference (%) Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00
8 1000018.20 1000004.80 0.00 0.00 1000018.40 1000001.80 0.00 0.00 1000018.80 1000006.80 0.00 0.00 1000020.20 1000007.80 0.00 0.00 1000016.60 1000004.00 0.00 0.00
16 1000039.40 1000009.20 0.00 0.00 1000041.20 1000013.20 0.00 0.00 1000038.80 1000015.60 0.00 0.00 1000046.60 1000019.40 0.00 0.00 1000027.40 1000008.40 0.00 0.00
24 1000510.60 1000016.40 0.05 0.05 1000261.60 1000013.80 0.02 0.03 1000133.40 1000033.00 0.01 0.01 1000326.40 1000030.80 0.03 0.03 1001083.00 1000074.80 0.10 0.11
28 1004930.80 1000016.20 0.49 0.49 1003804.80 1000021.60 0.38 0.38 1004964.60 1000489.80 0.45 0.49 1004643.20 1000264.80 0.44 0.46 1004168.60 1000301.00 0.39 0.42
32 1005807.00 1000016.20 0.58 0.58 1008753.80 1000022.40 0.87 0.87 1005759.20 1000494.80 0.52 0.57 1006258.40 1000273.60 0.59 0.62 1004946.60 1000354.20 0.46 0.49
40 1021093.80 1000029.80 2.06 2.07 1018513.20 1000031.80 1.81 1.82 1016913.20 1001447.60 1.52 1.66 1005879.80 1000392.60 0.55 0.58 1012025.00 1000774.20 1.11 1.19
48 1015945.00 1000030.40 1.57 1.57 1043088.80 1000030.00 4.13 4.13 1025256.60 1001997.20 2.27 2.46 1035772.40 1003179.60 3.15 3.45 1054191.20 1004105.20 4.75 5.14
56 1060381.80 1000043.20 5.69 5.69 1041672.40 1000043.20 4.00 4.00 1064961.60 1005538.20 5.58 6.10 1072659.20 1005832.60 6.23 6.77 1056553.60 1003397.80 5.03 5.35
64 1088914.60 1000042.40 8.16 8.17 1049740.00 1000050.40 4.73 4.74 1074591.40 1005933.40 6.39 6.94 1065156.80 1004712.00 5.67 6.12 1119496.00 1008768.80 9.89 10.67

Table A.85: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Chase-Lev, Cilk
THE, Idempotent LIFO, Idempotent DEQUE, and Idempotent FIFO. Furthermore,
we present the percentage difference between the number of puts and takes for each
available thread, relative to the total number of puts. Finally, also we show the
"surplus" work, which is the difference of the scheduled tasks and the total work
avalaible (total of vertices).

Algorithm Idempotent DEQUE Idempotent FIFO WS WMult
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000020.20 1000007.80 0.00 0.00 0.00 1000016.60 1000004.00 0.00 0.00 0.00 1000239.60 1000098.80 0.01 0.02 0.01
16 1000046.60 1000019.40 0.00 0.00 0.00 1000027.40 1000008.40 0.00 0.00 0.00 1000847.40 1000314.20 0.05 0.08 0.03
24 1000326.40 1000030.80 0.03 0.03 0.00 1001083.00 1000074.80 0.10 0.11 0.01 1000951.00 1000240.40 0.07 0.10 0.02
28 1004643.20 1000264.80 0.44 0.46 0.03 1004168.60 1000301.00 0.39 0.42 0.03 1005449.60 1001284.20 0.41 0.54 0.13
32 1006258.40 1000273.60 0.59 0.62 0.03 1004946.60 1000354.20 0.46 0.49 0.04 1015911.60 1003828.00 1.19 1.57 0.38
40 1005879.80 1000392.60 0.55 0.58 0.04 1012025.00 1000774.20 1.11 1.19 0.08 1043118.00 1009668.00 3.21 4.13 0.96
48 1035772.40 1003179.60 3.15 3.45 0.32 1054191.20 1004105.20 4.75 5.14 0.41 1022970.40 1005817.80 1.68 2.25 0.58
56 1072659.20 1005832.60 6.23 6.77 0.58 1056553.60 1003397.80 5.03 5.35 0.34 1082621.80 1019145.80 5.86 7.63 1.88
64 1065156.80 1004712.00 5.67 6.12 0.47 1119496.00 1008768.80 9.89 10.67 0.87 1095691.60 1025332.60 6.42 8.73 2.47

Table A.86: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: Idempotent DEQUE,
Idempotent FIFO, and WS WMult. Furthermore, we present the percentage differ-
ence between the number of puts and takes for each available thread, relative to the
total number of puts. Finally, also we show the "surplus" work, which is the difference
of the total number of Puts (Work to be scheduled) and the total number of Puts in
sequential executions (i.e., 1,000,000), and the "executed surplus work", which is the
difference between the total number of Takes (actual work executed) and the total
of Takes in sequential executions.

190 A. Work-Stealing Results

Algorithm B. WS WMult WS WMult Lists B. WS WMult Lists
Operation Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%) Puts Takes Difference (%) Surplus (%) Executed Surplus (%)
Processes

1 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00 1000000.00 1000000.00 0.00 0.00 0.00
8 1000013.60 1000006.00 0.00 0.00 0.00 1000014.00 1000007.20 0.00 0.00 0.00 1000013.40 1000006.40 0.00 0.00 0.00
16 1000022.60 1000015.60 0.00 0.00 0.00 1000026.20 1000012.00 0.00 0.00 0.00 1000026.00 1000014.80 0.00 0.00 0.00
24 1000244.20 1000152.20 0.01 0.02 0.02 1000830.40 1000105.00 0.07 0.08 0.01 1000042.40 1000020.80 0.00 0.00 0.00
28 1000964.20 1000503.40 0.05 0.10 0.05 1003826.40 1000623.40 0.32 0.38 0.06 1003124.00 1001179.60 0.19 0.31 0.12
32 1005632.20 1002692.80 0.29 0.56 0.27 1003712.40 1000352.40 0.33 0.37 0.04 1001447.40 1000502.40 0.09 0.14 0.05
40 1018807.80 1007936.60 1.07 1.85 0.79 1017450.80 1002580.40 1.46 1.72 0.26 1018311.00 1006735.00 1.14 1.80 0.67
48 1053572.40 1018307.40 3.35 5.08 1.80 1037995.20 1006740.60 3.01 3.66 0.67 1033461.40 1009894.40 2.28 3.24 0.98
56 1035705.00 1012473.60 2.24 3.45 1.23 1077590.60 1013753.00 5.92 7.20 1.36 1039675.60 1011814.60 2.68 3.82 1.17
64 1084255.60 1027541.80 5.23 7.77 2.68 1076885.20 1013112.00 5.92 7.14 1.29 1076659.60 1022538.00 5.03 7.12 2.20

Table A.87: The number of puts and takes performed during the spanning tree
experiment on a Random undirected graph with an initial size of 1000000 items is
provided. The table presents data on the following algorithms: B. WS WMult, WS
WMult Lists, and B. WS WMult Lists. Furthermore, we present the percentage
difference between the number of puts and takes for each available thread, relative
to the total number of puts. Finally, also we show the "surplus" work, which is the
difference of the total number of Puts (Work to be scheduled) and the total number
of Puts in sequential executions (i.e., 1,000,000), and the "executed surplus work",
which is the difference between the total number of Takes (actual work executed)
and the total of Takes in sequential executions.

A.2 Results of Parallel Spanning Tree experiments 191

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

14

16

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Surplus work: Directed Random Graph.
Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Surplus work: Directed Random Graph.
Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

12

14

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Surplus work: Undirected Random
Graph. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

2

4

6

8

10

Su
rp

lu
s w

or
k

pe
rc

en
ta

ge
 (%

)

Idempotent FIFO
WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Surplus work: Undirected Random
Graph. Initial size of 1,000,000 items

Figure A.14: Surplus work (percentage) of the experiments. Surplus work: the
difference between the total number of Puts and the number of puts in sequential
executions (i.e., 1, 000, 000).

192 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

7

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(a) Executed surplus work: Directed Random
Graph. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

5

6

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(b) Executed surplus work: Directed Random
Graph. Initial size of 1,000,000 items

1 8 16 24 32 40 48 56 64
Threads

0

1

2

3

4

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(c) Executed surplus work: Undirected Ran-
dom Graph. Initial size of 256 items

1 8 16 24 32 40 48 56 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

Su
rp

lu
s e

xe
cu

te
d

wo
rk

 p
er

ce
nt

ag
e

(%
) Idempotent FIFO

WS WMult Lists
Chase-Lev
Idempotent DEQUE
B. WS WMult Lists
WS WMult
Idempotent LIFO
Cilk THE
B. WS WMult

(d) Executed surplus work: Undirected Ran-
dom Graph. Initial size of 1,000,000 items

Figure A.15: Executed surplus work (percentage) of the experiments. Surplus work:
the difference between the total number of Takes and the number of takes in sequential
executions (i.e., 1, 000, 000).

A.3 Results of SAT experiment 193

A.3

Results of SAT experiment

This section presents the measurements from the parallel SAT experiment. Shows the
results for the different ranges with which the parallel job was tested. Measurements
were made using rigorous statistical methodology. This evaluation was performed for
all work-stealing algorithms. Additionally, the percentage of repeated work is shown
as the number of takes plus steals made. This is easily measurable because there
is only one work-stealing structure with a single producer and multiple consumers.
The owner of the structure calls the take method every time it is going to process a
task, and the other workers call the steal method. Therefore, the number of puts is
always fixed, while the sum of takes and puts is at least the total amount of work
that was inserted via the put method.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 50

(a) Range assigment size 50.

32 40 48 56 64
Threads

1.70

1.72

1.74

1.76

1.78

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)
1e9

Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 50

(b) Ranges assignment size 50. Zoom into the
number of processes 32 to 64.

Figure A.16: Mean times of the Parallel SAT benchmark for range assignment 50.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 6771106493.51 1889235456.63 1604639874.37 1619823677.67 1646573644.81 1673070572.69 1687294862.61 1696749620.63 1703680039.41 1710985761.03 1715687626.59 1720808375.81 1725459846.29 1729465873.47 1733202358.64 1736669234.59 1739748595.84
Cilk THE 6802197168.26 1933130275.93 1610054131.24 1625700961.91 1652168564.44 1678643423.36 1693219776.67 1700315677.49 1704476100.71 1710217427.63 1715966400.77 1721428221.41 1726061148.66 1729668882.90 1733466762.36 1730280495.31 1722706049.09
Idempotent LIFO 6765613525.70 1889322149.43 1604852066.19 1620383537.76 1646698759.04 1672839289.99 1687124110.16 1696275853.74 1704046387.47 1709655019.76 1716006135.71 1721069733.01 1725560718.04 1729361763.40 1733293132.63 1736993631.74 1739532414.24
Idempotent FIFO 6777176155.51 1889535666.67 1606530877.24 1619900006.93 1646961802.84 1672795260.39 1686690773.01 1696541623.33 1703370023.54 1709696507.80 1714958659.79 1720376563.60 1724996570.13 1729562393.91 1734432732.00 1736538220.60 1740059007.49
Idempotent DEQUE 6754222054.47 1887515675.74 1607441806.56 1620652684.31 1646659093.64 1672990966.89 1687002947.97 1696362167.43 1703012345.57 1709754367.74 1715467579.27 1720232884.76 1724737751.76 1728808479.63 1732979869.21 1736495267.69 1739516302.51
WS Mult. 6759188962.90 1895287204.46 1608931490.97 1626576516.29 1653947113.14 1681567490.83 1697659943.97 1710112808.26 1722093689.80 1731664198.24 1742294997.76 1751311084.83 1759492255.69 1768839583.80 1776646590.17 1784288295.49 1790959219.97
B. WS Mult. 6749674804.90 1891140517.30 1606570003.57 1621611512.86 1648643759.01 1674782575.49 1688764361.97 1697863713.51 1704635152.71 1710999825.43 1717298452.77 1722122072.69 1726707115.19 1731157469.19 1734667658.91 1737970629.40 1740941783.40

Table A.88: Resulting mean times for the SAT benchmark. These are the results for
tasks with 50 assignments.

194 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 100

(a) Range assignment size 100.

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

1.75

1.76

1.77

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 100

(b) Ranges assignment size 100. Zoom into
the number of processes 32 to 64.

Figure A.17: Mean times of the Parallel SAT benchmark for range assignment 100.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 6681894196.79 1878532981.09 1607198238.76 1619373794.26 1646161727.76 1672418279.90 1686050945.86 1695660527.96 1702542263.80 1709612160.87 1715821031.64 1720880142.11 1725753779.47 1729752224.94 1733896976.53 1736565443.89 1739731314.63
Cilk THE 6713144570.01 1907821954.13 1608959290.14 1625924986.24 1650636064.94 1677254077.36 1691318036.30 1700170199.61 1703303768.40 1710257851.40 1716483961.57 1721373546.30 1726313143.23 1730158320.93 1733852571.80 1737180435.81 1740086113.23
Idempotent LIFO 6683734211.79 1879640341.39 1605755065.69 1619557166.63 1646749050.20 1672605855.71 1686356001.69 1695418620.26 1702768108.47 1709845572.26 1715641938.47 1720572054.74 1725680760.97 1729833982.57 1733560046.70 1736864400.26 1739675502.83
Idempotent FIFO 6663575563.97 1874581080.89 1605273186.81 1619821900.27 1646469758.39 1672356605.59 1686321505.14 1696049308.93 1702713437.63 1709494167.00 1715453752.30 1720722648.44 1725673225.36 1729568516.90 1733430752.01 1736873945.57 1739588215.41
Idempotent DEQUE 6677808307.77 1878565281.23 1605869783.66 1619938274.40 1646046886.26 1672922371.53 1686246470.23 1696015949.89 1702965954.56 1708681178.37 1715512242.60 1720354719.36 1725544754.73 1729265270.43 1733664563.41 1736726526.67 1739877762.29
WS Mult. 6655863065.41 1881147196.97 1607518117.34 1623255189.83 1650666167.06 1677309219.59 1692459616.23 1703860952.49 1713270314.14 1721989747.53 1730125346.56 1737926826.01 1744710003.79 1751353566.93 1758374969.06 1763599554.51 1768917861.41
B. WS Mult. 6681927524.90 1880138570.61 1605398337.66 1620824357.39 1647505376.86 1673775816.50 1687458197.30 1696578580.30 1703858003.49 1710946785.63 1716817210.01 1721798460.24 1726811390.09 1730674356.66 1734405481.01 1738132915.11 1740855354.73

Table A.89: Resulting mean times for the SAT benchmark. These are the results for
tasks with 100 assignments.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 250

(a) Range assignment size 250.

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

1.75

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 250

(b) Ranges assignment size 250. Zoom into
the number of processes 32 to 64.

Figure A.18: Mean times of the Parallel SAT benchmark for range assignment 250.

A.3 Results of SAT experiment 195

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 6873445079.24 1937653863.57 1606972292.80 1619205417.23 1645883862.89 1672565765.04 1686108943.24 1695520730.29 1702611001.40 1709559896.36 1715602240.96 1720963682.66 1725769561.09 1730172454.43 1734027355.60 1737472991.40 1740254440.54
Cilk THE 6875028459.24 1959745947.46 1610486322.41 1625744051.71 1651538819.10 1677231463.31 1690639363.76 1700513211.83 1704628510.50 1710445482.24 1716174303.07 1721021251.53 1725477089.57 1729576812.63 1733729589.64 1737404823.44 1740422259.99
Idempotent LIFO 6878090215.96 1938415675.89 1605878572.03 1619793415.77 1646596740.19 1672372114.36 1686318373.71 1695300861.13 1702312300.86 1709987913.47 1715945378.74 1720697647.57 1725524531.09 1730048238.43 1733892540.46 1737481118.31 1739844707.90
Idempotent FIFO 6866640892.36 1937023457.49 1606928729.37 1619938301.06 1646275164.26 1672816511.77 1685763283.73 1695156940.99 1703113213.94 1709763706.10 1715538749.19 1720783151.70 1724994339.86 1729769693.43 1733913361.59 1737526489.19 1740200339.11
Idempotent DEQUE 6852495208.80 1939055893.97 1607330597.00 1620249924.66 1646729687.16 1672855387.61 1686035950.37 1695371945.71 1702707149.84 1709651887.43 1715675990.53 1720745589.03 1725140243.09 1729696482.51 1733620328.11 1737650032.50 1740754516.83
WS Mult. 6875483244.49 1938377399.24 1605994613.47 1621346740.47 1648266404.39 1674968318.34 1689142418.30 1698799487.89 1706850697.47 1714728342.01 1721622302.51 1728628212.80 1734798784.49 1739671471.44 1744291932.59 1748478873.30 1753029265.56
B. WS Mult. 6877635301.10 1937149383.50 1606471154.43 1620287894.74 1646879481.73 1673840790.31 1687088965.14 1696199528.83 1702975030.71 1709772465.10 1716497656.74 1721945035.64 1726768953.61 1731093324.67 1734714056.29 1738543663.74 1741215004.37

Table A.90: Resulting mean times for the SAT benchmark. These are the results for
tasks with 250 assignments.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 500

(a) Range assignment size 500

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 500

(b) Ranges assignment size 500. Zoom into
the number of processes 32 to 64.

Figure A.19: Mean times of the Parallel SAT benchmark for range assignment 500.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 6929564176.53 1962356250.31 1608736481.26 1621003229.70 1646975570.73 1673756820.14 1687049713.60 1696213900.90 1703519780.76 1710788786.86 1716857220.11 1721959767.91 1726835855.14 1730820623.54 1734719331.21 1737961013.69 1740716874.67
Cilk THE 6912324334.66 1983392407.26 1609250455.46 1626045321.24 1652635422.01 1677718770.91 1690872478.11 1699507757.77 1703629868.87 1710899930.43 1717087114.60 1722474996.91 1726891605.96 1730633955.79 1734895478.30 1737824620.39 1741031516.86
Idempotent LIFO 6938817046.87 1959947659.90 1608214583.84 1621135063.17 1647173738.36 1673759542.47 1686974442.50 1696001392.71 1702875049.84 1710578061.11 1716184071.44 1721464503.40 1726484625.76 1730612104.41 1734288717.36 1737732367.14 1741274700.61
Idempotent FIFO 6937608406.37 1961545509.50 1608892969.94 1621345265.97 1647598444.21 1673953863.27 1687037866.73 1695866624.00 1703210949.86 1710302436.50 1716479260.90 1721441409.83 1726447990.73 1730166027.84 1734605294.54 1737752347.86 1740908508.87
Idempotent DEQUE 6937359409.17 1963321353.93 1609532412.24 1621723264.37 1647570981.86 1673659653.29 1687096931.34 1696037366.76 1702930264.50 1709570495.61 1716455285.23 1721803123.63 1726156240.33 1730675206.10 1734512775.30 1738113467.40 1740642007.23
WS Mult. 6953642294.01 1964653727.61 1606483278.41 1622011677.60 1648963492.74 1674968452.13 1688713696.41 1697905891.57 1705870308.14 1712248981.64 1719082468.23 1724993413.71 1729608788.74 1734514136.53 1738559813.89 1742685289.41 1745993579.69
B. WS Mult. 6931443097.93 1958245557.29 1609304687.60 1621863245.30 1648301547.71 1674573921.93 1687755581.83 1696767401.76 1704237470.97 1711207442.14 1717762871.64 1722499639.66 1727297672.37 1731586865.09 1735262792.63 1738669147.23 1741995072.59

Table A.91: Resulting mean times for the SAT benchmark. These are the results for
tasks with 500 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 7101992087.37 1979707451.03 1603211263.53 1620289634.73 1647023202.16 1673572231.80 1686733853.03 1695924649.54 1703527137.94 1710596493.31 1716588173.61 1721543922.10 1726540782.64 1730570729.13 1734372572.73 1737754017.34 1740262548.61
Cilk THE 7055770308.69 2002027974.31 1608170999.31 1625709276.99 1653000016.10 1677573034.31 1690493929.46 1699667909.93 1706170527.49 1710216326.49 1716748556.57 1721918943.34 1726306039.14 1730437249.33 1734115871.04 1738019415.39 1740646870.79
Idempotent LIFO 7082494441.09 1977223018.27 1602157958.69 1620240059.81 1647322201.07 1673871567.47 1686803374.93 1695808593.16 1703267437.07 1710497021.80 1716501637.69 1721518076.11 1726494522.09 1730428162.84 1734349021.71 1737682760.06 1740655073.59
Idempotent FIFO 7097390663.23 1975364539.59 1601702015.56 1620517777.10 1646972275.27 1673468734.17 1686646937.86 1695440109.91 1702314201.47 1710286992.43 1716648944.34 1721414521.77 1726138531.57 1730267460.99 1734238133.24 1738207421.77 1741318541.17
Idempotent DEQUE 7081257196.74 1979273899.74 1602560385.40 1620681555.97 1647436979.11 1673836696.39 1686589863.60 1695591262.99 1702299850.11 1709902463.20 1715781418.39 1721410731.40 1725957918.24 1730296964.81 1734484793.96 1737931770.73 1740310999.67
WS Mult. 7077855329.04 1979473352.23 1602619356.23 1621144550.61 1647485600.06 1674717420.54 1687502415.11 1696528650.60 1704057410.81 1711138151.66 1718161857.90 1723183779.64 1728024080.63 1732856909.03 1736463606.03 1740855797.61 1743786633.84
B. WS Mult. 7093155803.06 1977400243.77 1602281797.34 1620955203.83 1647594863.51 1674349645.91 1687481618.97 1696851535.23 1703524216.44 1711186223.33 1717068924.64 1722277463.64 1727228341.41 1731510251.93 1735178870.09 1738877526.50 1741442959.59

Table A.92: Resulting mean times for the SAT benchmark. These are the results for
tasks with 1000 assignments.

196 A. Work-Stealing Results

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 1000

(a) Range assignment size 1000.

32 40 48 56 64
Threads

1.70

1.71

1.72

1.73

1.74

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 1000

(b) Ranges assignment size 1000. Zoom into
the number of processes 32 to 64.

Figure A.20: Mean times of the Parallel SAT benchmark for range assignment 1000.

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 2500

(a) Range assignment size 2500.

32 40 48 56 64
Threads

1.705

1.710

1.715

1.720

1.725

1.730

1.735

1.740

1.745

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 2500

(b) Ranges assignment size 2500. Zoom into
the number of processes 32 to 64.

Figure A.21: Mean times of the Parallel SAT benchmark for range assignment 2500.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 6807896107.89 1914236833.24 1603361961.70 1622162661.17 1649249364.19 1675510309.77 1688450827.23 1697078640.41 1704259265.10 1711891852.91 1718234309.80 1723285770.54 1727774562.54 1732035230.83 1735832380.43 1739661272.07 1741298534.37
Cilk THE 6816506253.61 1932739779.44 1611365446.93 1628545371.31 1655263073.23 1679975184.97 1692563919.00 1701139295.01 1707224169.89 1712210277.49 1717784417.57 1723180177.33 1727869542.70 1732205092.44 1736024048.11 1739360323.06 1741844965.31
Idempotent LIFO 6795883410.40 1914543477.76 1603142288.10 1622895473.20 1649876811.87 1676189619.76 1687969233.69 1696979093.07 1704837211.54 1711074544.46 1717509408.44 1722935965.70 1727425424.61 1731790119.49 1735652704.74 1739413664.16 1741105015.00
Idempotent FIFO 6810312046.70 1913149015.50 1603686063.44 1622888939.60 1649595480.87 1676361758.97 1688785496.49 1696830178.04 1704291373.21 1710928138.03 1717216537.53 1723406657.81 1727716454.86 1732037552.71 1735788625.06 1739158050.40 1741537995.69
Idempotent DEQUE 6795867933.59 1909316403.64 1603308552.04 1622970973.50 1649619396.29 1675952278.53 1688318822.86 1696818099.57 1705028493.33 1710875171.26 1717544596.67 1722731932.97 1727864071.40 1732024811.96 1735806591.34 1739699164.11 1741808369.77
WS Mult. 6784463078.43 1916227074.50 1604103323.94 1623598975.61 1649743692.73 1676147521.41 1689076484.73 1697984582.23 1705022964.66 1712433782.90 1718085727.01 1724124612.69 1728615057.01 1732908764.11 1737249566.67 1740731898.13 1742501919.73
B. WS Mult. 6816171226.89 1910416234.89 1604261338.93 1623642904.71 1649990344.76 1676795907.16 1689289061.96 1697714414.36 1704790061.79 1712202655.50 1718618778.06 1723342785.13 1728904778.16 1732726504.89 1737372085.27 1740367275.94 1742789852.70

Table A.93: Resulting mean times for the SAT benchmark. These are the results for
tasks with 2500 assignments.

A.3 Results of SAT experiment 197

1 8 16 24 32 40 48 56 64
Threads

2

3

4

5

6

7

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)
1e9

Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 5000

(a) Range assignment size 5000.

32 40 48 56 64
Threads

1.705

1.710

1.715

1.720

1.725

1.730

1.735

1.740

1.745

Ex
ec

ut
io

n
Ti

m
e

(n
an

os
ec

on
ds

)

1e9
Chase-Lev
Cilk THE
Idempotent LIFO
Idempotent FIFO
Idempotent DEQUE
WS Mult.
B. WS Mult.

SAT Problem. Range 5000

(b) Ranges assignment size 5000. Zoom into
the number of processes 32 to 64.

Figure A.22: Mean times of the Parallel SAT benchmark for range assignment 5000.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Chase-Lev 7285444348.56 2029120544.70 1610840931.86 1625864632.37 1651924121.30 1676669914.19 1689242705.07 1697761499.00 1705625180.01 1711979785.74 1718904839.54 1723943987.14 1728117052.69 1731646894.47 1734762955.20 1738339069.49 1740921260.93
Cilk THE 7211213456.17 2055101188.23 1619246521.59 1631604785.83 1657556098.74 1680742572.53 1693503452.83 1702467072.90 1709034288.04 1711895178.07 1717737552.56 1723647133.99 1728024879.33 1731808821.01 1734251872.60 1737982613.44 1741501563.60
Idempotent LIFO 7280892297.93 2030058334.57 1611255684.93 1625648710.04 1652762654.09 1677250803.73 1689223900.27 1697778168.57 1705417895.04 1712077598.86 1718013767.90 1723794875.74 1728199281.56 1731677208.97 1733925082.49 1737467449.27 1739973111.63
Idempotent FIFO 7292628631.07 2029210917.37 1611248818.73 1626563681.34 1651834408.63 1677416077.41 1689620847.89 1697647235.00 1705353469.41 1712485674.60 1717932209.66 1723407431.76 1728950916.26 1731629093.40 1734217745.26 1737699384.86 1741246940.77
Idempotent DEQUE 7281505676.71 2029738420.67 1611572491.56 1626080625.09 1651964482.79 1677499923.70 1689722028.29 1698187601.06 1705212003.09 1711708188.13 1717743140.26 1723714608.24 1728802667.06 1732071276.20 1734686919.41 1738214847.00 1741009595.29
WS Mult. 7284741026.76 2027702744.71 1611911847.44 1626653605.89 1652396510.61 1677979382.30 1689506748.50 1698444679.17 1706250329.36 1711870566.90 1718549688.06 1723897100.57 1729581382.76 1731725029.69 1736112183.91 1739701400.29 1741991081.84
B. WS Mult. 7279765424.16 2027206495.57 1611890981.34 1625662595.94 1652782239.31 1678883118.04 1690393847.14 1698697144.41 1706923686.73 1713277524.11 1719563027.36 1724737935.97 1729858738.33 1732800003.49 1735807533.34 1738960635.77 1742884074.94

Table A.94: Resulting mean times for the SAT benchmark. These are the results for
tasks with 5000 assignments.

198 A. Work-Stealing Results

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.000

0.001

0.002

0.003

0.004

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 50

(a) Percentage of repeated work by algo-
rithm.
Tasks with a range of 50 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 100

(b) Percentage of repeated work by algo-
rithm.
Tasks with a range of 100 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 250

(c) Percentage of repeated work by algorithm.
Tasks with a range of 250 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 500

(d) Percentage of repeated work by algo-
rithm.
Tasks with a range of 500 assignments.

Figure A.23: percentage of repeated work performed by each algorithm when the
range of assignments varies. This percentage is the number of repeated tasks con-
cerning the total of tasks. Tested ranges of (50, 100, 250, 500).

A.3 Results of SAT experiment 199

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 1000

(a) Percentage of repeated work by algo-
rithm.
Tasks with a range of 1000 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 2500

(b) Percentage of repeated work by algo-
rithm.
Tasks with a range of 2500 assignments.

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.000

0.001

0.002

0.003

0.004

0.005

Pe
rc

en
ta

ge
 o

f r
ep

ea
te

d
wo

rk

IDEMPOTENT_LIFO
CHASELEV
B_WS_MULT
IDEMPOTENT_FIFO
CILK
WS_MULT
IDEMPOTENT_DEQUE

SAT Problem. Range 5000

(c) Percentage of repeated work by algorithm.
Tasks with a range of 5000 assignments.

Figure A.24: percentage of repeated work performed by each algorithm when the
range of assignments varies. This percentage is the number of repeated tasks con-
cerning the total of tasks. Tested ranges of (1000, 2500, 5000).

200 A. Work-Stealing Results

APPENDIX B

Queue evaluation Results

B.1

Results of Inner Experiments (LL/IC Evaluation)

This appendix shows the results obtained by executing the Inner Experiments for
the evaluation of the LL/IC objects, following the methodology suggested by Georges,
Buytaert, and Eeckout [32].

Fetch and Increment CAS LL/IC RW LL/IC 64 padding RW LL/IC 16 padding RW LL/IC 32 padding RW LL/IC no padding
1 288860972.63 305638864.47 317065162.60 319755230.40 324187867.90 320378736.50
4 80506440.00 100958610.23 118799737.40 107684065.93 116027730.73 107367825.10
8 63599707.47 78075928.57 84805029.10 80927260.60 84444217.30 79758733.07
12 50347568.87 58526625.20 65273976.33 62985744.70 65516543.10 62251471.77
16 41037828.93 46203364.33 51603157.93 51627402.33 52549893.80 52305099.07
20 43698354.07 45852623.00 50705047.53 50136623.90 51232438.97 52131764.40
24 45187224.67 46074348.43 47896947.17 46134113.00 48109941.77 48176109.00
28 40547444.73 40755668.37 43482972.33 42171177.13 43660332.43 45119529.33
32 35988846.27 35367188.00 40166244.37 38405117.57 39891455.73 41353746.77
36 34734531.67 34048104.30 40661526.40 43080326.90 40424838.03 40796560.43
40 35586323.23 34568989.23 39735940.17 45696269.77 40990485.80 38923483.30
44 36000699.17 36938976.17 39689813.13 43486986.73 39893678.63 45420477.57
48 34018945.07 34521533.77 37031091.27 40663404.70 36665244.53 43799081.63
52 35914989.23 34660215.90 37839803.70 40314233.27 39197357.90 41730669.73
56 36094405.17 36113970.37 38005800.77 37420952.30 38938837.97 39787863.63
60 33648086.47 33491633.80 38858203.27 36847570.77 38009665.63 37164143.80
64 33447182.50 33003608.20 37543791.23 34631263.33 35936880.00 38732530.37

Table B.1: Mean times for LL/IC experiemnt

202 B. Queue evaluation Results

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Na
no

Se
co

nd
s

1e8
Fetch and Increment
CAS Based LLIC Object
RW Based LLIC Object with 64 bytes of padding
RW Based LLIC Object with 16 bytes of padding
RW Based LLIC Object with 32 bytes of padding
RW Based LLIC Object no padding

Figure B.1: 1,000,000 Interspersed Takes and Puts (CAS vs FAI) for 64 threads.

Fetch and Increment CAS LL/IC RW LL/IC 64 padding RW LL/IC 16 padding RW LL/IC 32 padding RW LL/IC no padding
1 0.00 -5.81 -9.76 -10.70 -12.23 -10.91
4 0.00 -25.40 -47.57 -33.76 -44.12 -33.37
8 0.00 -22.76 -33.34 -27.24 -32.77 -25.41
12 0.00 -16.25 -29.65 -25.10 -30.13 -23.64
16 0.00 -12.59 -25.75 -25.80 -28.05 -27.46
20 0.00 -4.93 -16.03 -14.73 -17.24 -19.30
24 0.00 -1.96 -6.00 -2.10 -6.47 -6.61
28 0.00 -0.51 -7.24 -4.00 -7.68 -11.28
32 0.00 1.73 -11.61 -6.71 -10.84 -14.91
36 0.00 1.98 -17.06 -24.03 -16.38 -17.45
40 0.00 2.86 -11.66 -28.41 -15.19 -9.38
44 0.00 -2.61 -10.25 -20.79 -10.81 -26.17
48 0.00 -1.48 -8.85 -19.53 -7.78 -28.75
52 0.00 3.49 -5.36 -12.25 -9.14 -16.19
56 0.00 -0.05 -5.30 -3.68 -7.88 -10.23
60 0.00 0.46 -15.48 -9.51 -12.96 -10.45
64 0.00 1.33 -12.25 -3.54 -7.44 -15.80

Table B.2: Percentage improvement of LL/IC objects respect to Fetch&Increment
from 1 to 64 threads of execution.

B.2 Results of Inner Experiments (Module Queue Variants) 203

B.2

Results of Inner Experiments (Module Queue
Variants)

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Na
no

Se
co

nd
s

1e9
LLIC CAS - N-Basket
LLIC CAS - K-Basket
LLIC RW16 - N-Basket
LLIC RW16 - K-Basket
LLIC RW64 - N-Basket
LLIC RW64 - K-Basket

Figure B.2: 1,000,000 interspersed enqueue - dequeue calls for 64 threads.

LLIC CAS - N-Basket LLIC CAS - K-Basket LLIC RW16 - N-Basket LLIC RW16 - K-Basket LLIC RW64 - N-Basket LLIC RW64 - K-Basket
1 403837572.97 396923559.23 403364522.07 400055812.90 400458163.90 410361616.03
4 393072415.97 363825211.27 472695382.10 371714856.90 497516571.87 399706830.60
8 1083497864.53 301903826.67 1134626840.47 489293420.43 1246191018.60 624905787.60
12 1052047521.10 251061393.53 1065479541.67 515315431.30 1018033354.13 503958613.03
16 1132563585.47 236075970.90 1252081224.87 381578408.67 1244407677.97 390607216.17
20 1709842518.17 259198051.17 1808325283.23 465887426.90 1796996372.03 487635858.33
24 2133731012.70 278000991.57 2218159617.33 544932910.07 2213154726.97 565660003.90
28 2193455107.57 263495757.53 2432517335.17 686078560.50 2376492044.60 719843684.83
32 2262827345.93 254498662.33 2474083071.13 674008201.03 2473843065.13 688144066.47
36 2449877745.93 248545543.60 2723899346.60 707239057.03 2716683811.97 739506175.80
40 2599424591.43 259304569.17 2941545544.63 767947461.03 2973306680.03 802582429.10
44 2706567513.60 266755495.50 3039584219.03 755145375.97 3072020329.00 789260312.00
48 2897334261.40 274293059.03 3183274684.97 791166367.20 3199031929.60 782029672.97
52 3012856935.07 271947171.90 3422409173.57 880173001.43 3470237815.97 911715385.53
56 3181102862.03 278835375.93 3717005695.57 911886436.97 3734223566.20 967380566.13
60 3420201175.47 280311296.37 3602981476.13 891396736.43 3562427501.20 941420017.77
64 3593712103.47 270304602.33 3936145887.47 1000239685.37 3933207413.67 1031183359.33

Table B.3: Mean times for Enqueue - Dequeue inner experiment for 64 threads.

204 B. Queue evaluation Results

LLIC CAS - N-Basket LLIC CAS - K-Basket LLIC RW16 - N-Basket LLIC RW16 - K-Basket LLIC RW64 - N-Basket LLIC RW64 - K-Basket
1 -1.74 0.00 -1.62 -0.79 -0.89 -3.39
4 -8.04 0.00 -29.92 -2.17 -36.75 -9.86
8 -258.89 0.00 -275.82 -62.07 -312.78 -106.99
12 -319.04 0.00 -324.39 -105.25 -305.49 -100.73
16 -379.75 0.00 -430.37 -61.63 -427.12 -65.46
20 -559.67 0.00 -597.66 -79.74 -593.29 -88.13
24 -667.53 0.00 -697.90 -96.02 -696.10 -103.47
28 -732.44 0.00 -823.17 -160.38 -801.91 -173.19
32 -789.13 0.00 -872.14 -164.84 -872.05 -170.39
36 -885.69 0.00 -995.94 -184.55 -993.03 -197.53
40 -902.46 0.00 -1034.40 -196.16 -1046.65 -209.51
44 -914.62 0.00 -1039.46 -183.09 -1051.62 -195.87
48 -956.29 0.00 -1060.54 -188.44 -1066.28 -185.11
52 -1007.88 0.00 -1158.48 -223.66 -1176.07 -235.25
56 -1040.85 0.00 -1233.05 -227.03 -1239.22 -246.94
60 -1120.14 0.00 -1185.35 -218.00 -1170.88 -235.85
64 -1229.50 0.00 -1356.19 -270.04 -1355.10 -281.49

Table B.4: Percentage improvement of Enqueue - Dequeue respect to LL/IC Com-
pare&Swap & K-Basket from 1 to 64 threads of execution.

B.3

Results of Outer Experiments

Fetch-and-Add LCRQ Castañeda-Piña Castañeda-Piña Array Castañeda-Piña Segments Michael and Scott Ostrovsky-Morrison YMC
1 351200027.63 403572408.43 472555550.90 487165396.30 475511479.40 587248865.70 1146251708.13 377297171.80
4 169692112.77 187820883.50 301829643.73 1077150109.93 288435581.67 471544279.67 3387292159.17 197394522.23
8 121854879.07 116026264.60 272038021.70 1490503277.57 263046870.43 559538345.73 2259382162.50 122918448.70
12 88994036.27 94770156.63 281703838.03 1783321075.57 227342770.57 541606321.37 2026162066.43 87396589.83
16 74776242.40 84622830.50 294978630.73 1867961323.20 263256036.93 535908982.53 1723493401.93 70816962.53
20 78627962.80 93050854.37 379995043.80 2023925634.47 312408909.57 684008030.47 1932146663.93 67941366.37
24 79543299.43 97720927.97 422919854.07 2120916067.10 327654824.50 803985551.10 2037756243.03 66012273.80
28 71817559.87 95509834.43 432414808.13 2166062984.03 341570968.90 837462016.30 1897402494.37 59065987.40
32 67443713.50 99412632.57 438538137.47 2236554396.10 345087614.40 859154816.23 1720945612.37 53669770.97
36 63240889.47 101217631.23 437121875.30 2429715567.90 350204025.40 875829430.07 1629208308.67 48970421.20
40 65311551.40 108716588.03 461605337.17 2420424604.93 358781500.57 942633485.97 1678287663.47 48899447.00
44 63473601.93 113385554.47 460308301.33 2464267895.70 360854102.40 946151498.10 1534113476.07 46628124.97
48 62148500.10 116865624.87 460302515.57 2523987255.27 364872124.93 948736421.87 1451514990.13 46240439.33
52 64238033.60 122543525.30 484756656.03 2514987713.47 379651287.00 1024468571.63 1413332353.37 47095151.57
56 66547657.57 126754099.80 507507288.80 2540588509.17 402499664.00 1118652395.07 1402048064.73 47973167.30
60 65885871.70 127109938.03 505315540.43 2575744556.40 416756883.57 1140158428.23 1337866333.20 46690629.67
64 65178512.30 126730354.90 502870762.67 2607573629.43 428069875.03 1140572453.10 1295963945.30 43235588.63

Table B.5: Mean times for Enqueue - Dequeue outer experiment for 64 threads.

B.3 Results of Outer Experiments 205

1 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Threads

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Na
no

Se
co

nd
s

1e9
Obstruction-Free Fetch-and-Add Based Queue
Lock-Free LCRQ Queue
Lock-Free Castañeda-Piña Queue
Lock-Free Castañeda-Piña Queue Array Based
Lock-Free Castañeda-Piña Queue Segment Based
Lock-Free Michael&Scott Queue
Lock-Free Ostrovsky-Morrison Scalable Concurrent Queue
Wait-Free Yang-Mellor Crumey Queue

Figure B.3: 1,000,000 of interspersed Enqueue - Dequeue calls for 64 threads.

Fetch-and-Add LCRQ Castañeda-Piña Castañeda-Piña Array Castañeda-Piña Segments Michael and Scott Ostrovsky-Morrison YMC
1 6.92 -6.96 -25.25 -29.12 -26.03 -55.65 -203.81 0.00
4 14.03 4.85 -52.91 -445.68 -46.12 -138.88 -1616.00 0.00
8 0.87 5.61 -121.32 -1112.60 -114.00 -355.21 -1738.11 0.00
12 -1.83 -8.44 -222.33 -1940.49 -160.13 -519.71 -2218.35 0.00
16 -5.59 -19.50 -316.54 -2537.73 -271.74 -656.75 -2333.73 0.00
20 -15.73 -36.96 -459.30 -2878.93 -359.82 -906.76 -2743.84 0.00
24 -20.50 -48.03 -540.67 -3112.91 -396.35 -1117.93 -2986.94 0.00
28 -21.59 -61.70 -632.09 -3567.19 -478.29 -1317.84 -3112.34 0.00
32 -25.66 -85.23 -717.10 -4067.25 -542.98 -1500.82 -3106.55 0.00
36 -29.14 -106.69 -792.62 -4861.60 -615.13 -1688.49 -3226.92 0.00
40 -33.56 -122.33 -843.99 -4849.80 -633.71 -1827.70 -3332.12 0.00
44 -36.13 -143.17 -887.19 -5184.94 -673.90 -1929.14 -3190.10 0.00
48 -34.40 -152.73 -895.45 -5358.40 -689.08 -1951.75 -3039.06 0.00
52 -36.40 -160.20 -929.31 -5240.23 -706.14 -2075.32 -2901.01 0.00
56 -38.72 -164.22 -957.90 -5195.85 -739.01 -2231.83 -2822.57 0.00
60 -41.11 -172.24 -982.26 -5416.62 -792.59 -2341.94 -2765.39 0.00
64 -50.75 -193.12 -1063.09 -5931.08 -890.09 -2538.04 -2897.45 0.00

Table B.6: Percentage improvement of Enqueue - Dequeue respect to Yang and
Mellor-Crummey Queue from 1 to 64 threads of execution.

	Portada

	Abstract
	Contents
	List of Figures
	Listings
	Chapter 1. Introduction

	Motivation
	Objectives And Contribution
	Structure Of This Thesis

	Chapter 2. State of the Art

	Classic Concurrent Computing
	Relaxed Concurrent Computing
	Work-Stealing
	FIFO Queues

	Chapter 3. Preliminaries and Methodology

	Computation Model
	Hardware Foundations
	About Fences And Its Use In Concurrent Algorithms
	After Hardware Foundations, What's Up About Programming Languages?
	Experimental Methodology

	Chapter 4. Case Study 1: Work-Stealing

	Introduction
	Work-Stealing with Multiplicity
	Work-Stealing with Weak Multiplicity
	Bounding the Multiplicity
	Coping with realistic assumptions
	Idempotent Multiplicity

	Chapter 5. Case Study 2: Modular Baskets Queue

	Introduction
	The Modular Basket Queue
	Coping with realistic assumptions

	Chapter 6. Experimental Evaluation and Results

	Work-Stealing with Multiplicity
	Modular Basket Queues

	Chapter 7. Discussion and Conclussions

	Bibliography

	Appendix A. Work-Stealing Results

	Results of Zero Cost Experiments
	Results of Parallel Spanning Tree experiments
	Results of SAT experiment

	Appendix B. Queue Evaluation Results

	Results of Inner Experiments (LL/IC Evaluation)
	Results of Inner Experiments (Module Queue Variants)
	Results of Outer Experiments

