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Resumen

Los algoritmos evolutivos de tltima generaciéon han demostrado ser altamente elitistas,
privilegiando una seleccién determinista (@ 4+ \) que favorece a los mejores individuos
para la siguiente generacion. Esta aproximacion, aunque eficiente en ciertos contextos,
puede limitar la diversidad genética necesaria para una exploraciéon efectiva del espacio
de soluciones, especialmente en problemas complejos. La investigacién actual se enfoca
en evaluar como la introduccion de la heterogeneidad temporal en los algoritmos evo-
lutivos puede equilibrar la exploracion y explotacion, a través de la modificacion de la
presiéon de seleccién entre estrategias (u+ M) v (i, A). Esta adaptacion se ha examinado
tanto en contextos de optimizaciéon mono-objetivo como multi-objetivo, aplicando los
algoritmos a conjuntos de datos referenciales en el ambito académico.

Los resultados preliminares muestran diferencias estadisticamente significativas en la
optimizacién mono-objetivo y multi-objetivo, lo que sugiere que la adaptacion de la
presion de seleccion podria ser crucial para mejorar la eficacia de los algoritmos en
diferentes problemas y etapas de la btisqueda. Este hallazgo subraya la importancia de
la flexibilidad en los algoritmos evolutivos y plantea la necesidad de una mayor adap-
tabilidad para enfrentar la variedad y complejidad de los problemas de optimizacion.
Este estudio aporta valiosos perspectivas sobre la importancia de la adaptabilidad de
los algoritmos evolutivos en funcién de la naturaleza y complejidad de los problemas
abordados, promoviendo una mejor comprension de las estrategias de seleccién en la
resolucion de desafios de optimizacion complejos y variados.



Reconocimientos

En primer lugar, deseo extender mi profundo agradecimiento al CONACyT (Consejo
Nacional de Ciencia y Tecnologia) por la generosa beca otorgada, que ha hecho po-
sible la continuacién de mis estudios de maestria en el campo de las ciencias de la
computacion.

A la Universidad Nacional Auténoma de México (UNAM), agradezco por abrirme las
puertas de sus aulas y brindarme la oportunidad de formar parte de esta prestigiosa
institucion. Mi gratitud se dirige a mis distinguidos profesores, cuyo compromiso y
generosidad al compartir su vasto conocimiento y experiencia han sido fundamentales
en mi formaciéon académica. Asimismo, agradezco a mis companeros de estudios, con
quienes he compartido este enriquecedor camino académico y de quienes he aprendido
mucho.

Quiero expresar mi reconocimiento y agradecimiento a mis tutores, el Dr. Carlos
Gershenson y el Dr. Carlos Hernandez, cuya guia, orientacién y apoyo me han permiti-
do alcanzar este punto en mi investigacién. Su compromiso con la excelencia académica
ha sido una fuente constante de inspiracién y motivacion.

Por ltimo, no puedo dejar de agradecer a mi familia y amigos, cuyo apoyo incondicional
y animo constante han sido fundamentales en mi travesia académica. Sus palabras de
aliento y su presencia en cada paso de este camino han sido un verdadero motor para
superar los desafios y lograr mis metas.

Este logro no hubiera sido posible sin la colaboraciéon y el apoyo de todos ustedes.
Sus contribuciones han dejado una huella imborrable en mi experiencia académica y
personal, por lo que les estoy profundamente agradecido.



Contenido

(1.2. Elproblemal . . . . . . . . . ... ...
(1.3. Hipotesis|. . . . . . . . . . ..
(1.4. Objetivos| . . . . . . . . . .

[1.5. Contribuciones y productos de investigacion| . . . . . . . . ... .. ..
[1.6. Organizacion de la tesis| . . . . . . . . .. ... ... .. ... ... .

™M Tedrica

[2.1. Optimizacion| . . . . . . . . . . . ...
[2.1.1. Fundamentos de la optimizacion multi-Objetivo| . . . . . . . ..

[2.2. El balance entre exploracion y explotacionl . . . . . . . ... ... ...
2.2.1. El impactoen MOEAs| . . . . . ... ... ... ... ... ...
[2.2.2.  Descripcion de seleccion de siguiente poblacion|. . . . . . . . ..

[2.3. Descripcion de los algoritmos| . . . . . ... .. ... 0.
[2.3.1. Mono-objetivol. . . . . . . ...
[2.3.2. Multi-objetivo| . . . . . . ... oo

2.4, Softwarel . . . . . . ...
2.4.1. Pymoo|. . . . . . . . . ..

[2.5. Problemas de pruebal . . . . . . . ... ... o0
251 BBOBl . . . ..
252, BiBBOBI. . . . .. ..

[2.6. Indicadores de desempeno| . . . . . . . . ... .. L.
[2.6.1. Hipervolumen| . . . . . . . . .. ... 0oL
2.6.2. IGD/+H. . . . ..

[2.7. Ciencias de la complejidad| . . . . .. ... ... ... ... ...
[2.7.1. Diversidad y adaptacion en sistemas complejos/. . . . . . . . . .
[2.7.2. Técnicas de adaptacion y auto-organizacion| . . . . . .. . . ..
[2.7.3. Heterogeneidad temporal . . . . . . ... ... ...

© 00 0000 ~J~J~JO O



[3. Metodologial

[3.1. Diseno global con parametro de heterogeneidad temporal . . . . . . ..

[3.2. Marco experimental|. . . . . .. ... ... 00000

[3.2.1.  Experimentos mono-objetivol . . . . . . . .. ..o

[3.2.2.  Experimentos multi-objetivo| . . . . . ... ...

[3.3.1. Esquema general| . . . . ... ... ... ... ...

[3.3.3. Graficas de convergencia| . . . . . . . .. ...

3.3.4. Modelod . . . . . . .

4. Resultados|
[4.1. Mono-objetivo|

[4.1.1. Analisis empirico| . . . . . . ... ... L

[4.1.2. Graficos de convergencial . . . . . . . . .. ... ... ... ...

M.1.3. Pruebas estadisticasl . . . ... ... ... ... ...

AT4 Exphcabilidad] . . .« o oo

[4.2. Multi-objetivol

[4.2.1. Analisis empirico| . . . . . ... ... L

[4.2.2. Graficos de convergencial . . . . . . . ... ... ... ... ...

4.2.3. Pruebas estadisticasl . . ... ... ... ... . ... ...

B24 Exphcabilidad] . . .« o o oo

4.3, Discusionl . .

[5. Conclusiones y trabajo futuro|

[5.1. Resultados en problemas mono-objetivol. . . . . . . ... ... ... ..

[5.2. Resultados en problemas multi-objetivol . . . . . . . .. ... ... ...

[5.3. Explicabilidad de los resultados| . . . . . ... ... .. ... ......

[5.4. "Trabajo futuro|

44
44
45
45
48
20
ol
52
23
o4
o4

56
o6
o6
57
59
66
69
69
72
73
84
86



Indice de figuras

[2.1. Tlustracion de la representacion de la dominancia de Pareto del punto x8.| 12
[2.2. Ilustracion de un problema bi-objetivo con el frente de Pareto destacado |
mediante una linea en negrita.| . . . . . . . ... ... 13

[2.3. Ilustracion de la definicion del campo de normalizacion usando el punto |
Ideal y de Nadir|. . . . . . .. ... ... . ... 32

[4.1. Grafico de convergencia para el algoritmo genético en problemas de baja |
dimensionalidad.] . . . . . . . . ... 58

[4.2. Grafico de convergencia para el algoritmo genetico en problemas de alta |
[ dimensionalidad] . . . ... ... ... ... ... 58
4.3. Fvolucion Diferencial - Dos dimensionesl . . . . . .. ... .. ... .. 58
4.4, Evolucion Diferencial - Cuarenta dimensionesl . . . . . .. .. ... .. 59
[4.5. Estrategias Evolutivas - Dos dimensiones| . . . . . . .. ... ... ... 59
[4.6. Estrategias Evolutivas - Cuarenta dimensiones| . . . . . . . . ... . .. 59
[4.7. Grafica de diferencias criticas mono-objetivol . . . . . . . . . ... ... 65
[4.8. Mapa de correlacion de caracteristicas de los espacios mono-objetivol . . 67
[4.9.  Analisis Mono-Objetivo de SHAP destacando las caracteristicas mas in- |

[ fluyentes en la eleccion de heterogeneidad.| . . . . . . . . ... ... .. 68
[4.10. NSGA-III - Hipervolumen - Dos dimensiones| . . . . . . . ... ... .. 72
[4.11. NSGA-III - Hipervolumen - Cuarenta dimensiones| . . . . . . . . .. .. 72
[4.12. NSGA-III - Boxplots - Dos dimensiones| . . . . . . . ... .. ... ... 73
[4.13. NSGA-III - Boxplots - Cuarenta dimensiones|. . . . . . . . ... .. .. 73
[4.14. Grafica de diferencias criticas bi-objetivo| . . . . . . . . . ... ... .. 81
[4.15. Grafica de diferencias criticas bi-objetivo con archivo externo|. . . . . . 82
[4.16. Grafica de diferencias criticas multi-objetivol . . . . . . . . ... .. .. 82
[4.17. Mapa de correlacion de caracterisitcas de los espacios Bi-Objetivo] . . . 84
[4.18. Analisis Bi-Objetivo de SHAP destacando las caracteristicas mas influ- |

| yentes en la eleccion de heterogeneidad.|. . . . . . . ... ... ... .. 85



Indice de tablas

[4.1. Resumen del analisis empirico mono-objetivo para algunos problemas en |
particular] . . . . .. .. o7

[4.2. Resumen de la prueba de Kruskal Wallis para algunos problemas|. . . . 60
[4.3. Resumen de la prueba de Willcoxon ranksum en evolucion diferencial |
para algunos problemas|. . . . . . .. ... oo 62

[4.4. Resumen de la prueba de Wilcoxon ranksum en estrategias evolutivas |
para algunos problemas|. . . . . . . . ... 0000 63

[4.5. Resumen de la prueba de Willcoxon ranksum en el algoritmo genético |
para algunos problemas|. . . . . . . . ... o 64

[4.6. Resumen de conteos de Bordal . . . . . ... ... ... ... .. ..., 66
[4.7. Resumen de resultados BiBBOB con hipervolumen| . . . . . .. .. .. 69
[4.8. Resumen de resultados WEG con hipervolumen| . . . . . . . ... . .. 70
[4.9. Resumen de resultados WEG con NSGA-IT en IGD+ . . . . ... . .. 71
[4.10. Resumen de resultados WEG con NSGA-IIl en IGD+ . . . .. ... .. 71
[4.11. Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-II en hi- |
pervolumen| . . . . ... 74
[4.12. Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-III en |
[ hipervolumen| . . . . . . . . ... 75
[4.13. Resumen de la prueba WEFG de Kruskal Wallis con NSGAIL . . . . .. 76
[4.14. Resumen de la prueba WEFG de Kruskal Wallis NSGAIII . . . .. . .. 7
[4.15. Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 2 dimensiones| 78
[4.16. Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 40 dimensiones| 79
[4.17. Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 2 dimensiones| 80
[4.18. Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 40 dimensiones| 81
4.19. Tabla de resultados del conteo de Borda en BiBBOBI . . .. .. .. .. 83
[4.20. Tabla de resultados del conteo de Borda en WEFG con hipervolumen| . . 83
[4.21. Tabla de resultados del conteo de Borda en WEG con IGDH . . . . . . 83



Capitulo 1

Introduccion

Los algoritmos evolutivos, tanto mono-objetivo como multi-objetivo (MOEAs - por sus
siglas en inglés), de ultima generacién destacan por su enfoque elitista. Estos algoritmos
suelen implementar una seleccién determinista (1 + A), en la cual se eligen exclusiva-
mente los mejores individuos para avanzar a la siguiente generacion. En el contexto
mono-objetivo, esta seleccion se centra en optimizar un unico criterio, mientras que
en el multi-objetivo se busca un equilibrio entre multiples criterios. No obstante, en
ambos enfoques se ha identificado la importancia de fomentar la diversidad dentro de
la poblacion. Esto permite una exploracion mas amplia del espacio de busqueda, vital
para identificar soluciones 6ptimas en problemas complejos, ya sea enfocandose en un
unico objetivo o equilibrando entre varios.

1.1. Motivacion

En la era actual, dominada por avances significativos en informéatica y tecnologia, la
optimizaciéon efectiva de procesos y la toma de decisiones eficaz son cruciales para su-
perar desafios en una amplia gama de disciplinas, desde la ingenieria, la investigacion
operativa y la ciencia de datos. Dentro de este contexto, tanto los algoritmos evolutivos
mono-objetivo como los MOEAs desempenan un papel indispensable en problemas no
lineales. Estos algoritmos se han convertido en herramientas clave para abordar proble-
mas de optimizacién complejos, donde la tarea puede involucrar la mejora de un tinico
criterio o el equilibrio entre miltiples criterios simultaneamente, lo cual es esencial en
situaciones donde se requiere considerar diversas metas concurrentemente.

La motivacién detras de esta tesis radica en explorar el efecto de la heterogeneidad tem-
poral en los algoritmos evolutivos, tanto en su aplicacién mono como multi-objetivo,
en como puede enfatizar la exploracién para descubrir soluciones aceptables en la préac-
tica. En particular, se pone énfasis en la capacidad de los MOEAs para identificar
conjuntos de soluciones cercanas a 6ptimas, conocidas como soluciones de Pareto, en
escenarios donde se busca un compromiso entre multiples objetivos. Simultaneamente,
se investigara como los algoritmos mono-objetivo contribuyen a la optimizacion enfo-
cada, abordando problemas donde un tnico objetivo predomina.



Esta investigacion aspira a aportar conocimiento nuevo mediante la exploracion de
esta nueva perspectiva en aplicacion de algoritmos evolutivos, tanto mono como multi-
objetivo. Se busca avanzar en la comprension de como esta herramientas pueden ser
empleada para enfrentar los desafios de optimizacion que presentan las disciplinas men-
cionadas, ofreciendo soluciones que puedan ser aplicadas en la resolucion de problemas
complejos y multifacéticos.

1.2. El problema

La mayoria de los MOEAs de ultima generacion han adoptado estrategias altamente
elitistas que priorizan la selecciéon de los mejores individuos en cada generacion, lo
que comtinmente se denomina seleccion (u+ A). Si bien esta estrategia ha demostrado
ser efectiva en la explotacion de soluciones 6ptimas, puede resultar insuficiente en
situaciones donde la exploracién del espacio de busqueda es esencial [, 136, 35, 53, 130].
En tales contextos, es necesario fomentar una mayor diversidad en la poblacién para
descubrir soluciones no dominadas adicionales, evitar la convergencia prematura hacia
un 6ptimo local y ademas de anadir adaptabilidad a diferentes tipos de problemas.

1.3. Hipobtesis

La heterogeneidad temporal influye significativamente en el equilibrio entre la explora-
cion y la explotacion en algoritmos evolutivos multi-objetivo, mediante la incorporacion
de un pardmetro que permita transitar entre estrategias (u + \), orientadas hacia la
explotacion, y estrategias (u, A), més inclinadas hacia la exploracién, optimizando asi
el desempeno del algoritmo en entornos dindmicos [40].

Este estudio se propone investigar el impacto de la heterogeneidad temporal mediante
la incorporacién de un parametro que ajusta la presion de seleccion, variando desde
estrategias (u+ M), que inclinan la balanza hacia la explotacién, hasta estrategias (u, ),
que promueven la exploracion.

1.4. Objetivos

En el presente trabajo, se busca abordar el impacto de la heterogeneidad temporal
en los algoritmos evolutivos, explorando cémo esta caracteristica puede influir en el
equilibrio entre la exploracion y la explotacion durante la biisqueda de soluciones 6pti-
mas. La investigacion se enfoca tanto en contextos mono-objetivo como multi-objetivo,
proponiendo la introduccién de un parametro adicional que modula la presién de se-
leccién como una via para mejorar el desempeno de estos algoritmos. A continuacion,
se detallan los objetivos generales y especificos que guiaran este estudio.



1.4.1. Generales

Estudiar el impacto de la heterogeneidad temporal en el equilibrio entre exploracién
y explotacién en algoritmos evolutivos, tanto en contextos mono-objetivo como multi-
objetivo, mediante la introduccién de un parametro adicional que modula la presion
de seleccion.

1.4.2. Particulares

= Analizar la influencia de la heterogeneidad temporal en la efectividad de los
algoritmos evolutivos para encontrar soluciones éptimas en problemas tanto de
optimizacién mono-objetivo como multi-objetivo.

= Disenar y validar un mecanismo adaptativo que permita ajustar la presiéon de
seleccion en algoritmos evolutivos, evaluando su efecto en estrategias de seleccion
que van desde (4 A), enfocadas en la explotacién, hasta (i, A), orientadas hacia
la exploracién.

= Realizar experimentos comparativos para evaluar el rendimiento de los algoritmos
evolutivos con este parametro de presion de selecciéon ajustable, en una variedad
de problemas de optimizacion, tanto mono como multi-objetivo.

= Investigar como la adaptacion de la presion de seleccion basada en la heteroge-
neidad temporal mejora la convergencia hacia soluciones 6ptimas y la diversidad
de soluciones en el espacio de busqueda.

= Desarrollar guias para la aplicacion y ajuste del parametro de presion de selecciéon
en algoritmos evolutivos, considerando las peculiaridades de los problemas de
optimizacién a los que se aplican, incluyendo el andlisis de la complejidad del
espacio de bisqueda y la interaccion entre objetivos.

1.5. Contribuciones y productos de investigacion

Esta investigacion busca contribuir a la comprension y mejora de las estrategias de
seleccion utilizadas en MOEAs, promoviendo la adaptabilidad de estos algoritmos en
funcién de la naturaleza y complejidad de los problemas abordados. A continuacién,
se presentan las principales contribuciones y productos derivados de este trabajo:

La adaptacion de algoritmos para considerar el nuevo parametro.

Generar una amplia base de datos de resultados estadisticos de la introduccion
del nuevo parametro.

Un paquete de software para pruebas y ajuste fuera de linea en GitHub.

Una publicacion realizada en el evento de GECCO 2023 [47].


https://github.com/Flucklight/Tesis-Project

1.6. Organizacién de la tesis

Esta tesis se compone de cinco capitulos, cada uno de los cuales se enfoca en aspectos
especificos de la investigacion en el campo de algoritmos evolutivos y la adaptacion
de algoritmos evolutivos. A continuacién, se presenta una breve descripcién de cada
capitulo:

Capitulo 1: Introduccién
« Este capitulo introductorio establece el contexto y los objetivos de la inves-
tigacion.
o Se plantea la importancia de los algoritmos evolutivos en la optimizacion
multi-objetivo y se delinea la estructura de la tesis.

Capitulo 2: Marco tedrico

« En este capitulo, se presentan los conceptos basicos de la optimizacion multi-
objetivo y los sistemas complejos fundamentales para comprender la inves-
tigacion.

o Se incluye un analisis de trabajos relevantes en el estado del arte relacionados
con la investigacién y sus propuestas.

Capitulo 3: Metodologia

o Este capitulo detalla la metodologia de la investigacién, describiendo los
entornos de desarrollo utilizados.

« Se proporciona informacién sobre los parametros aplicados en el desarrollo
y se describen los mecanismos de selecciéon modificados de los algoritmos
utilizados.

Capitulo 4: Anélisis de resultados
o En este capitulo se realiza un analisis detallado de los resultados obtenidos
en la investigacion.

o Se presentan tablas de resultados y comparaciones importantes de los obje-
tivos estudiados.

Capitulo 5: Conclusiones y trabajo futuro
« El capitulo de conclusiones resume las principales conclusiones extraidas de
la investigacion.

» Se presentan propuestas de trabajo futuro que podrian desarrollarse a partir
de los hallazgos de esta tesis.



Capitulo 2

Marco Teérico

En este capitulo, se introducen los principios fundamentales y conceptos clave para
comprender la investigacion en el campo de la optimizacion a través de algoritmos
evolutivos, abarcando tanto la optimizacién mono-objetivo como la multi-objetivo. Los
algoritmos evolutivos son herramientas poderosas que se aplican para optimizar una
amplia gama de problemas, utilizando estrategias de exploraciéon para descubrir nuevas
areas del espacio de busqueda y estrategias de explotacién para afinar y mejorar las
soluciones existentes hacia optimos locales o globales. Estas estrategias son vitales
en ambos contextos de optimizacién; en el mono-objetivo, se enfocan en encontrar la
mejor soluciéon posible para un tnico criterio, mientras que en el multi-objetivo, buscan
un conjunto de soluciones que representen un equilibrio éptimo entre varios criterios
contradictorios.

2.1. Optimizacién

La optimizacién es el proceso de encontrar la mejor soluciéon o resultado posible para un
problema dado. Enfocandonos en la optimizaciéon multi-objetivo, esta aborda el desafio
de tomar decisiones en contextos donde multiples criterios conflictivos deben ser con-
siderados simultaneamente. Los problemas multi-objetivos requieren un enfoque mas
complejo debido a la naturaleza intrinsecamente conflictiva de los objetivos involucra-
dos. Este seccion revisa los fundamentos de la optimizacion multi-objetivo, destacando
los conceptos de dominancia de Pareto y el Frente de Pareto, asi como la importancia
de la diversidad de soluciones en la toma de decisiones. Se discuten también métodos
de solucién y las implicaciones de la diversidad de soluciones en la préactica.
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2.1.1. Fundamentos de la optimizaciéon multi-Objetivo

Un problema de optimizaciéon multi-objetivo, también denominado problema de opti-
mizacién multi-criterio o de multiples objetivos, se refiere a una categoria de problemas
de optimizacién que requieren la optimizacién simultdnea de mas de un objetivo [6].

Estas se definen como:

encontrar el vector X* = [z}, z5,...,25]7 € F que satisfaga las m restricciones de
desigualdad:
g:(X) =20 i=1,2,...,m, (2.1)
las p restricciones de igualdad:
hj(xX)=0 j=12,....p, (2.2)
y optimiza la funcién vectorial:
f(%) = [1(X), (%), ..., )] (2.3)
donde X = [xq, 3, ..., 2z,]" es el vector de variables de decisién y F' es la region factible

definida por las restricciones p y m.

Estos problemas son prevalentes en una amplia gama de campos, incluidos la ingenieria,
la economia y la logistica, en los cuales es necesario tomar decisiones que incorporen
varios criterios, los cuales frecuentemente presentan conflictos entre si. Cabe destacar
que, en el caso de que el problema involucre un tnico objetivo, este se clasifica como
un problema de optimizacién mono-objetivo.

2.1.2. Dominancia de Pareto

La dominancia de Pareto es un concepto central en el analisis de decisiones multi-
objetivo y en la teoria de juegos, nombrado asi por el economista italiano Vilfredo
Pareto. Se utiliza para comparar diferentes soluciones en problemas donde hay mil-
tiples objetivos a considerar, y estos objetivos a menudo entran en conflicto entre si [10].

A lo cual decimos que un vector X = [1,..., 2|7 se dice que domina a otro vector
Yy = [y1;--;yx]T (denotado por ¥ < ) si y s6lo si z es parcialmente menor que y:
Vied{l,...,k},o; <y, v Fe{l,... )k} x; <y (2.4)

De tal manera, para dos vectores de decisiéon en un problema multi-objetivo, se dice
que:

» X domina fuertemente a y (denotado por & < ) siVi € {1,...,k} : fi(Z) < fi().

» X domina débilmente a § (denotado por & < ¢) si Vi € {1,...,k}: fi(¥) 2 fi(9).
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La dominancia de Pareto ayuda a identificar un conjunto de soluciones 6ptimas en el
sentido de que ninguna otra solucién en consideracion es mejor en todos los objetivos
simultdneamente, como se puede apreciar en la Figura 2.1}

10 A
x> © X0 ® Puntos
9- : ® Frente de Pareto
ex3 :
8_
7 . oX4
Indiferente § Dominado
6 1 : ‘Xl
f2(x) :
............................... OX8 .
5- :
44 :
Dominan : Indiferente
31 .Xg
' X6
21 7 °
o |
0 1 2 3 4 5 6 7 8
f1(x)

Figura 2.1: Tlustracion de la representacion de la dominancia de Pareto del punto x8.

No dominado

Un punto (o solucién) se considera no dominado si no existe otro punto que mejore
en todos los criterios o dimensiones evaluados vistos en la Ecuacién 2.4 Esto significa
que, para ser 'no dominado", un punto debe ser al menos tan bueno como cualquier
otro en todos los criterios y mejor en al menos uno. En el contexto de la optimizacion
multi-objetivo, identificar soluciones no dominadas es crucial para entender el trade-off
entre diferentes objetivos, ya que mejorar en un objetivo puede significar empeorar en
otro.

Vi€ fi,. . ks (@) A L)A€ Ly kY s (@) £ (@), (25)

Conjunto de 6ptimos de Pareto

El conjunto de 6ptimos de Pareto, es un concepto que extiende la idea de soluciones
no dominadas al definir un estado de asignaciones de recursos en el cual no es posible
mejorar la situaciéon de un individuo sin empeorar la situacién de otro. En términos
de soluciones a problemas, un punto es un Optimo de Pareto si no es posible moverse
a otro punto que mejore al menos un objetivo sin empeorar al menos otro objetivo.
Por lo mismo el conjunto de 6ptimos de Pareto consiste en el conjunto de todas las
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soluciones 6ptimas de Pareto, es decir, aquellas soluciones que no son dominadas por
ninguna otra solucién en el espacio de las variables de decisién [43].

SP ={FeF|dycF f(5) #f&) (2.6)

donde SP* es el conjunto de Optimos de Pareto y X y ¥ son vectores de decisién que
pertenecen al conjunto de soluciones factibles F'.

Frente de Pareto

El conjunto de 6ptimos de Pareto esta definido en el espacio de las variables de deci-
sion. La evaluacién de dicho conjunto en el espacio de las funciones objetivo es conocido
como frente de Pareto (F'P) [17]. Estas soluciones se visualizan como en la Figura

® Puntos

101 —— Frente de Pareto

f2(x)

f1(x)

Figura 2.2: Tlustracion de un problema bi-objetivo con el frente de Pareto destacado
mediante una linea en negrita.

El frente de Pareto es una herramienta crucial para los tomadores de decisiones en
campos como la economia, la ingenieria, la gestion de proyectos y la planificacion
ambiental. Al proporcionar un conjunto de soluciones éptimas desde el punto de vista
de la eficiencia de Pareto, facilita la identificacién de las mejores opciones posibles bajo
criterios multiples y conflictivos. La seleccién final de una solucién dentro del Frente
de Pareto suele requerir consideraciones adicionales, como las preferencias personales
o institucionales, valores éticos o criterios de mantenibilidad.
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2.1.3. Diversidad de soluciones

La diversidad de soluciones en el contexto de problemas de optimizacién multi-objetivo
y, especificamente, al referirse al frente de Pareto, destaca la existencia de multiples
soluciones 6ptimas que ofrecen distintas compensaciones entre los objetivos en conflicto
[6]. En problemas donde se deben considerar varios criterios simultaneamente, es raro
encontrar una soluciéon tnica que sea la mejor en todos los aspectos. En cambio, lo que
se encuentra es un conjunto de soluciones 6ptimas en el sentido de Pareto, cada una
de las cuales es inmejorable sin empeorar en algin otro objetivo.

2.2. El balance entre exploracion y explotacion

En diversas situaciones, nos encontramos ante la necesidad de tomar decisiones que
implican encontrar un equilibrio delicado entre dos estrategias fundamentales. Por un
lado, esta la exploracion de opciones desconocidas, que busca adquirir informacion
adicional y descubrir nuevas soluciones. Como sefiala Holland [24], esta exploracion
es fundamental en la adaptacién y evolucién, permitiendo la identificacién de posibles
soluciones innovadoras y eficaces. Por otro lado, se encuentra la explotacién de opciones
conocidas, que busca obtener recompensas inmediatas mediante la mejora de soluciones
ya existentes. Goldberg [19] enfatiza la importancia de un equilibrio adecuado entre
exploracion y explotacion en algoritmos evolutivos, argumentando que una inclinacién
excesiva hacia la explotacién puede llevar a la convergencia prematura y limitar el
alcance de la busqueda.

2.2.1. El impacto en MOEASs

La dualidad entre la exploracion y la explotacion adquiere una relevancia particular
en el contexto de los problemas multi-objetivo, que son inherentemente de naturaleza
matematica. Estos problemas se caracterizan por la necesidad de optimizar simulta-
neamente multiples funciones objetivo (véase en la Ecuacién . En este marco, las
técnicas del computo evolutivo emergen como herramientas esenciales para abordar y
resolver dichos problemas, que plantean un desafio significativo debido a la complejidad
que surge de sus multiples criterios de optimizacion y las restricciones asociadas.

Kalyanmoy Deb [10] explora este balance en el contexto de MOEAs, demostrando cémo
diferentes estrategias de seleccion pueden influir significativamente en el rendimiento
del algoritmo. La eleccion entre métodos de seleccion mas elitistas o aquellos que pro-
mueven la diversidad puede tener un impacto directo en la capacidad del algoritmo
para explorar eficientemente el espacio de busqueda.

En los Algoritmos Evolutivos Multiobjetivo (MOEAs) existentes, se ha asumido tradi-
cionalmente que la seleccién basada en el rendimiento en el espacio objetivo es suficiente
para mantener la diversidad en el espacio de busqueda. Sin embargo, esta perspectiva
ha evolucionado con el reconocimiento de que un equilibrio entre exploracién y ex-
plotacién es esencial para el éxito de estos algoritmos. A la fecha, se han incorporado
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multiples mecanismos explicitos en los MOEAs para controlar este equilibrio de manera
efectiva. Estos mecanismos incluyen, entre otros, técnicas de nicho, métodos de selec-
cién basados en diversidad, operadores de mutacion y cruce diversificados, asi como
estrategias adaptativas y dindmicas. Estas innovaciones estan disenadas para asegurar
que, ademas de optimizar en el espacio objetivo, los algoritmos mantengan una diversi-
dad adecuada en el espacio de buisqueda. Esto es crucial para prevenir la convergencia
prematura hacia soluciones suboptimas y para facilitar la exploracion exhaustiva del
espacio de soluciones disponibles. Por lo tanto, es més preciso afirmar que los MOEAs
modernos estan equipados con una variedad de herramientas que les permiten gestio-
nar activamente la diversidad de la poblacion, asegurando un equilibrio 6ptimo entre
la exploracién de nuevas areas del espacio de busqueda y la explotacion de soluciones
prometedoras ya descubiertas. En la practica, Jianyong y Hu Zhang [57] han encontra-
do que la colaboracion de multiples operadores de recombinacion puede adaptarse a la
forma y las propiedades locales del paisaje de aptitud, lo que contribuye a equilibrar
la exploraciéon y la explotacion de manera efectiva.

Dentro del campo del computo evolutivo, el tratamiento del dilema entre exploraciéon y
explotacion se realiza mediante la implementacién de dos estrategias evolutivas funda-
mentales, que son (u+ ) y (i, \). La estrategia (u+ \), donde p representa el niimero
de padres en la poblacién actual y A denota el niimero de descendientes generados, se
orienta hacia una exploracion intensiva del espacio de biisqueda. En esta estrategia, se
seleccionan los mejores individuos de la unién de padres y descendientes para la proxi-
ma generacion, lo cual promueve una bisqueda informada y una convergencia gradual
hacia soluciones 6ptimas al mantener una mezcla de generaciones.

Por el contrario, la estrategia (u, A) introduce un componente de aleatorizaciéon mas
significativo, ya que Unicamente los A descendientes compiten para convertirse en los
proximos g padres, sin que los padres actuales tengan la oportunidad de pasar directa-
mente a la siguiente generacion. Esto favorece la diversidad genética y evita la conver-
gencia prematura, permitiendo una mayor adaptabilidad y flexibilidad en la busqueda
de soluciones. La ausencia de los padres actuales en la seleccion para la préoxima gene-
racién subraya la importancia de la variabilidad y la capacidad de la poblacion para
adaptarse a cambios o descubrir nuevas regiones del espacio de busqueda.

El desafio de encontrar el equilibrio 6ptimo entre exploracién y explotacion represen-
ta un aspecto crucial en la optimizaciéon de problemas multi-objetivo. Aunque se ha
realizado una investigacién exhaustiva sobre las estrategias (u, A\) y (¢ + A), persis-
ten avances significativos en este campo, con el objetivo de explorar nuevas ideas y
capitalizar el conocimiento ya existente.

2.2.2. Descripcion de seleccion de siguiente poblacion

La seleccion en los algoritmos evolutivos [2] presenta dos variantes fundamentales,
cada una influyendo en el proceso evolutivo de manera distinta. Dependiendo de si la
poblacién de padres en la generacion actual se incluye en el proceso de seleccion, se
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distinguen dos estrategias: la seleccién de més, denotada por (u+ A), y la seleccién de
coma, representada como (p, A).

Estrategia (u, \)

En la seleccion (p, \), solo los A individuos recién generados, es decir, la poblacién
actual, contribuyen al grupo de selecciéon. En este enfoque, los padres de la generacion
actual son olvidados, incluso si superan a toda la descendencia. Es evidente que una
condicion necesaria para el algoritmo es que g < A. La igualdad g = A resulta en
que toda la descendencia se selecciona como padres, lo que conduce a una pérdida de
informacion relevante para la buisqueda y, como resultado, la poblacion realiza un paseo
aleatorio en el espacio de busqueda.

Estrategia (1 + \)

Por otro lado, la seleccion de mas, representada por (u+ A), incorpora a los padres en
el proceso de seleccién. La notacion indica que tanto los padres como la descendencia
se copian en el grupo de seleccién, que tiene un tamafio v = u + A. A diferencia de la
seleccién de coma, no hay restriccion tedrica sobre el nimero de descendientes A. Casos
con ft = A o g > X son posibles. El caso especial (u + 1), conocido como algoritmos
evolutivos de estado uniforme, se emplea cominmente en implementaciones asincro-
nas en sistemas multiprocesador|37]. La seleccion de més asegura la supervivencia del
mejor individuo encontrado hasta el momento, y debido a esta preservacion, estas téc-
nicas de seleccién son denominadas elitistas. El elitismo se erige como una condicion
necesaria que un operador de selecciéon debe cumplir para demostrar la propiedad de
convergencia global en los algoritmos evolutivos. Gracias al elitismo en las estrategias
de mas, los padres pueden perdurar indefinidamente y mantener a la solucion éptima
en caso de ser encontrada.

Ambas variantes de seleccién encuentran aplicaciones especificas. La seleccion (pu, A) se
recomienda para espacios de biisqueda no acotados [7], especialmente cuando Y = RY,
mientras que la seleccion (1 + \) se utiliza en espacios de busqueda discretos de tamano
finito [39], como en problemas de optimizacion combinatoria [18].

2.3. Descripcién de los algoritmos

En los algoritmos evolutivos, la diversidad de la poblacién en el espacio de bisqueda
se utiliza comtinmente para medir y controlar el equilibrio entre exploracion y explota-
cion. La exploracion es posible si la poblacion es diversa, y se espera que esta diversidad
disminuya a medida que se realiza la explotacion.

En esta seccién, se proporciona una vision detallada de los algoritmos evolutivos y
su aplicaciéon en la resolucién de problemas de optimizacion. Se abordara la mecanica
fundamental de estos algoritmos, destacando las diferencias en su enfoque dependiendo
de si el problema es de naturaleza mono-objetivo o multi-objetivo. Se explorara la
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importancia de las operaciones clave como la recombinacion y la seleccion ambiental,
y como éstas contribuyen al equilibrio entre la exploracion del espacio de busqueda y
la explotacién de las soluciones encontradas.

2.3.1. Mono-objetivo

Los algoritmos evolutivos (EAs) son una familia de métodos de optimizacién inspirados
en el proceso natural de la evolucién, y utilizan una serie de operaciones bioinspiradas
para explorar el espacio de soluciones de un problema. La recombinacion, o cruce, es
una de estas operaciones esenciales y consiste en combinar partes de dos o mas solu-
ciones parentales para producir una nueva solucién, con la esperanza de heredar las
caracteristicas deseables de cada uno de los padres.

Ademas de la recombinacién, otros operadores importantes en los EAs incluyen la
mutacion y la seleccion. La mutacion introduce variabilidad al azar en las soluciones,
permitiendo que el algoritmo explore nuevas regiones del espacio de biisqueda que no se
generarian a través de la recombinacién sola. Esta operacion es crucial para mantener
la diversidad genética de la poblacion y evitar que el algoritmo se estanque en 6ptimos
locales.

La seleccién, por su parte, es el proceso por el cual se decide qué soluciones se manten-
dran para la siguiente generacion. La seleccion ambiental es una forma de seleccién que
se realiza después de que la recombinacién y la mutacion hayan tenido lugar, evaluando
las soluciones recién creadas y determinando su idoneidad para sobrevivir en base a
su aptitud o fitness. Esta aptitud suele medirse en funcién de cuan bien la solucion
satisface los objetivos del problema de optimizacion.

Otro operador involucrado en los EAs es la seleccion de padres, que determina qué in-
dividuos de la poblacién actual se utilizaran para la creacion de descendientes a través
de recombinacion y mutacion. La seleccion de padres a menudo se realiza de tal manera
que las soluciones con mejor aptitud tengan una mayor probabilidad de ser elegidas,
aunque también se pueden emplear estrategias que promuevan la diversidad.

Finalmente, los EAs pueden incluir mecanismos de reemplazo para decidir como las
soluciones descendientes reemplazaran a las soluciones parentales en la poblacion. El
objetivo de estos mecanismos es encontrar un equilibrio adecuado entre preservar las
soluciones de alta calidad y permitir la introducciéon de nuevas soluciones potencial-
mente prometedoras.

La combinacién de estos operadores —recombinacién, mutacion, seleccién de padres,
seleccion ambiental y mecanismos de reemplazo— permite que los algoritmos evoluti-
vos simulen el proceso de evolucién natural y se adapten continuamente a medida que

buscan soluciones 6ptimas o satisfactorias para problemas complejos de optimizacion.

En esta secciéon veremos un panorama conciso de los algoritmos implementados en
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este estudio, enfocandose en sus atributos distintivos, metodologias y sus campos de
aplicacion.

Algoritmo genético

El algoritmo genético (GA) [25] es un algoritmo de optimizacién inspirado en la teo-
ria de la evolucion de Darwin. Es un algoritmo de busqueda basado en poblacion que
utiliza el concepto de supervivencia de los mas aptos. Las nuevas poblaciones se pro-
ducen mediante el uso iterativo de operadores genéticos en los individuos presentes en
la poblacion. La representacion del cromosoma, la seleccion, el cruce, la mutacion y el
calculo de la funcién de aptitud son elementos clave del GA.

El procedimiento del GA es el siguiente:

1.

Inicializacién: Se genera una poblacion inicial de N individuos de manera alea-
toria, representados por:

Ci = {glag27"'agm}' (27)

Donde m es el nimero de genes en el cromosoma y C; es el i-ésimo cromosoma.

. Evaluacién: Cada individuo C; es evaluado mediante una funcién de aptitud

f(C}), que mide la calidad de la solucién representada por el cromosoma.

Seleccién: Los individuos son seleccionados para la reproducciéon con una pro-
babilidad proporcional a su aptitud, dada por:

/()

PO =5v ey

(2.8)

Cruzamiento (Crossover): Pares de individuos son seleccionados para producir
descendencia con una probabilidad de cruzamiento p.. Los genes son intercam-
biados entre los padres para formar descendientes.

Mutacién: Con una probabilidad de mutacién p,,, se realizan cambios aleatorios
en los genes de los individuos descendientes:

gi = gi + 0. (2.9)

Donde ¢; es el gen mutado, g; es el gen original, y ¢ es una alteracion aleatoria.

. Reemplazo: La nueva generacion de individuos reemplaza a la generacion ante-

rior, segun la estrategia de reemplazo elegida.

Terminacion: El algoritmo repite los pasos 2 a 6 hasta que se cumple uno o
mas criterios de terminaciéon, como alcanzar un niimero maximo de generaciones
Gmax, lograr una aptitud por encima de un umbral fiy eshold, © Una mejora minima
entre generaciones.
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Los algoritmos genéticos cambian dindmicamente el proceso de biisqueda a través de
las probabilidades de cruce y mutacion y alcanzan la soluciéon 6ptima. Los GA pueden
modificar los genes codificados. Los GA pueden evaluar multiples individuos y producir
multiples soluciones éptimas. Por lo tanto, los GA tienen una mejor capacidad de bus-
queda global. La descendencia producida a partir del cruce de cromosomas parentales
tiene la probabilidad de eliminar los esquemas genéticos presentes en los cromosomas
de los padres. Un esquema genético, en el contexto de los algoritmos evolutivos, se
refiere a un patrén o conjunto de genes que se mantiene en varias generaciones y que
contribuye de manera significativa al rendimiento del individuo. La féormula utilizada
para el cruce se define como:

(2u)neFT | siu <0,5,
B = 1 (2.10)
(5ts) ™ siu>05.
Tal que:
y2 = 0,5((1 = B)zy + (14 5)z2) . (2.12)
Donde:

= 2 es un numero aleatorio entre 0 y 1.

7. es el parametro de distribucion, que controla la forma de la distribucion SBX.

B es el factor de distribucién, calculado a partir de u y 7..
= 11y T9 son los valores de los padres.
= 91 Y 92 son los valores calculados para los descendientes.

Segun el teorema del esquema, el esquema original debe ser reemplazado por un es-
quema modificado. Para mantener la diversidad en la poblacion, el nuevo esquema
conserva la poblacién inicial durante las primeras etapas de la evoluciéon. Al final de
la evolucion, se producira el esquema apropiado para evitar cualquier distorsion de los
excelentes esquemas genéticos.

Evolucién diferencial

El algoritmo de evolucién diferencial (DE) [13] se considera como uno de los optimiza-
dores mas destacados y populares para abordar problemas de optimizacién continua.
Este algoritmo pertenece a la familia de los Algoritmos Evolutivos y se destaca por su
capacidad para resolver una amplia gama de problemas de optimizacion. La DE tra-
baja con poblaciones de soluciones y utiliza un enfoque de recombinaciéon para generar
nuevas descendencias bajo ciertas condiciones.
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A diferencia de algunos otros EAs que generan descendencia al perturbar las soluciones
con vectores de diferencia escalados, la DE se enfoca en la recombinacion de soluciones
existentes. En este proceso, la solucién individual actual puede ser reemplazada si es
superada por la nueva solucién descendiente. Esto le otorga a la DE su caracteristica
de robustez y simplicidad, ya que su proceso de biisqueda se rige por un niimero redu-
cido de parametros especificos del algoritmo, como el factor de escala y la tasa de cruce.

Al igual que otros EA, DE opera a través de tres mecanismos clave: mutacién, cruce
y seleccion. Entre estos mecanismos, la mutaciéon y el cruce desempenan un papel
fundamental en el rendimiento de bisqueda del algoritmo.

» DE/rand/1:

vic =6+ - (T26 — Trsa)- (2.13)
= DE/best/1:
Vi,G = Thest,G + F- (le’G — $TQ7G). (214)
» DE/rand-to-best/1:
Vi, = Tr1,G + F- (xbest,G - mrl,G) + F- ($r27G — $r37g). (215)
» DE/current/1:
Vi = Tig + F - (2,6 — Tr26).- (2.16)

DE/current-to-best/1:
Vic =Tic+F - (Trest.c — i) + F - (1.6 — Trac). (2.17)

En estas formulas, zpest, ¢ representa el mejor individuo de la poblacién en la generacion
G,y 7, es el individuo actual siendo mutado. Los indices r1, r2, r3, e ¢ son selec-
cionados del conjunto {1,2,3,..., NP}, donde NP es el tamano total de la poblacién,
asegurando que r1 # r2 # r3 # 1. Estos indices representan diferentes individuos selec-
cionados aleatoriamente de la poblacion para participar en la mutaciéon, promoviendo
la diversidad genética.

El factor de escala F' es un parametro crucial que influye en la magnitud de la mutacion
aplicada a las soluciones. F' es un ntimero real positivo, generalmente entre 0 y 2, que
ajusta el efecto de perturbacién de la operacion de mutacién. Un F' bajo favorece una
explotacion mas fina de las soluciones existentes, mientras que un F' alto promueve la
exploracién de nuevas areas del espacio de buisqueda.

El cruce, por su parte, fusiona las soluciones de manera que se puedan combinar ca-
racteristicas deseables de multiples individuos para formar nuevas soluciones. El vector
objetivo u; ¢ = u;1,6,Ui2,q, -, UWi,p,c se genera mediante la operacion de cruce, esto
dado por la operacién:
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M {vi,jyg, si rand(0,1) X CR o j = jrand, (2.18)

T;j,G, €n caso contrario.

En esta operacion, i representa el indice de un individuo dentro de la poblacion,
con ¢ € {1,2,...,NP}. El indice j representa la dimensién de un individuo, con
j€{1,2,...,D}, donde D es la dimensién del problema, es decir, el niimero de varia-
bles de decisién que define el espacio de soluciones del problema.

El término jrand es un entero aleatorio seleccionado en el rango de 1 a D, asegurando
que al menos una dimensién del vector mutado v; ;¢ sea transferida al vector objetivo

ui»j>G'

La tasa de cruce, C'R, es un parametro que determina la probabilidad con la que se
escogen elementos del vector mutado v; ;¢ en lugar de elementos del vector original
x; ;. durante la generacion del vector objetivo. C'R es un ntimero real en el rango de 0
a 1, donde un valor cercano a 0 significa que la mayoria de los componentes del vector
objetivo provendran del vector original, mientras que un valor cercano a 1 aumenta la
probabilidad de que los componentes provengan del vector mutado, fomentando una
mayor diversidad en las soluciones generadas.

Estrategias evolutivas

Las Estrategias Evolutivas (ES) [2] se presentan como un enfoque innovador en el 4m-
bito de la optimizacién y busqueda heuristica, tomando inspiraciéon de los principios
evolutivos que observamos en la naturaleza. Este algoritmo ha adquirido una relevan-
cia significativa al abordar problemas complejos y de alta dimensionalidad en diversas
disciplinas, como la ingenieria, la inteligencia artificial y la investigacién operativa. Su
estructura modular, compuesta por elementos clave, define su funcionamiento eficiente
y versatil.

Entre estos elementos, destacan la representacion de las soluciones, los operadores ge-
néticos de mutacion y recombinacion, la funcién de evaluacion objetiva y la estrategia
de seleccién, que desempena un papel crucial en la diversidad de estrategias (u/p+, A)
incorporadas en su diseno.

La notacion (u/p+, A)-ES encapsula la esencia de la estrategia evolutiva, donde:

w: Tamano de la poblacién actual.
= p: Numero de padres seleccionados para la recombinacion.

A: Tamano de la poblacion de descendencia generada por recombinacion.

+: El operador mas indica que la poblaciéon de descendencia se combina con la
poblacién actual.
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= .. El operador coma indica que la poblacion de descendencia remplaza la poblaciéon
actual.

El objetivo habitual de una estrategia evolutiva es optimizar alguna funcién objetivo(s)
o de calidad (F) dada con respecto a un conjunto de variables de decisién o pardmetros
de control y := (y1,¥2,...) —en el contexto de ES — a menudo denominados parametros
de objeto.

2.3.2. Multi-objetivo

En el caso de los MOEAS, es esencial mantener la diversidad de las soluciones tanto
en el espacio objetivo como en el espacio de busqueda. Ademés, a diferencia de los
algoritmos de objetivo tnico, la diversidad de la poblaciéon no debe disminuir durante
la busqueda, ya que se requiere para asegurar la diversidad de las soluciones finales en
el espacio objetivo.

NSGA-II

Propuesto por Kalyanmoy Deb y sus colaboradores en 2002 [12], (Non-dominated Sor-
ting Genetic Algorithm II), es un algoritmo evolutivo desarrollado para la optimizacién
multi-objetivo. Su diseno se basa en la idea de clasificar las soluciones en frentes no
dominados descritos en la Ecuacién [2.5] lo que permite identificar las soluciones que
son mejores en todos los objetivos en comparacion con otras soluciones.

Este criterio de dominancia constituye el cimiento del potencial del algoritmo, des-
tacandose en su capacidad para clasificar la poblacién a través de la evaluacion. El
proceso de clasificaciéon comprende los siguientes pasos:

= Asignacion de rangos: Inicialmente, se identifica el conjunto de soluciones que
no son dominadas por ninguna otra en la poblacién. Estas forman el primer frente.
Este proceso se realiza mediante la comparacién de cada solucién con las demas,
evaluando si alguna domina a otra en funciéon de todos los objetivos. Luego,
estas soluciones se eliminan temporalmente de la consideracion y se identifica un
nuevo conjunto de soluciones no dominadas, formando el segundo frente. Este
proceso se repite, creando sucesivos frentes de soluciones, hasta que todas han
sido clasificadas.

» Crowding Distance: Ademas del rango, se calcula la crowding distance para
cada soluciéon. Para cada solucion, se calcula su crowding distance como la suma
de las diferencias normalizadas en los valores de la funcion objetivo entre sus dos
vecinos mas cercanos en cada objetivo. Las soluciones en los extremos del frente
tienen un crowding distance infinito, lo que garantiza su seleccion. El calculo del
crowding distance desempena un papel crucial al mantener la diversidad en la
poblacién y al favorecer soluciones bien distribuidas en el frente de Pareto.
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Con estas fases claves, NSGA-II se destaca como una herramienta versatil y eficaz para
abordar problemas complejos de optimizacion multi-objetivo, brindando una perspecti-
va innovadora para la toma de decisiones en situaciones donde varios objetivos compiten
por ser optimizados.

NSGA-III

Desarrollado por Kalyanmoy Deb y sus colaboradores [11] como una respuesta a la
necesidad de un algoritmo mas eficiente en el manejo de la diversidad y la distribucién
de las soluciones en el espacio objetivo. NSGA-III (Non-dominated Sorting Genetic
Algorithm IIT) es una extensién significativa del algoritmo NSGA-II, disenado para
manejar problemas de optimizacién con multiples objetivos, especialmente en escena-
rios con mas de tres objetivos.

El NSGA-III introduce una serie de mejoras sobre su predecesor, como el uso de puntos
de referencia para guiar el proceso de seleccion en lugar del célculo de crowding dis-
tance y mantener la diversidad en el espacio de objetivos. Esto lo hace particularmente
efectivo para problemas con cuatro o méas objetivos.

Con esto el desarrollo del algoritmo en su proceso de seleccion estaria dado de la
siguiente manera:

= Seleccién Basada en Referencia: Cada solucién se asocia con el punto de
referencia mas cercano. La generacién de estos puntos de referencia se basa en
una particion del espacio de objetivos utilizando el hipervolumen, con el fin de
cubrir uniformemente todas las direcciones posibles en el frente de Pareto.

= Asignacion de Nichos: Se asignan nichos a las soluciones en funciéon de su
proximidad a los puntos de referencia. Un nicho se refiere a una region del espacios
de los objetivos dado por los puntos de referencia.

» Llenado de Frentes: Los frentes no dominados se llenan en orden hasta que la
capacidad de la poblacion se agota, teniendo en cuenta la asignacion de nichos.

= Seleccién de Ultimas Soluciones: Si es necesario, las tltimas soluciones se
eligen basandose en la distancia minima perpendicular a cada punto de referencia.

Estos procesos aseguran que la poblaciéon mantenga una diversidad razonable y que las
soluciones bien distribuidas en el frente de Pareto sean favorecidas, consolidando asi el
impacto y la efectividad del NSGA-III en la resolucién de problemas de optimizacion
multi-objetivo avanzados.

2.4. Software

La optimizacion se ha convertido en una herramienta esencial para resolver una amplia
gama de problemas complejos en diversos campos, como la ingenieria, la economia, la
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ciencia de datos y la investigacion operativa. Para abordar estos desafios, se han de-
sarrollado y perfeccionado una serie de técnicas y algoritmos de optimizacion. En esta
seccion, nos enfocamos en dos herramientas de software que han sido fundamentales en
el avance de la investigacion y la aplicacion practica en el ambito de la optimizacion:
Pymoo y COCO-Framework. Ambas plataformas ofrecen caracteristicas tinicas y com-
plementarias que facilitan la experimentacion, el benchmarking y la implementacion
de algoritmos de optimizacién de manera eficiente y efectiva. Al ofrecer una amplia
gama de algoritmos y herramientas para el andlisis de rendimiento, estas bibliotecas
de software permiten a investigadores y practicantes explorar soluciones 6ptimas para
problemas de complejidad creciente, promoviendo asi la innovacion y el progreso en sus
respectivos campos.

2.4.1. Pymoo

Pymoo [3] es una biblioteca de Python de c6digo abierto especializada en la optimiza-
cion multiobjetivo. Ofrece una amplia gama de algoritmos de optimizacién, adecuados
tanto para problemas de objetivo tinico como multiple. Las caracteristicas clave de
Pymoo incluyen:

= Diversidad de algoritmos: Pymoo proporciona algoritmos conocidos y am-
pliamente utilizados como NSGA-II [12], NSGA-III [11], MOEAD |[58], asi como
algoritmos genéticos (GA) [25], evolucién diferencial (DE) [13], estrategias evo-
lutivas (ES) [2] y optimizacién por enjambre de particulas (PSO) [32]. También
integra variantes de estos algoritmos y otros métodos mas especializados.

= Problemas de optimizaciéon soportados: La biblioteca maneja una variedad
de problemas de optimizacion, incluyendo aquellos con objetivo tinico, multi-
objetivo, muchos objetivos y dindmicos como son las funciones ZDT [59], DTLZ
[1] y WFG [27]. Ofrece soporte para problemas con restricciones y para diferentes
tipos de datos, como binarios, discretos y permutaciones.

= Personalizacion y flexibilidad: Pymoo permite a los usuarios personalizar y
ampliar su funcionalidad. Esto incluye la definicion de problemas personaliza-
dos, la implementacién de operadores de evolucion propios, y la adaptacion de
algoritmos existentes para satisfacer necesidades especificas.

= Indicadores de rendimiento y analisis: La biblioteca incluye indicadores de
rendimiento comunes, como el hipervolumen y la distancia generacional, facili-
tando la evaluacion y comparacion de las soluciones generadas por los algoritmos
de optimizacion.

Estas caracteristicas hacen de Pymoo una herramienta valiosa en el campo de la opti-
mizacién multi-objetivo, proporcionando a los investigadores y practicantes una plata-
forma versatil para experimentacién y desarrollo.
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2.4.2. COCO-Framework

COCO (COmparing Continuous Optimisers) [22] es un framework de codigo abierto, di-
seniado para la evaluacion exhaustiva y el benchmarking de algoritmos de optimizacion,
facilitando la comparacion efectiva mediante un conjunto estandarizado de herramien-
tas y procedimientos, siendo sus caracteristicas clave:

s Benchmarking riguroso: COCO proporciona un conjunto de funciones de
prueba y escenarios de benchmarking bien definidos. Esto permite evaluar la
eficacia y eficiencia de los algoritmos de optimizacion en una amplia gama de
problemas.

= Plataforma agnéstica: Es compatible con multiples lenguajes de programacion,
incluidos Python, Java, MATLAB, y C, lo que facilita su uso en diversos entornos
de investigacion y desarrollo.

= Analisis de datos: Ofrece herramientas para el anélisis detallado de los resulta-
dos del benchmarking, incluyendo la generacion de graficos y tablas que resumen
el rendimiento de los algoritmos evaluados.

= Reproducibilidad: Al proporcionar un marco estandarizado para el benchmar-
king, COCO ayuda a garantizar que los resultados sean reproducibles, lo que es
esencial para la validacién cientifica.

» Flexibilidad: Aunque COCO viene con un conjunto predeterminado de funcio-
nes de prueba, también ofrece la flexibilidad para agregar nuevas funciones de
prueba, lo que permite a los usuarios adaptar el framework a sus necesidades
especificas.

= Comunidad y documentacién: Cuenta con una comunidad activa de usuarios
y desarrolladores, asi como documentacién detallada que facilita su adopcién y
uso efectivo.

El uso de COCO facilita la comparacién directa de nuestros resultados con trabajos
previos, contribuyendo asi a un cuerpo coherente y comparativo de conocimiento sobre
algoritmos de optimizacion continua. Ademas, la adopcién de este framework apoya
la transparencia y la reproducibilidad en la investigacion de optimizacién, principios
fundamentales para el avance cientifico en este campo.

2.5. Problemas de prueba

En el campo de la optimizacion numérica, el uso de funciones de prueba desempena
un papel crucial al proporcionar un medio estandarizado para evaluar y comparar el
rendimiento de diversos algoritmos. Estas funciones, también conocidas como funciones
de referencia o funciones objetivo sintéticas, son esenciales en la investigacion operativa
y la ciencia computacional para simular una amplia gama de problemas de optimiza-
ciéon en un entorno controlado. Su principal objetivo es ofrecer escenarios que imiten
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las caracteristicas y desafios de problemas reales, permitiendo asi evaluar la eficiencia,
precision, robustez y otras propiedades criticas de los algoritmos de optimizacion.

Las funciones de prueba se categorizan tipicamente segun la naturaleza de los pro-
blemas que modelan y pueden ser clasificadas en varias dimensiones: unimodales o
multimodales, con ruido o sin ruido, y con restricciones o sin restricciones. Las funcio-
nes unimodales, que poseen un tnico éptimo global, son ttiles para evaluar la rapidez
de convergencia de un algoritmo. Por otro lado, las funciones multimodales, con mil-
tiples 6ptimos locales, son esenciales para probar la capacidad de los algoritmos de
escapar de 6ptimos locales suboptimos y encontrar el 6ptimo global.

Ademas, las funciones con ruido incorporado simulan la incertidumbre o variabilidad
que a menudo se encuentra en las mediciones de datos reales, desafiando la capacidad
del algoritmo para manejar perturbaciones y ofrecer soluciones estables. Las funciones
con restricciones, por otro lado, reflejan las condiciones limitantes frecuentemente pre-
sentes en problemas précticos, donde las soluciones deben cumplir con ciertos limites
0 requerimientos.

En este contexto, los problemas de Black-Box Optimization Benchmarking (BBOB)
[21] y las funciones Walker-Fournier-Guerin (WFG) [28] se destacan como herramientas
utiles en la evaluacion de la heuristica de optimizacion en los algoritmos con el nuevo
parametro.

2.5.1. BBOB

Los problemas de Black-Box Optimization Benchmarking (BBOB) [23] son parte de
una serie de talleres y una herramienta de evaluacién para algoritmos de optimizacion
en dominios continuos y mixtos enteros.

Los problemas BBOB se presentan en varias suites de prueba, cada una enfocada en
diferentes aspectos de la optimizacion:

= Suite bbob: Contiene 24 funciones sin ruido en un dominio continuo.
= Suite bbob-noisy: Compuesta por 30 funciones con ruido.

= Suite bbob-biobj: Incluye 55 funciones bi-objetivo sin ruido, generadas a partir
de la suite bbob.

= Suite bbob-largescale: Abarca 24 funciones sin ruido en dimensiones de 20 a
640.

= Suite bbob-mixint: Contiene 24 funciones sin ruido de tipo mixto entero.

= Suite bbob-biobj-mixint: Consta de 92 funciones bi-objetivo sin ruido y de
tipo mixto entero.
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= Suite bbob-constrained: Incluye 10 funciones sin ruido con un ntimero variable
de restricciones.

Siendo de nuestro interés en esta seccién la suite bbob, las cuales estan categorizadas en
cinco grupos distintos. Cada grupo esta disenado para evaluar diferentes capacidades
de los algoritmos de optimizacion:

= Funciones Separables: Este grupo incluye funciones como la esférica, la elip-
soidal separable y Rastrigin, poniendo a prueba la habilidad de los algoritmos
para lidiar con la separabilidad de variables.

= Funciones con Bajo o Moderado Acondicionamiento: Se centran en eva-
luar el desempenio de los algoritmos con funciones que presentan condiciones
menos exigentes.

= Funciones con Alto Acondicionamiento y Unimodales: Dirigidas a evaluar
la eficacia de los algoritmos en el manejo de funciones unimodales bajo condiciones
de alta dificultad.

= Funciones Multimodales con Estructura Global Adecuada: Contemplan
funciones con multiples éptimos locales y una estructura global bien definida.

= Funciones Multimodales con Estructura Global Débil: Representan un
desafio mayor debido a su estructura global difusa y la presencia de numerosos
optimos locales.

Caracteristicas comunes:

= Limites de la Funcién: La mayoria de las funciones tienen limites definidos en
el intervalo de [—5, 5].

= Dimensiones: Todas las funciones son capaces de operar en un rango de dimen-
siones que va desde 2 hasta 40.

» Instancia: Para la consistencia en los experimentos, todas las funciones se eva-
luaron en su primera instancia.

Excepciones en limites y caracteristicas tinicas: Algunas funciones presentan
limites distintos, tales como:

» Rosenbrock (original y rotada) con limites de [—5, 10].
» Schaffer’s F7 y su variante con ruido en [—100, 100].

» Schwefel con un rango de [—500, 500].

» Weierstrass en el intervalo de [—0,5,0,5].

Ademas, estas funciones se distinguen por propiedades tnicas, incluyendo:

27



= Buche-Rastrigin como asimétrica.

= Attractive Sector con atractores.

» Paso de Esfera caracterizada por su discontinuidad.

» Rosenbrock (original) por su naturaleza no convexa.

» Sharp Ridge con una cresta afilada.

= Weierstrass con una estructura fractal.

= Schaffer’s F7 por su ruido inherente.

= Funciéon Compuesta con miltiples componentes.

» Gallagher’s Gaussian 21-hi Peaks y 101-hi Peaks con numerosas cimas.
= Katsuura como no separable.

= Lunacek bi-Rastrigin destacando por su bi-modalidad.

Estas suites proporcionan una gama diversa de desafios de optimizaciéon y son fun-
damentales para comparar diferentes algoritmos de optimizacién. Ademas, el entorno
BBOB se centra en la medicién del rendimiento de los algoritmos basandose en el tiem-
po de ejecucién, definido como el nimero de evaluaciones realizadas en un problema
dado, y en la capacidad del algoritmo para alcanzar o superar un valor objetivo espe-
cifico.

El enfoque de BBOB en la optimizacion de caja negra es especialmente relevante para
situaciones en las que la forma analitica de las funciones objetivo no esta disponible o
es demasiado compleja, haciendo que la informacion sobre derivadas sea inaccesible o
costosa de obtener. Estos problemas son representativos de muchos desafios de optimi-
zacion en el mundo real y proporcionan un marco de referencia valioso para evaluar la
eficacia de los algoritmos de optimizacion.

Esta suite estd provista en el paquete IOHexperimenter [14], que es una herramienta
de benchmarking disenada para la experimentacion con Heuristicas de Optimizacion
Iterativas (IOHs).

Construido en C++ e implementado en Python, ofrece una interfaz eficiente entre los
problemas de optimizacién y sus solucionadores. Su enfoque permite un registro granu-
lar del proceso de optimizacion, facilitando el analisis interactivo de datos y acelerando
la implementacién de un pipeline de benchmarking. IOHexperimenter es parte del pro-
yecto IOHprofiler y es adecuado para comparar y evaluar heuristicas como la busqueda
local, algoritmos evolutivos y genéticos, y técnicas de optimizacion bayesiana.
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2.5.2. BiBBOB

La suite bbob-biobj, conocida también como BiBBOB [5], se especializa en la gene-
racion de problemas bi-objetivos. Esta suite combina funciones de la suite BBOB,
seleccionando dos funciones representativas de cada grupo para formar pares de ob-
jetivos en una tarea de minimizacion sin restricciones. La formulacion matematica de
estos problemas bi-objetivos es la siguiente:

min F(z) = (fa(2), fo(z)) (2.19)

rER™

Esta seleccién evita sesgos hacia cualquier grupo especifico y garantiza una represen-
tacion equilibrada. Algunos ejemplos de pares de funciones seleccionadas son:

» En funciones separables: la funcién esfera f; y elipsoide separable fs.

= Con acondicionamiento bajo o moderado: sector atractivo fg y Rosenbrock origi-
nal fs.

= Unimodales con alto acondicionamiento: cresta aguda fi3 y sumas de diferentes
potencias fi4.

= Multimodales con estructura global adecuada: Rastrigin fi5 y la funcién F7 de
Schaffer con niimero de condicién 10 fi7.

» Multimodales con estructura global débil: Schwefel fo y 10! picos de Gallagher
Jor.

Estas funciones no estan normalizadas, lo que desafia a los algoritmos de optimizacion
a trabajar eficazmente con objetivos de magnitudes variables. Para la evaluacion del
rendimiento, se normalizan las funciones usando los puntos ideal y nadir antes de
calcular el indicador de hipervolumen.

= Las funciones son no acotadas, pero las soluciones extremas del conjunto de
Pareto se encuentran generalmente dentro de un hipercubo definido en el rango
de [=5,5] en cada dimensién del espacio de busqueda. Aunque el conjunto de
Pareto puede extenderse parcialmente fuera de este hipercubo, se espera que se
encuentre mayoritariamente dentro de él.

= Cada instancia de funciéon bi-objetivo tiene un ID entero asociado a cada ins-
tancia de la funcién. La relacion entre el ID de la instancia KZP de una funcién
bi-objetivo F' = (fa, fo) v los IDs de instancia K7 y KfP de sus respectivas
funciones de objetivo tnico subyacentes, sigue dos condiciones:

1. Para la primera funcién objetivo f,, su ID de instancia es K ]{Cf) =2x KP+1.

2. Para la segunda funcion objetivo f;, su ID de instancia es K ]{bD = KPP +1.
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Estas dos condiciones deben cumplirse para todas las dimensiones y funciones en
el conjunto b-bob — biobj. Si estas condiciones no se cumplen, se incrementa el
ID de la instancia de la segunda funciéon objetivo sucesivamente hasta que ambas
propiedades se satisfagan.

Ademas, las instancias de las funciones de prueba se parametrizan, presentando condi-
ciones especificas como la distancia euclidiana minima entre las soluciones 6ptimas y
entre los puntos ideal y nadir en el espacio objetivo normalizado. Esto asegura una con-
sistencia en la dificultad a través de diferentes instancias y contribuye a la evaluacion
comparativa robusta de los algoritmos.

2.5.3. WFG

Las funciones WFG son un conjunto de nueve funciones de referencia disefiadas para
evaluar algoritmos de optimizacién multi-objetivo. Desarrolladas por Simon Huband,
Phil Hingston, Luigi Barone, y Lyndon While [27], estas funciones son una mejora
sobre las funciones de prueba anteriores y se utilizan ampliamente en la investigacion
de optimizacion evolutiva y multi-objetivo.

Estas se dividen en varios tipos, cada uno con caracteristicas tinicas. Algunos ejemplos
incluyen:

» WFG1: Convexa/mixta, multimodal, con transiciones no lineales.

= WFG2: No convexa en algunas regiones, no separable, con regiones insensibles.
= WFG3: Similar a WFG2, frente de Pareto degenerado.

» WFG4: Completamente multimodal, muchos 6ptimos locales.

= WFG5: Multimodal, patréon de bisqueda enganoso por discontinuidad.

= WFGG6: No separable, con dependencia entre variables.

= WFGT: Separable, con fuerte sesgo.

= WFGS: No separable, fuerte sesgo y dependencia entre variables.

= WFG9: No separable, 6ptimos locales, frente de Pareto discontinuo.
Las funciones WFG estan disponibles en varias bibliotecas y paquetes de software de

optimizacién como lo es Pymoo [3], y su implementacién estandar se puede encontrar
en diversos lenguajes de programacion utilizados en la investigacion de optimizacion.
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2.6. Indicadores de desempeno

La evaluacion del desempeno de algoritmos de optimizacion multi-objetivo juega un
papel critico en el desarrollo y la mejora de métodos capaces de encontrar soluciones
eficientes y diversificadas para problemas complejos. Una parte integral de este proceso
de evaluacién involucra el uso de indicadores de desempeno que proporcionan medidas
cuantitativas de la calidad de las soluciones generadas. Estos indicadores no solo ayudan
a entender el comportamiento de los algoritmos bajo diferentes escenarios, sino que
también facilitan la comparacién objetiva entre distintas técnicas de optimizacion. En
esta seccion, profundizaremos en dos indicadores de desempeno fundamentales en el
campo de la optimizaciéon multi-objetivo: el hipervolumen y el Indicador de Generacién
de Diversidad Invertida (IGD), junto con su variante mejorada, el IGD+. Cada uno de
estos indicadores ofrece perspectivas tnicas sobre la efectividad de los algoritmos de
optimizacién, considerando aspectos cruciales como la convergencia hacia el frente de
Pareto y la distribucién de las soluciones en el espacio de objetivos. A través de una
exploracion detallada de estos indicadores, se revelara como pueden ser aplicados para
evaluar y guiar el desarrollo de estrategias de optimizacién mas efectivas y eficientes.

2.6.1. Hipervolumen

En la investigacién y aplicacion de la optimizacién multi-objetivo, la capacidad para
cuantificar y comparar la efectividad de distintas soluciones es fundamental. Una herra-
mienta destacada en este &mbito es el indicador de hipervolumen (HV) [20], que mide
el volumen en el espacio de objetivos dominado por un conjunto de soluciones respecto
a un punto de referencia especifico. Este indicador no solo ofrece una métrica para la
calidad y diversidad de las soluciones encontradas sino también facilita la comparacion
objetiva entre diferentes conjuntos de soluciones, proporcionando una base solida para
la evaluacién de algoritmos de optimizacion multi-objetivo.

El proceso para calcular el hipervolumen implica varios pasos metodolégicos. A conti-
nuacion, se detallan estos pasos:

1. Definicién del Conjunto de Soluciones y el Punto de Referencia:

» Identifique el conjunto de soluciones S cuyo hipervolumen desea calcular.
Este conjunto suele ser el frente de Pareto obtenido de un proceso de opti-
mizacion multi-objetivo.

= Elija un punto de referencia .., que debe ser dominado por todas las solu-
ciones. Este punto suele establecerse basandose en el punto de nadir ajustado
o un punto ligeramente méas alla de las peores soluciones conocidas.

HV (S, yret) =V (U vy < yref}) , SCFP (2.20)

yeS

Donde F'P representa el conjunto de soluciones en el Frente de Pareto.
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2. Normalizacion de los Datos (Opcional): Para facilitar el cilculo y permitir
la comparacién entre diferentes conjuntos de soluciones, se normalizan los valo-
res de los objetivos utilizando los puntos de nadir e ideal como referencia. La
normalizacion se realiza de la siguiente manera:

, S — Nadir

~ Ideal — Nadir- (2.21)

Donde:

= Punto Ideal: Vector que contiene los mejores valores alcanzables de forma
independiente para cada funcién objetivo:
ideal __ ideal _ideal ideal
219 = (27 2y L ).
ideal

%

Donde cada z
dominadas.

= minger fi(z), y F denota el conjunto de soluciones no

= Punto Nadir: Vector que agrupa los peores valores de cada objetivo obte-
nidos por una solucién dentro del conjunto Pareto-6ptimo:

Znadlr — ( nadir _nadir Znadlr)

1 IX%) gy Rk

nadir
i

Donde cada z
dominadas.

= max,er fi(x), y F denota el conjunto de soluciones no

Este proceso asegura que el espacio de objetivos se normalice con respecto a los
rangos definidos por estos puntos criticos como se puede observar en la Figura|2.3]

12 ® Punto Ideal
: X Punto de Nadir :
: P - Nadir
10_.......... .............................................................* ................
8_
fx) 67
4 :
oy CRTPRS .P-Ideal ...................................
0 2 4 6 8 10 12
f1(x)

Figura 2.3: Tlustracién de la definicién del campo de normalizaciéon usando el punto
Ideal y de Nadir
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3. Calculo del Hipervolumen: El hipervolumen se calcula como el volumen del
espacio cubierto por el conjunto de soluciones y limitado por el punto de referencia
[50]. Para un conjunto de soluciones en un espacio de 2 o 3 objetivos, este calculo
puede ser directo. Para mas de 3 objetivos, se utilizan algoritmos especializados:

= Para 2 objetivos, el hipervolumen HV puede calcularse sumando el area de
los rectangulos formados por cada solucién s; € S’ y el punto de referencia
R

n—1

HV(S") =Y (wip1 — 2:) - (Yoot — ¥i)- (2.22)

i=1
Donde n es el nimero de soluciones, ordenadas por su valor en el primer
objetivo x, v ¥t €s la coordenada y del punto de referencia R’.

= Para mas de 3 objetivos, el calculo se vuelve computacionalmente méas com-
plejo vy se recomienda utilizar algoritmos para descomponer el problema y
calcular el hipervolumen de manera eficiente como el propuesto en [16].

4. Interpretacion: El valor del hipervolumen indica el tamano del espacio domi-
nado por el conjunto de soluciones evaluado. Un mayor hipervolumen indica un
mejor conjunto de soluciones en términos de acercamiento al frente de Pareto
ideal y diversidad entre las soluciones.

2.6.2. IGD/+

El indicador de Generacién de Diversidad Invertida (IGD) [51] se basa en la distancia
euclidiana para medir cuan cerca y uniformemente distribuidas estan las soluciones
generadas por un algoritmo respecto al frente de Pareto 6ptimo. Por otro lado, el
IGD+ mejora este enfoque al considerar distancias en el espacio objetivo que reflejan
mejor la direccion de mejora hacia el frente de Pareto, proporcionando asi una medi-
da mas precisa de la calidad de las soluciones en términos de convergencia y diversidad.

Para calcular el indicador IGD, se sigue el procedimiento detallado a continuacion:

1. Conjunto de Referencia: Seleccionar o generar un conjunto de referencia P
que represente adecuadamente el frente de Pareto 6ptimo. Este conjunto debe
estar compuesto por puntos distribuidos de manera uniforme a lo largo del frente
de Pareto.

2. Evaluacion del Conjunto de Soluciones: Tomar el conjunto de soluciones S
generadas por el algoritmo de optimizacién bajo evaluacion.

3. Calculo de Distancias: Para cada punto p € P, encontrar el punto mas cercano
s € Sy calcular la distancia euclidiana entre ellos. Esto se puede expresar como:

d(p,s) = \|>_(pi — 51)”. (2.23)
Donde n es la dimension del espacio objetivo.
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4. Promedio de Distancias: Calcular el promedio de todas las distancias minimas
encontradas para obtener el IGD. La férmula para el IGD es:

IGD(P,S) = \P\ Z mlnd (p, s). (2.24)

Donde |P| indica el nimero total de puntos en el conjunto de referencia.

Mientras que el procedimiento para calcular el IGD+ [29] es similar al del IGD, con
algunas modificaciones en el calculo de las distancias:

1. Conjunto de Referencia: Igual que para el IGD, seleccionar o generar un
conjunto de referencia P que represente el frente de Pareto éptimo.

2. Calculo de Distancias Modificadas: Para cada punto p € P, identificar el
punto en el conjunto de soluciones S que minimiza una distancia modificada,
la cual considera la direccion de mejora hacia el frente de Pareto. La distancia
modificada se calcula como:

d*(p,s) = \lzn:(méx{pi — 54,0})2. (2.25)

=1

3. Promedio de Distancias Modificadas: El IGD+ se obtiene como el promedio
de todas las distancias modificadas, utilizando la férmula:

IGD+(P, S) ]P] Z rnm d*(p,s). (2.26)

2.7. Ciencias de la complejidad

Las ciencias de la complejidad ofrecen un marco conceptual para entender como sis-
temas compuestos por numerosos componentes interconectados pueden exhibir pro-
piedades emergentes y comportamientos no triviales. En la optimizacion, propiedades
emergentes como la diversidad y la adaptacion son fundamentales y se alinean estre-
chamente con los principios de los sistemas complejos.

2.7.1. Diversidad y adaptacién en sistemas complejos

El elitismo en los algoritmos evolutivos, que se enfoca en mantener una variedad de
soluciones no dominadas en el frente de Pareto, refleja la diversidad emergente ob-
servada en sistemas complejos. Esta diversidad es clave para una exploracion efectiva
del espacio de busqueda, mientras que la convergencia hacia soluciones de alta calidad
ilustra la formacion de patrones y estructuras en sistemas complejos adaptativos.
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2.7.2. Técnicas de adaptaciéon y auto-organizacion

Las técnicas de adaptacién y auto-organizacion, fundamentales en las ciencias de la
complejidad, son igualmente pertinentes en la optimizacién multi-objetivo. Los algo-
ritmos que se adaptan a cambios en el paisaje de objetivos y restricciones abordan de
manera efectiva el desafio de equilibrar exploracion y explotacion. Estas técnicas imitan
la capacidad de los sistemas complejos para adaptarse y reorganizarse en respuesta a
cambios en su entorno [26].

2.7.3. Heterogeneidad temporal

La heterogeneidad en sistemas complejos puede extender la criticidad, un estado que
equilibra el orden y el caos, y es crucial para la complejidad, la vida y la computacion.
Al analizar modelos clasicos homogéneos y sus versiones heterogéneas, se demuestra
que la heterogeneidad puede ampliar la criticidad sin necesidad de un ajuste fino de
parametros. Esto sugiere que la seleccion natural podria explotar la heterogeneidad
para evolucionar complejidad de manera mas econémica y que este principio se podria
aplicar en sistemas artificiales y disefio biolégico.

La heterogeneidad temporal anade una dimension adicional a la optimizacion multi-
objetivo, proporcionando robustez y adaptabilidad. En este contexto, la adaptacion se
convierte en un componente esencial, permitiendo que los individuos més importantes
de la poblacién cambien a un ritmo mas lento que los menos importantes, generando
asi diversidad. Esta diversidad fomenta una exploracion efectiva del espacio de bus-
queda y facilita la identificacion rapida de soluciones de alta calidad con una eficiencia
computacional optimizada [48].

Ademas, investigaciones como la de Martinez Arévalo Yoshio [41] abordan la aplicacion
de la heterogeneidad temporal en algoritmos genéticos para problemas de optimizacion.
Dicho trabajo propone variar las probabilidades de cruce en funcién de la aptitud de los
individuos y aplica este enfoque a problemas como el de las N-reinas y el del vendedor
viajero. La investigacién revela que la heterogeneidad temporal mejora la eficiencia
y precision de estos algoritmos, ofreciendo una estrategia efectiva para optimizar su
rendimiento en problemas complejos. Este enfoque representa un avance significativo
en la personalizacion y adaptabilidad de los algoritmos genéticos para resolver desafios
complejos en optimizacion.

2.8. Modelos de estudio

Dentro del ambito de la investigacion cientifica, la estadistica juega un papel crucial al
permitir el andlisis y la interpretacion de datos empiricos. Entre los modelos estadis-
ticos frecuentemente empleados en estudios cientificos, destacan el Test de Wilcoxon
Rank Sum, el Test de Kruskal-Wallis y el Test de los Conteos de Borda. Estos métodos
estadisticos son fundamentales para evaluar diferencias significativas entre grupos o
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poblaciones de datos. Dichas diferencias se investigan a través de dos hipotesis funda-
mentales:

» Hipétesis Nula (HO): Postula que las medianas de todos los grupos son iguales.
Esta hipdtesis asume que no hay diferencias significativas entre los grupos.

» Hipdétesis Alternativa (H1): Sostiene que al menos una de las medianas difiere
de las demas. Esta hipétesis se adopta cuando los datos sugieren variaciones
estadisticamente significativas entre los grupos.

La eleccion de estos modelos estadisticos depende de la naturaleza de los datos y del
objetivo del analisis. Cada uno de estos tests tiene particularidades que los hacen mas
adecuados para ciertos tipos de datos y situaciones de estudio. Por ejemplo, el Test
de Wilcoxon es ttil para comparar dos grupos independientes, mientras que el Test
de Kruskal-Wallis se aplica para comparar mas de dos grupos (estas son pruebas no
paramétricas dado que no se garantiza que los evolutivos cumplan las condiciones de
normalidad). El Test de los Conteos de Borda se utiliza para rankear multiples alter-
nativas con base a las preferencias. La correcta aplicacion de estos tests garantiza una
interpretacion rigurosa y fiable de los resultados empiricos obtenidos en la investigacion.

2.8.1. Kruskal-Wallis

El test de Kruskal-Wallis [42] es un método no paramétrico, se utiliza para determinar
diferencias estadisticas significativas entre dos o més grupos de una variable indepen-
diente, ya sea en una escala ordinal o continua. Este test es una generalizacion del
test de Mann-Whitney para multiples grupos y resulta particularmente 1til cuando los
datos no cumplen con la suposicion de normalidad, lo que haria inapropiado el uso del
ANOVA unidireccional.

El procedimiento del test de Kruskal-Wallis se desarrolla de la siguiente manera:

1. Rangos: Se asignan rangos a todas las observaciones, independientemente del
grupo al que pertenecen, desde el valor mas pequeinio al mas grande. Los rangos
comienzan en 1 para el valor mas bajo. En caso de empates, se asigna a cada
observacion el promedio de los rangos que corresponderian en ausencia de empate.

2. Suma de Rangos: Se calcula la suma total de rangos para cada grupo.

3. Estadistico de Prueba: El estadistico de prueba H se determina utilizando
las sumas de rangos de cada grupo, el tamano de cada grupo, y el total de
observaciones. La formula es:

12 " R?

H:m;n—z—B(NJrl). (2.27)

Donde N es el total de observaciones, k es el nimero de grupos, R; es la suma de
rangos del i-ésimo grupo, y n; es el nimero de observaciones en el i-ésimo grupo.
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4. Distribuciéon de Chi-cuadrado: Bajo la hipdtesis nula, y asumiendo un ta-

mano de muestra adecuado, el estadistico H sigue una distribucion chi-cuadrado
aproximada con k — 1 grados de libertad.

. Decision: Se compara el valor calculado de H con el valor critico de la distri-

bucién chi-cuadrado para k — 1 grados de libertad y un nivel de significancia «
(usualmente 0.05). Si H es mayor que el valor critico, se rechaza la hipdtesis nula.

2.8.2. Wilcoxon ranksum

El test de suma de rangos de Wilcoxon, también conocido como test de Wilcoxon-Mann-
Whitney [31], es un método no paramétrico ampliamente utilizado para comparar dos
grupos independientes de muestras. Este test es una alternativa al test t de Student
para muestras independientes, aplicable cuando los supuestos de normalidad no se cum-
plen. Es adecuado tanto para datos ordinales como para datos de intervalo/ratio no
distribuidos normalmente.

El procedimiento del test de Wilcoxon ranksum se desarrolla de la siguiente manera:

1.

Combinar y Ordenar los Datos: Se unen las muestras de ambos grupos y se
ordenan todas las observaciones del menor al mayor valor.

. Asignar Rangos: Se otorgan rangos a todas las observaciones ordenadas. En

caso de empates, se asigna el promedio de los rangos correspondientes a cada
observacion empatada.

Calcular Sumas de Rangos por Grupo: Se determinan las sumas de rangos
para cada grupo, denotadas como R; y Rs.

. Estadistico de Prueba U: Se calculan los estadisticos de prueba U; y U, para

cada grupo mediante las formulas:

U - R, — m<nlz+1>
2.28
%:&_w%fu 229

Donde R; y Rs son las sumas de rangos, y n; y no son los tamanos de muestra
de los grupos 1 y 2 respectivamente. El estadistico U corresponde al menor entre
U 1y UQ.

. Normalizaciéon del Estadistico de Prueba: Para muestras grandes, U puede

normalizarse a una distribucién aproximadamente normal con la férmula:

gV (2.29)

Ou

Donde pyy = ™32 es la media y oy = 4/ % es la desviacion estdandar de
U bajo la hipotesis nula.
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6. Decision: Se compara el valor de Z con los valores criticos de la distribucion
normal estandar para un nivel de significancia elegido (cominmente 0.05). Si el
valor absoluto de Z supera el valor critico, se rechaza la hipétesis nula.

2.8.3. Conteo de Borda

El conteo de Borda [45], un método de votacién por orden de preferencia, fue desa-
rrollado por el matematico francés Jean-Charles de Borda en 1770. Este sistema de
votaciéon preferencial se utiliza en decisiones de eleccién tnica o multiple, donde los
votantes clasifican las opciones segtn su preferencia personal.

El procedimiento del recuento de Borda se desarrolla de la siguiente manera:

1. Clasificacién de Opciones: Cada votante ordena todas las opciones de acuerdo
con sus preferencias, desde la mas preferida hasta la menos preferida.

2. Asignacién de Puntos: Se asignan puntos a cada opcion basados en su posicién
en cada votacion. Si hay n opciones, la opciéon mas preferida recibe n puntos, la
segunda n — 1 puntos, y asi sucesivamente, hasta que la opciéon menos preferida
recibe 1 punto.

3. Suma de Puntos: Los puntos asignados a cada opcién se suman a través de
todas las votaciones.

4. Determinacion de Ganadores: La opcion con la mayor cantidad total de
puntos acumulados se considera la ganadora.

El método de Borda es valorado por su simplicidad y por su capacidad de reflejar
de manera mas integral el espectro completo de preferencias de los votantes. A pesar
de ciertas limitaciones, se destaca por proporcionar una vision mas holistica de las
preferencias en comparacion con otros métodos que solo consideran la opcion mas
preferida de cada votante.

2.9. Explicabilidad de modelos de aprendizaje

La explicabilidad en los modelos de aprendizaje representa un aspecto crucial que ha
ido ganando relevancia en el campo de la inteligencia artificial y la optimizacion. La
creciente complejidad de los problemas abordados y la proliferacion de algoritmos cada
vez mas sofisticados han impulsado la necesidad de desarrollar y emplear herramientas
que permitan una mejor comprension y seleccion de algoritmos adecuados. Entre estas
herramientas, dos de ellas destacan por su relevancia y aplicabilidad: Shapley Additive
Explanations (SHAP) [56, [9] v Python Feature-Based Landscape Analysis of Conti-
nuous and Constrained Optimization Problems (P-Flacco) |34, |55].

Shapley Additive Explanations (SHAP) es una técnica que se basa en la teoria de juegos
para explicar la salida de cualquier modelo de machine learning. SHAP asigna a cada
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caracteristica un valor que indica su importancia en la decisién tomada por el modelo,
permitiendo asi una interpretacion mas detallada y justificada de sus resultados.

Por otro lado, Python Feature-Based Landscape Analysis of Continuous and Constrai-
ned Optimization Problems (P-Flacco) es una herramienta que proporciona un analisis
detallado del espacio de bisqueda de problemas de optimizacion. P-Flacco permite
identificar caracteristicas clave del paisaje de optimizacion, lo que ayuda en la selec-
cién y adaptacion de estrategias de busqueda mas eficientes.

La integraciéon de estas herramientas en la evaluacion y seleccion de algoritmos evoluti-
vos multi-objetivo no solo mejora la comprension de los espacios de biisqueda complejos,
sino que también contribuye a la eficacia y eficiencia de los procesos de optimizacién.

2.9.1. SHAP

SHAP (SHapley Additive exPlanations) |38] es una biblioteca de Python disenada pa-
ra interpretar las predicciones de modelos de machine learning. Basada en la teoria
de juegos, SHAP utiliza los valores de Shapley para asignar a cada caracteristica su
importancia en la prediccion de un modelo de manera justa y coherente.

Dentro del marco de SHAP, cada caracteristica en un modelo de machine learning
es considerada como un jugador en el juego de hacer una prediccién. Esto se debe a
la naturaleza aditiva de las explicaciones que SHAP proporciona, descomponiendo la
predicciéon en una suma de efectos atribuibles a cada caracteristica individual. Esto
permite una comprension detallada de como cada caracteristica influye en el resultado
final de una prediccion.

M
9(z') = ¢+ Y _ iz (2.30)
=1

Donde 2’ € {0, 1} representa una instancia simplificada de entrada, M es el ntimero
de caracteristicas de entrada, y ¢; son los valores SHAP para cada caracteristica.

Las principales funciones de SHAP incluyen:

= Explainers: Modelos en SHAP que pueden explicar las predicciones de diversos
algoritmos de machine learning. Existen diferentes explicadores adecuados pa-
ra varios tipos de modelos, como arboles de decisiéon, modelos lineales y redes
neuronales.

= SHAP Values: Para una prediccion especifica, SHAP calcula valores que deter-
minan la importancia de cada caracteristica. Un valor SHAP alto, ya sea positivo
o negativo, indica una influencia significativa en la prediccién.

» Visualizaciones: SHAP ofrece varias visualizaciones para interpretar los valores
SHAP, incluyendo:
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o Force Plots: Muestran la contribucién de cada caracteristica a una prediccion
especifica.

o Summary Plots: Ofrecen una visién general de la importancia de las carac-
teristicas y su impacto en el modelo.

o Dependence Plots: Tlustran cémo el efecto de una caracteristica varia con
respecto a otra.

Los modelos basados en arboles de SHAP son particularmente apreciados en el machine
learning debido a su capacidad para aprender relaciones complejas en los datos. Son
especialmente efectivos en el andlisis de conjuntos de datos tabulares y se prefieren en
muchas situaciones por su rendimiento, eficiencia computacional y facilidad de uso.

SHAP se ha establecido como una herramienta indispensable en el dmbito de la in-
terpretacion de modelos de machine learning, proporcionando explicaciones matema-
ticamente justificadas y accesibles para las predicciones de una amplia variedad de
modelos.

2.9.2. P-Flacco

P-Flacco es un paquete de Python desarrollado para el analisis de paisajes de caracteris-
ticas en problemas de optimizacién continua y restringida. Esta herramienta representa
una implementacion en Python del paquete R Flacco, originalmente desarrollado por
Pascal Kerschke [33]. Ofreciendo una interfaz de Python para Flacco, P-Flacco inte-
gra caracteristicas adicionales y mejoras. Entre sus caracteristicas mas destacadas se
encuentran:

= Analisis de paisajes de caracteristicas: Utilizado para caracterizar numérica-
mente problemas de optimizacion de objetivo tinico, tanto en contextos continuos
como restringidos, mediante el andlisis detallado de paisajes de caracteristicas.

= Soporte para diversos tipos de problemas de optimizaciéon: P-Flacco es
capaz de analizar tanto problemas de optimizacién sin restricciones como restrin-
gidos, lo que lo hace versatil para una variedad de aplicaciones précticas.

» Eficiencia en la extraccion de caracteristicas: Ofrece un método eficiente
para extraer caracteristicas relevantes del paisaje de optimizacién, facilitando la
comprension y el andlisis de problemas complejos de optimizacion.

= Seleccién de optimizadores: Ayuda en la eleccién del optimizador mas adecua-
do de un conjunto de algoritmos, siendo particularmente 1til cuando las funciones
objetivo son desconocidas o de naturaleza caja negra.

= Analisis basado en robustez, embudos y gradientes: Realiza un analisis so-
bre la robustez que busca medir la estabilidad de las soluciones frente a pequenas
perturbaciones en el espacio de biisqueda, los embudos que es la identificacion de
regiones en el espacio de busqueda donde las soluciones tienden a converger hacia
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un unico 6ptimo global o local y los gradientes que examinan las pendientes o
inclinaciones del espacio de busqueda, evaluando su impacto en el rendimiento
de algoritmos como la Optimizacion de Enjambres de Particulas (PSO).

P-Flacco se ha consolidado como una herramienta esencial para profesionales y acadé-
micos en el ambito de la optimizacion, ofreciendo un enfoque basado en Python para
el analisis exhaustivo y detallado del paisaje de optimizacién.

2.10. Ajuste de parametros

La optimizaciéon de parametros, también conocida como ajuste de hiperparametros, es
un componente esencial en el aprendizaje automatico para maximizar el rendimiento
de los modelos. Este proceso es especialmente relevante en la investigacion y desarrollo
de algoritmos evolutivos multi-objetivo.

En el contexto del aprendizaje automatico aplicado a algoritmos evolutivos, es funda-
mental comprender como diversas técnicas pueden influir en la adaptabilidad y eficacia
de estos algoritmos a lo largo del tiempo. Una técnica que ha cobrado notable popula-
ridad es Random Forest Regressor, que se basa en una extension del método de arboles
de decision.

2.10.1. Random Forest Regression

El Random Forest es un método de ensamble que utiliza la combinacion de multiples
arboles de decisiéon para lograr predicciones mas precisas y estables que las que se ob-
tendrian de un tnico arbol de decision. Este enfoque reduce notablemente el riesgo de
sobreajuste, un problema comtn en los arboles de decisién individuales. Especificamen-
te, el Random Forest Regressor se aplica a problemas de regresion, donde el objetivo es
predecir un valor continuo, a diferencia de los problemas de clasificacion, que buscan
predecir etiquetas de clases discretas.

Las principales ventajas del Random Forest Regressor incluyen:

= Robustez: Su uso de multiples arboles lo hace menos susceptible al sobreajuste
en comparacion con un unico arbol de decision.

= Manejo de Datos No Lineales: Capacidad para capturar relaciones no lineales
entre las caracteristicas y la variable objetivo.

= Flexibilidad: Eficacia en una amplia variedad de tipos de datos, funcionando
bien en problemas con multiples caracteristicas y estructuras de datos complejas.

= Importancia de Caracteristicas: Ofrece una evaluacion 1til sobre la impor-
tancia de las caracteristicas, facilitando la interpretaciéon del modelo.
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En la biblioteca Scikit-learn [46], el Random Forest Regressor se implementa mediante
la clase RandomForestRegressor. Esta implementacion permite una facil configuracion
y ajuste del modelo, ofreciendo pardmetros como el nimero de arboles (n_estimators),
la profundidad méxima de los drboles (max_depth), entre otros. Estos pardmetros pue-
den ser 6ptimamente ajustados utilizando técnicas como GridSearchCV, que realiza
una busqueda exhaustiva sobre un grid de valores de hiperparametros especificados.
Este proceso evalia y compara el rendimiento del modelo para cada combinacion de
hiperparametros, facilitando la identificacion de la configuraciéon mas efectiva.

El uso de técnicas avanzadas de aprendizaje automatico, como el Random Forest,
en el ajuste de hiperparametros es un area de prometedora que ofrece oportunidades
significativas para la mejora continua de los algoritmos, especialmente en contextos
dindmicos y cambiantes.

2.11. Estado del arte

Dentro del estado del arte, encontramos miultiples trabajos relevantes para la optimiza-
cién multi-objetivo evolutiva. Uno de los estudios destacados es el de Guissepe [§]. Esta
investigacion introduce una técnica innovadora para superar la convergencia en 6pti-
mos locales mediante reinicios. El enfoque propuesto se centra en reiniciar la btisqueda
en areas menos exploradas del espacio de busqueda, seleccionando individuos segin su
novedad. Este método ha demostrado ser eficaz en problemas de prueba multi-modales,
resaltando su utilidad en la busqueda de soluciones éptimas y la exploracién efectiva
en contextos complejos. Este estudio aporta una perspectiva valiosa sobre el equilibrio
entre exploracion y explotacion, y como la incorporacién de la novedad puede enrique-
cer los métodos de optimizacién multi-objetivo.

Otro desarrollo significativo es el de Tanabe [52], que se enfoca en el uso de un archi-
vo externo para almacenar soluciones no dominadas. Este estudio compara algoritmos
evolutivos multi-objetivo elitistas y no elitistas en términos de selecciones ambientales,
evaluando su rendimiento en el conjunto de problemas BiBBOB. Los resultados indican
que los algoritmos no elitistas, combinados con ciertos métodos de cruce, son efectivos
en problemas con muchas variables de decision, especialmente cuando se utiliza un ar-
chivo externo.

Recientemente, un enfoque intrigante en la investigacion de algoritmos genéticos ha
surgido: la exploracion de la heterogeneidad temporal en la asignacion de probabilida-
des de cruce. A diferencia de los valores uniformes tradicionales, se propone asignar
probabilidades de cruce heterogéneas, variando segun la aptitud de los individuos. El
trabajo reciente de Arévalo [40] aplica estos conceptos al problema de las N reinas y
al Problema del Viajante. Los resultados preliminares sugieren que la heterogeneidad
temporal puede mejorar significativamente la eficiencia y la calidad de las soluciones en
algoritmos genéticos, abriendo una nueva direcciéon de investigacion prometedora para
la resolucién de problemas complejos en ingenieria y disciplinas relacionadas.
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Por 1ltimo, en el campo de la seleccion y configuracién automatizada de algoritmos,
la prediccion del rendimiento es un aspecto crucial. Los modelos de aprendizaje auto-
matico supervisado, a menudo considerados como cajas negras, plantean desafios en
términos de explicabilidad. El trabajo de Trajanov [54], titulado 'Explainable Lands-
cape Analysis in Automated Algorithm Performance Prediction’, aborda este desafio.
Utiliza el Anélisis Exploratorio del Paisaje (ELA) para calcular caracteristicas del es-
pacio de busqueda, agrupandolas en diferentes categorias y dividiéndolas en grupos
de caracteristicas baratas y costosas. Su investigacion emplea un pipeline de machine
learning para explorar la explicabilidad de las caracteristicas ELA en la prediccion del
rendimiento, resaltando la importancia de la explicabilidad en esta area.
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Capitulo 3

Metodologia

En esta investigacion, nos centramos en la heterogeneidad temporal, un fenémeno que
se manifiesta cuando diferentes elementos de un sistema experimentan cambios a distin-
tas velocidades. Identificamos que, en nuestro estudio, los componentes criticos varian
a una velocidad menor. Este aspecto subraya que la tasa de cambio en el sistema es un
parametro crucial que necesita ser ajustado. En el ambito de los algoritmos evolutivos,
esto implica evaluar en qué medida se conservan las mejores soluciones.

En el presente capitulo, abordaremos en profundidad la metodologia adoptada para
nuestra investigacion.

3.1. Diseno global con parametro de heterogenei-
dad temporal

Para abordar la heterogeneidad temporal en algoritmos evolutivos, hemos introduci-
do un parametro adicional, denotado como H. Este parametro representa el grado de
heterogeneidad en la composicion de la poblacion. Especificamente, H define el por-
centaje de la poblacién que estd compuesto por soluciones elitistas, mientras que el
restante 1 — H se compone de soluciones aleatorias. Este enfoque presenta similitudes
con los algoritmos evolutivos de estado estable, como se describe en [44]. Ambos com-
parten caracteristicas fundamentales, como la actualizacion gradual de la poblacion,
el mantenimiento de la diversidad y una adaptabilidad dinamica ante las variaciones
del entorno. Sin embargo, una distincién importante radica en que, mientras la hete-
rogeneidad temporal se enfoca en la variabilidad de las condiciones ambientales, los
algoritmos de estado estable centran su mecanismo en las estrategias de reemplazo de
individuos dentro de la poblacién, lo que subraya diferencias en la forma en que se
gestionan las adaptaciones y la evolucion.

El algoritmo propuesto, se ilustra en el Algoritmo [I] sigue la estructura de un algoritmo
evolutivo tradicional, pero introduce modificaciones significativas en las etapas de se-
leccion de individuos para incorporar el parametro H. En las lineas 6 y 7 del algoritmo,
donde se lleva a cabo la seleccién de individuos 6éptimos y aleatorios, respectivamente,
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de acuerdo con el valor de H.

Utilizando H = 1, el algoritmo se comporta de manera idéntica a la implementacion
clasica de un algoritmo evolutivo, donde solo se seleccionan individuos elitistas. Por
otro lado, un valor de H = 0 resulta en una seleccién completamente aleatoria, promo-
viendo una exploracion exhaustiva del espacio de biisqueda sin priorizar a los individuos
elitistas. Este enfoque permite ajustar dindmicamente el balance entre explotacién y
exploracion.

La integracion del nuevo parametro H indica el porcentaje de la poblaciéon compuesto
por soluciones elitistas. El restante 1 — H se compone de soluciones aleatorias restantes.
Al permitir seleccionar la proporcién de mejores genes que influyen en la poblacion en
cada iteracion, buscamos mantener la exploracion efectiva sin sacrificar la calidad de
la poblacion elitista.

Algorithm 1 Algoritmo evolutivo con heterogeneidad temporal

Require: f:R" — R*: funcién objetivo, H € [0, 1]: heterogeneidad, npop: tamaifio de
la poblacion
Ensure: population: poblacién final
1: population < init Population(npop)
2: fpopulation < evaluate Population(f, population)
3: for i = 1...maxlter do
parents < select Parents(population, fpopulation)
children < geneticOperators(parents)
best «— select Best(population U children, ceil(H * npop))
random < select Random(population U children, floor((1 — H) % npop))
population < best U random
end for

3.2. Marco experimental

Los experimentos diseniados para esta investigacion se llevaron a cabo en contextos
tanto de problemas de objetivo tinico como de problemas de objetivo multiple, con
el fin de evaluar la eficacia de los algoritmos evolutivos bajo diferentes escenarios. A
continuacion se explicara el marco experimental para cada caso.

3.2.1. Experimentos mono-objetivo

Los experimentos en el contexto de problemas mono-objetivo involucraron el uso de
Algoritmos Genéticos (GA), Evoluciéon Diferencial (DE) y Estrategias Evolutivas (ES),
aplicados al conjunto de pruebas BBOB, que incluye veinticuatro funciones distintas. Se
realizaron pruebas en varias dimensiones: 2, 3, 5, 10, 20 y 40, siendo cada combinacién
de dichos parametros una instancia de pruebas. Para cada instancia, se llevo a cabo un
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total de veinte experimentos, lo que resulta en cincuenta mil cuatrocientas ejecuciones.
Cada instancia se ejecutdé por mil generaciones, y se realizaron muestreos en cada
generacion. Esto nos llevé a acumular un total de cincuenta millones cuatrocientos mil
resultados, que fueron registrados para su posterior anélisis.

Implementacion del conjunto de pruebas

Los experimentos se llevaron a cabo utilizando las 24 funciones sin ruido del conjun-
to BBOB, cada una con caracteristicas tinicas que las hacen adecuadas para probar
distintos aspectos de los algoritmos de optimizacion. A pesar de compartir ciertas si-
militudes, estas funciones presentan una variedad de caracteristicas y limitaciones que
influyen en su comportamiento en el contexto de optimizacién. Estas caracteristicas y
limitaciones especificas de las funciones del conjunto BBOB fueron consideradas en la
implementacion de los experimentos para evaluar el efecto de la heterogeneidad en los
algoritmos de optimizacion mono-objetivo bajo diferentes condiciones y desafios.

Implementacion de algoritmos

Implementamos los algoritmos evolutivos con un enfoque en la heterogeneidad tem-
poral, adaptando los pardmetros de cada algoritmo para integrar este concepto. A
continuacion, se describen los ajustes especificos realizados en cada algoritmo:

Algoritmo genético (GA):

» Codificaciéon Real: Representacién de individuos mediante vectores de niimeros
reales, adecuados para problemas de optimizacién continua [19].

= Cruza BLX-a: Método de cruce que genera hijos con genes extendidos mas alla
de los valores parentales [15].

= Mutacion Uniforme: Mutacién aleatoria de genes individuales con probabili-
dad r_mut [19).

s Seleccién Greedy: Eleccion de los mejores individuos basada en rendimiento,
integrando un componente aleatorio segin el pardmetro de heterogeneidad como
se propone en el Algoritmo [I}

Evolucién diferencial (DE):

= Codificacion Real: Uso de vectores de niimeros reales para representar las so-
luciones [13].

s Mutacién Diferencial: Generacion de vectores mutados combinando tres indi-
viduos distintos|13].

= Cruce Uniforme: Mezcla de vectores mutados y objetivos para formar nuevos
individuos|13].
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Selecciéon Greedy: Eleccién de los mejores individuos basada en rendimiento,
integrando un componente aleatorio segin el pardmetro de heterogeneidad como
se propone en el Algoritmo [I}

Estrategia evolutiva (ES):

Codificacion Real: Uso de vectores de niimeros reales para representar las so-
luciones [49].

Mutacién Gaussiana: Aplicacién de ruido gaussiano a los genes para generar
hijos [49].

Selecciéon Greedy: Eleccién de los mejores individuos basada en rendimiento,
integrando un componente aleatorio segin el parametro de heterogeneidad como
se propone en el Algoritmo [I}

Configuracion de parametros

Cada algoritmo se configuré con parametros especificos para adecuarse al contexto de
optimizacién mono-objetivo y para incorporar la heterogeneidad temporal y se confi-
guraron de la siguiente forma:

Parametros comunes en cada algoritmo

n__iter: 1,000 Numero de iteraciones del algoritmo. Es el nimero de veces que
el algoritmo se ejecutara en su ciclo principal, intentando mejorar la solucion
actual.

n__pop: 200 Tamano de la poblaciéon. Es el niimero de soluciones individuales
que se mantendran en la poblacién en cada iteracién del algoritmo.

r__mut: 0.1 Tasa de mutacion. Es un parametro que influye en la operacién de
mutacion del algoritmo, controlando cuanto cambian las soluciones durante la
mutacion.

r_ cross: 0.8 Tasa de cruce (crossover). Determina la probabilidad de que cada
elemento de una solucién se cambie por el correspondiente en la solucién mutada
durante la operacién de cruce.

heterogeneity Especifica el porcentaje de la poblacién que se seleccionara de
las mejores soluciones actuales frente a una seleccion aleatoria.

alpha: 0.25 Factor utilizado en la operacién de cruce.

Estrategia evolutiva:

step__size: 0.15 Tamaiio del paso utilizado en la generacion de hijos.
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Indicadores de desempeno y ejecuciones

Los resultados se registran como el valor éptimo encontrado por la poblaciéon hasta
la generacion actual, actualizandose solo cuando un individuo encuentra una mejor
solucién. Configuramos los algoritmos, problemas y dimensiones para evaluar el efecto
de la heterogeneidad. A partir de veinte semillas por instancia, se realizaron multiples
ejecuciones, almacenando los resultados en un DataFrame de Pandas. Cada algoritmo
se inicializé con un valor especifico de heterogeneidad y se ejecuté desde la generacion
cero, pasando por procesos de evaluacion, seleccion, cruza y mutacion.

3.2.2. Experimentos multi-objetivo

En el &mbito de los experimentos multi-objetivo, optamos por emplear los algoritmos
NSGA-IT y NSGA-III para evaluar su rendimiento en problemas de optimizacién con
miltiples objetivos. Estos experimentos involucraron el uso de un archivo externo, el
cual contiene la informacion de todos los individuos de la poblacién por cada genera-

ciéon que se probaron en los dos conjuntos de pruebas bien establecidos: Bi-BBOB y
WFG.

Con estos experimentos, se buscoé obtener una comprension integral del impacto de
la heterogeneidad temporal en distintos escenarios de optimizacion, evaluando su efi-
cacia en los algoritmos NSGA-II y NSGA-IIT en una amplia gama de problemas y
configuraciones.

Implementacion del conjunto de pruebas

En nuestro enfoque experimental multi-objetivo, abordamos una diversidad de funcio-
nes y configuraciones, con un enfoque particular en los efectos en multiples objetivos,
variando desde dos hasta diez objetivos. Profundicemos en las caracteristicas de los
conjuntos de pruebas BiIBBOB y WFG.

BiBBOB Para el contexto bi-objetivo, se utilizaron las cincuenta y cinco funcio-
nes del conjunto Bi-BBOB. Mediante el paquete IOHexperimenter |14], accedimos a
las funciones BBOB y las adaptamos para ser compatibles con Pymoo, siguiendo la
estructura e instancia mencionada en [5|. Las pruebas se realizaron manteniendo las
mismas dimensiones que en los experimentos mono-objetivo. En total, se efectuaron
veinte experimentos por instancia, similar a los experimentos mono-objetivo, lo que
llevé a un total de sesenta y seis mil instancias. En cada generacion de estas instan-
cias, se realizé un muestreo, acumulando sesenta y seis millones de resultados que se
registraron en una tabla final.

WFG Para més de dos objetivos, nos centramos en las nueve funciones de WFG, las
cuales fueron provistas por el paquete Pymoo, modificando el pardmetro de dimensio-
nes por el total de objetivos, con valores de k = 3,5,7 y 10. Al igual que con BiBBOB,
se evalud cada valor de heterogeneidad realizando veinte experimentos por instancia.
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Esto resulté en un total de siete mil doscientas instancias, y al igual que en los otros
experimentos, se tomaron muestras en cada generacion, sumando un total de siete mi-
llones doscientos mil resultados, que también se registraron para su analisis posterior.

Los parametros utilizados para estas funciones son:

= Dimensiones: Se trabajé con 24 variables de decision.

s Limites de la Funcion: Cada dimension 7 tiene limites definidos en el intervalo
[0, 24].

Estas configuraciones de los conjuntos de pruebas BIBBOB y WFG permitieron evaluar
de manera exhaustiva la efectividad de los algoritmos NSGA-II y NSGA-III en un
amplio espectro de escenarios de optimizacion multi-objetivo.

Implementacién de algoritmos

Siguiendo un enfoque similar al utilizado en los experimentos mono-objetivo, modi-
ficamos los algoritmos NSGA-IT y NSGA-III del paquete Pymoo para incorporar la
heterogeneidad temporal. Este ajuste influye significativamente en el mecanismo de
seleccién de ambos algoritmos.

Modificaciones en NSGA-IT y NSGA-III: En NSGA-II, el nuevo parametro de
heterogeneidad interviene después de calcular los frentes de Pareto y la crowding dis-
tance. La poblaciéon se divide en dos grupos: los elitistas, seleccionados en su totalidad
como supervivientes por el algoritmo, y los pluralistas, generalmente descartados por
este. La heterogeneidad determina la proporciéon de individuos seleccionados de ambos
grupos, equilibrando entre los mejores de los elitistas y una seleccion aleatoria de la
poblacién restante.

En NSGA-III, esta logica se adapta al reemplazar la distancia de hacinamiento con el
calculo relativo a los puntos de referencia. La heterogeneidad modula la selecciéon de
individuos en relacién con estos puntos de referencia, manteniendo la diversidad en el
frente de Pareto.

Parametros comunes en cada algoritmo:

= n__iter: 1,000 - Define el nimero de iteraciones del algoritmo, determinando la
duracién del proceso de optimizacion.

= n_ pop: 200 - Establece el tamano de la poblacion, es decir, el nimero de solu-
ciones individuales en cada iteracion.

= heterogeneity - Controla el porcentaje de la poblacién seleccionada como las
mejores soluciones frente a una seleccion aleatoria.
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Configuracion especifica de NSGA-III:

» ref dirs: (metodo = Riesz s-Energy [4], muestras = n_ pop) - Las di-
recciones de referencia son clave en NSGA-III para mantener la diversidad en el
frente de Pareto.

Estas adaptaciones permiten evaluar de manera efectiva el impacto de la heterogeneidad
temporal en el rendimiento de los algoritmos en escenarios de optimizacion multi-
objetivo, proporcionando una vision mas clara de su comportamiento en condiciones
variables.

Datos y ejecuciones

Para una evaluacion exhaustiva del rendimiento de los algoritmos de optimizacion
multi-objetivo, se emplearon dos indicadores clave: IGD+ [29] y HV [20]. Estas métricas
son fundamentales para entender la efectividad de los algoritmos, particularmente en
términos de calidad y diversidad de las soluciones generadas.

» Inverted Generational Distance Plus (IGD+) El célculo de IGD+ en cada
generacion permite monitorear la evolucion y aproximacion de las soluciones al
6ptimo tedrico aplicado a cada (n_ objectives) propuestos en el problema.

» Hypervolume (HV) Debido a consideraciones computacionales, el célculo del
HV se realiza solo cuando el niimero de objetivos (n__objectives) es cinco o menos,
yva que su complejidad aumenta significativamente con el niimero de objetivos.

En el proceso de recopilacion de datos, almacenamos tres tablas de informacion. La pri-
mera tabla contiene informacién sobre toda la poblacién por generaciéon, que se guarda
como un archivo externo y sera 1til en la fase de analisis. La segunda tabla almacena
el valor del indicador obtenido por el Frente de Pareto. Por tltimo, se registran los va-
lores en el espacio de los objetivos de cada individuo perteneciente al Frente de Pareto.
Todos estos datos se capturan en diferentes DataFrames.

Esta metodologia de registro asegura que dispongamos de un conjunto de datos com-
pleto para el andlisis posterior del rendimiento de los algoritmos bajo diferentes confi-
guraciones y condiciones.

3.3. Analisis

Esta seccion expone la metodologia empleada para analizar los datos obtenidos de
los experimentos realizados, con el objetivo de explorar el impacto de la heterogenei-
dad temporal en algoritmos evolutivos multi-objetivo. El analisis se orienta hacia la
resolucion de las siguientes interrogantes fundamentales:

» ;Existe algin impacto estadisticamente significativo al variar los valores de he-
terogeneidad temporal?
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= En caso de identificar diferencias estadisticas, ;cudl seria el valor 6ptimo de hete-
rogeneidad para maximizar la eficacia en la resolucion de un problema especifico
de optimizacién?

Para abordar estas preguntas, se seleccionaron técnicas de estadistica no paramétri-
cas, dado que no se asume una distribucion especifica de los datos. A continuacién se
describe el procedimiento utilizado.

3.3.1. Esquema general

El enfoque experimental se centré en evaluar la influencia de la heterogeneidad tem-
poral en los algoritmos evolutivos. Se partié con dos estrategias evolutivas extremas,
representadas por los valores de heterogeneidad de 0 para la estrategia (i, A) y 1 para
(14 A). Luego, se analizaron tres valores intermedios (0.25, 0.50, y 0.75) para investigar
de manera mas detallada el efecto de la heterogeneidad en los algoritmos, los tipos de
problemas y las dimensiones evaluadas.

Los experimentos se ejecutaron en una computadora equipada con un procesador Th-
readripper de tercera generacién modelo 3970X de 32 niicleos a 4 GHz y 32 GB de RAM
en configuracién de canal cuddruple. Se utilizé un enfoque de multi-procesamiento para
realizar las veinte pruebas de forma paralela, como se muestra en el Algoritmo

Algorithm 2 Proceso de Optimizacion Multi-Objetivo

Require: algorithm, problem,n_objectives, h,n_test,n_ population, maintenance =
False

1: process < Lista vacia de procesos

2: multi < Verdadero

3: for id,n en enumerate(n_test) do

4 if n_objectives > 10 o maintenance then

5: TEST(algorithm, problem,n_ objectives, h,id,n,n_ population)
6 multi <— Falso

7 else

8 process|id] < Nuevo proceso con target TEST y args
9 START(process|id])

10: end if

11: end for

12: if multi then

13: for proces en process do

14: JOIN(proces)

15: end for

16: end if

Ademas, se utilizaron las siguientes versiones de bibliotecas relevantes para garantizar
la reproducibilidad y precision de los resultados:

= Python: 3.10
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= IOHexperimenter: 0.3.10
= Pymoo: 0.6.0

» Pandas: 1.4.4

= P-Flacco: 1.1.0

= SHAP: 0.41.0

» ScikitLearn: 1.2.2

= Matplotlib: 3.6.3

Esta configuracion experimental y de software nos proporciona una base sélida para el
analisis de los datos recopilados y la evaluacion del impacto de la heterogeneidad en
los algoritmos de optimizacion multi-objetivo.

3.3.2. Base de datos

Para el andlisis de los indicadores de desempeno, empleamos un enfoque detallado que
involucra el examen de los datos recopilados para cada algoritmo, problema, dimension
y nivel de heterogeneidad.

Mono-objetivo En el contexto mono-objetivo, utilizamos los datos del archivo CSV
de nombre Data, cargandolos en un DataFrame. Seleccionamos y analizamos los datos
correspondientes a cada combinacion especifica de algoritmo, problema, dimensién y
nivel de heterogeneidad. Este proceso resulta en veinte tablas distintas, cada una re-
presentando los resultados de una prueba particular.

Para cada conjunto de datos, realizamos un analisis estadistico detallado por genera-
cion, calculando la media, mediana y desviacion estandar de los resultados obtenidos.
Esto nos permite generar una tabla de andlisis para cada instancia de problema, y
al consolidar todas estas instancias, obtenemos una visiéon completa de los resultados
empiricos del laboratorio mono-objetivo.

Multi-objetivo En el caso multi-objetivo, seguimos un procedimiento similar, utili-
zando los datos del archivo mencionado anteriormente. Este archivo contiene informa-
cion detallada sobre el alcance potencial de la poblacion en comparacion con el frente
de Pareto. Para analizar estos datos, normalizamos la informacién de los individuos
para cada problema y dimensién, ajustandola a una escala de cero a uno.

Con los datos de los individuos normalizados, calculamos el hipervolumen para cada
instancia de problema, utilizando la poblacion completa. Esta nueva tabla de datos se
somete al mismo andlisis estadistico aplicado en el contexto mono-objetivo, generando
asi una tabla de andlisis especifica para el bi-objetivo.
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Evaluacidon estadistica

Estos analisis se complementan con pruebas estadisticas para evaluar la significancia
de los resultados. Aplicamos pruebas como Kruskal-Wallis, Wilcoxon Rank Sum y
Borda para examinar la significancia estadistica de las diferencias observadas, lo que
nos permite obtener una comprension mas profunda de las variaciones en los resultados
y su relevancia en el contexto de la optimizacion multi-objetivo.

3.3.3. Graficas de convergencia

Para visualizar la evolucion de las métricas de rendimiento en nuestros experimentos de
optimizacién, disenamos una funcion especifica para generar graficos de convergencia.
Estos graficos representan cémo métricas clave el promedio de las veinte pruebas del
valor de HV e IGD+ en Multi-Objetivo y Mejor Resultado en Mono-Objetivo, mos-
trando como cambian a lo largo de las generaciones para diferentes configuraciones de
algoritmos, problemas, y parametros de objetivos y heterogeneidad.

Procedimiento de generacién de graficos

Inicialmente, configuramos los parametros de visualizacion y leemos los datos de ren-
dimiento desde un archivo CSV denominado Data. Este archivo contiene métricas cal-
culadas previamente para varias combinaciones de algoritmos, problemas y niveles de
heterogeneidad.

» Realizamos una iteracion exhaustiva sobre diversas combinaciones, incluyendo
algoritmos, problemas y nimeros de objetivos/dimensiones.

» Para cada combinacién, iteramos sobre distintos valores de heterogeneidad (0.25,
0.5, 0.75, 1.0).
Creaciéon y personalizacion de graficos

Durante la ejecucion, generamos graficos que muestran la evolucion de las métricas
seleccionadas a lo largo de las generaciones. Dependiendo del nimero de objetivos, se
crean diferentes tipos de graficos en el caso de multi-objetivo:

» Para 5 objetivos o menos, generamos dos figuras, una para HV y otra para IGD+.

= Para mas de 5 objetivos, generamos una sola figura para IGD+.

Utilizamos subplots de Matplotlib para estos graficos, personalizandolos con titulos,
etiquetas y leyendas. Cada grafico refleja claramente la combinacién de algoritmo,
problema y niimero de objetivos, ademas de diferenciar las lineas en funciéon de los
valores de heterogeneidad.
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Almacenamiento y Gestion de Recursos

Tras la creacién, los gréaficos se guardan en formato PDF. Cerramos cada figura después
de guardarla para optimizar la gestion de memoria. Esta metodologia nos permite ob-
tener una representacion visual clara del rendimiento de los algoritmos bajo diferentes
configuraciones, facilitando la interpretacion y el andlisis de los resultados experimen-
tales.

3.3.4. Modelos

En nuestro analisis, aplicamos modelos estadisticos para abordar tres aspectos clave de
los resultados obtenidos en los experimentos de optimizacion:

Significancia estadistica de los datos

Para determinar la significancia estadistica de los datos, utilizamos la prueba de Kruskal-
Wallis. La cual recibe el banco de datos generados en el archivo CSV denominado Data.

Evaluacién de la significancia entre Valores de heterogeneidad

Para analizar la significancia entre distintos niveles de heterogeneidad, empleamos la
prueba de Wilcoxon Rank Sum. Esta prueba compara los resultados obtenidos para
diferentes valores de heterogeneidad en cada instancia especifica de algoritmo, proble-
ma y dimensiéon. En contextos multi-objetivo, donde buscamos maximizar el valor del
hipervolumen, la prueba evaliia el impacto de la heterogeneidad en la busqueda de
valores mas grandes. En contextos mono-objetivo, donde el objetivo es minimizar los
valores de los objetivos, examina el impacto en la bisqueda de valores mas pequenos.
Los resultados de esta prueba se documentan en una tabla dedicada.

Identificaciéon del Valor de heterogeneidad mas efectivo

Utilizando los resultados de las pruebas de Wilcoxon, generamos una tabla de conteo de
Borda. En esta tabla, cada valor de heterogeneidad que demuestra un nivel de signifi-
cancia menor a 0.05 recibe un punto. Este método nos permite identificar la frecuencia
con la que cada nivel de heterogeneidad resulta ser el mas efectivo para una instancia
particular. La tabla se nombra de acuerdo con la prueba.

Estos modelos y andlisis se realizaron utilizando el paquete de analisis de datos de
Scipy, proporcionando una visiéon integral y detallada de la significancia y el impacto
de la heterogeneidad en nuestros experimentos.

3.3.5. Analisis de los espacios de busqueda

Tras los analisis iniciales, emprendemos un nuevo estudio centrado en la exploracion
de los espacios de busqueda asociados a los problemas de optimizacion. El objetivo es
adquirir una comprension detallada de las caracteristicas inherentes de cada problema
y como estas interactian con los valores de heterogeneidad y los algoritmos aplicados.
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Exploraciéon de caracteristicas de los problemas

Utilizamos el paquete P-Flacco para generar funciones del conjunto BBOB y llevar a
cabo un anélisis de Exploratory Landscape Analysis (ELA) en profundidad. Esto nos
permite recopilar datos valiosos sobre las peculiaridades de cada problema y entender
mejor su naturaleza y complejidad.

Establecimiento de correlaciones

Nuestro enfoque se orienta a descubrir correlaciones significativas entre las caracteris-
ticas de los problemas y los valores de heterogeneidad. Buscamos predecir los valores
optimos de heterogeneidad para algoritmos especificos basandonos en estas caracte-
risticas. Para esto, analizamos los resultados de ELA y generamos mapas de calor,
facilitando la visualizacion de las relaciones entre distintas caracteristicas del proble-
ma.

Aplicaciéon de machine learning

Empleamos el modelo RandomForestRegressor de ScikitLearn para predecir el valor
optimo de heterogeneidad siendo esta nuestro valor de salida del modelo y utilizando
las caracteristicas obtenidas de los problemas de busqueda identificadas como entradas.
Para optimizar los parametros del modelo, aplicamos GridSearchCV. Este enfoque nos
ayuda a determinar la configuraciéon mas eficaz del modelo, incluyendo la profundidad
optima del modelo.

Identificacion de caracteristicas clave

Tras la optimizacién de hiperparametros, usamos el paquete SHAP para identificar las
caracteristicas que ejercen un mayor impacto en el modelo RandomForestRegressor
empleado. Esto nos permite comprender mejor qué factores son los mas influyentes en
la eficacia de la heterogeneidad en los espacios de bisqueda y cémo estos se relacionan
con los resultados obtenidos en nuestras pruebas.

Este analisis detallado de los espacios de busqueda es crucial para comprender la in-
fluencia de las caracteristicas de los problemas en la efectividad de los algoritmos.
Ademas, ofrece una base sélida para decisiones informadas sobre la seleccién de algo-
ritmos y valores de heterogeneidad en futuras investigaciones y aplicaciones practicas.
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Capitulo 4

Resultados

Este capitulo se dedica a ofrecer un analisis detallado de estos resultados, subrayando
la importancia de la heterogeneidad en la seleccién de algoritmos y en la configuracién
de problemas para alcanzar resultados 6ptimos. Examinaremos los datos recopilados
desde varias perspectivas, incluyendo el desempeno de los algoritmos en diferentes
niveles de heterogeneidad, la influencia de la heterogeneidad en las caracteristicas de
los problemas de optimizacion y las implicaciones de estos hallazgos para la practica
de la optimizacién en entornos complejos para contestar las preguntas planteadas en
la investigacion.

4.1. Mono-objetivo

Esta seccién se dedica a desglosar y analizar los resultados obtenidos en problemas
mono-objetivo, una faceta esencial de la optimizacién evolutiva. Se destacaran pa-
trones emergentes y lecciones aprendidas para comprender mejor la influencia de la
heterogeneidad en este tipo de problemas.

4.1.1. Analisis empirico

El andlisis empirico de los datos recogidos en los experimentos mono-objetivo nos per-
mite corroborar y reforzar las observaciones preliminares sobre la influencia de la he-
terogeneidad. Los resultados obtenidos y resumidos en la Tabla de métricas Mono
Objetivo indican una tendencia clara de la heterogeneidad, tanto en problemas de baja
como de alta dimensionalidad.
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| Algoritmo ~ Problema  Dimensiones h=0.0 h=0.25 h=0.5 h=0.75 h=1.0 |
GA Sphere 2 7O484E+01(3.74925-03)  7.9480E+01(1.4254E-04) 7.9480E+01(4.9077E-05) 7.9480E+01(1.74338-05) 7.9480E+01(7.5652E-06)
GA Sphere 10 1.0420E+02(7.9521E+00)  7.9510E+01(1.4726E-02) 7.9495E+01(6.9573E-03) 7.9490E+01(5.0258E-03) 7.9489E+01(4.4419E-03)
GA Sphere 40 3.6321E+02(2.53058+01)  1.0540E-+02(4.5501E+00) 1.0468E+02(2.9068E-+00) 1.0354E+02(3.5920E+00)  1.0165E+02(2.1120E+00)
GA  Weierstrass 2 71399E4+01(5.34881-02)  7.1353E-+01(2.7189E-03) 7.1354E401(2.8201E-03) 7.1352E+01(1.9857E-03) 7.1351E+01(1.4899E-03)
GA Weierstrass 10 9.1821E+01(4.7914E+00)  7.7086E-+01(2.8347E+00)  7.5554E+01(1.5945E+00)  7.5316E+01(1.6731E+00)  7.5542E+01(1.9201E+00)
GA Weierstrass 40 11414E+02(3.70138400)  9.8668E+01(2.6435E-+00)  9.6950E+01(2.0189E+00)  9.5475E+01(2.6083E+00)  9.5487E+01(2.5075E-+00)
GA  Gallagher21 2 -1.0000E+03(1.4708E-04)  -1.0000E+03(4.9135E-05)  -1.0000E+03(1.4645E-06)  -1.0000E-+03(1.3635E-05) -1.0000E+03(2.5357E-03)
GA  Gallagher21 10 -9.4362E+02(1.1383E+01)  -9.9657E+02(4.2071E+00)  -9.9806E-+02(1.4543E+00)  -9.9847E+02(7.1157E-01)  -9.9867E+02(7.2902E-01)
GA  Gallagher21 0 -9.1588E+02(7.4863E-01)  -9.7967E+02(9.6686E+00)  -0.8345E+02(6.3943E+00)  -9.8453E+02(5.7575E+00)  -9.8601E+02(4.3706E+00)
DE Sphere 2 7.9481E-+01(2.2766E-03)  7.9480E+01(0.0000E+00) 7.9480E+01(0.0000E+00) ~7.9480E+01(0.0000E+00)  7.9480E~+01(0.0000E+00)
DE Sphere 10 9.3710E+01(4.8424E-+00)  7.9480E+01(0.0000E-+00)  7.9480E-+01(7.4964E-05) 7.9480E+01(3.8316E-05) 7.9480E+01(2.0214E-05)
DE Sphere 10 2.9783E+02(2.2498E+01)  7.9712E+01(2.7139E-01) 7.9532E+01(8 4440E-02) 7.9534E+01(7.8243E-02) 7.9507E+01(7.8327E-02)
DE  Weierstrass 2 7A370E+01(2.1977E-02)  7.1350E+01(1.4580E-14)  7.1350E+01(1.4580E-14)  7.1350E+01(1.4580E-14) 7.1350E-+01(1.8318E-08)
DE ass 10 7.9492E+01(1.4912E400)  7.1525E+01(L.7680E-01)  7.1467E+01(9.7423E-02)  7.1477E-+01(1.5281E-01) 7.1548E+01(2.2504E-01)
DE  Weierstrass 40 1.0094E+02(1.9037E+00)  9.3671E+01(9.5860E-+00)  9.2507E+01(9.9780E+00) 8.6584E+01(1.2072E+01)  8.2399E+401(1.2101E+01)
DE  Gallagher21 2 -1.0000E+03(3.1635E-03)  -1.0000E+03(4.6054E-06)  -1.0000E+03(8.0655E-07)  -1.0000E-+03(3.8874E-06) -1.0000E+03(1.9084E-06)
DE  Gallagher21 10 -0.7427E+02(1.0155E+01)  -9.9821E+02(6.3563E-01)  -9.9811E+02(2.8273E-01) -9.9812F402(3.2623E-01) -9.9814F+02(4.2861E-01)
DE  Gallagher21 40 -9.1880E+02(1.7186E-+00)  -9.9031E+02(8.2209E+00)  -9.8895E+02(8.3852E+00)  -9.9229E+02(8.0253E-+00)  -9.8987E-+02(8.3824E-+00)
ES Sphere 2 7.9520E-+01(1.0159E-01)  7.9480E+01(1.2267E-06) ~ 7.9480E+01(3.8719E-07)  7.9480E+01(6.7425E-07) 7.9480E-+01(4.0837E-07)
ES 10 L0193E+02(7.2278E+00)  7.9498E-+01(3.9784E-03) 7.9498E-+01(2.7493E-03)  7.9492E+01(3.5457E-03) 7.9493E-+01(3.6095E-03)
ES 40 3.6581E+02(1.92018+01)  8.0312E+01(7.9824E-02) 8.0209E+01(8.0415E-02) 8.0244E-+01(4.7132E-02) 8.0184E+01(3.6097E-02)
ES 2 7A363E-+01(11574E-02)  T.1350E+01(11207E-04)  7.1350E+01(7.9706E-05)  7.1350E+01(1.0136E-04) 7.1350E+01(7.7261E-05)
ES 10 7.9895E+01(1.5052E+00)  7.1973E+01(3.1153E-01) 7.1998E-+01(5.5310E-01)  7.1831E+01(2.4484E-01) 7.1972E+01(2.7065E-01)
ES 10 1.0260E+02(2.3803E+00)  7.8507E+01(1.4 7.7809E-+01(7.8254E-01) 7.7212E+01(4.9859E-01) 7.7208E+01(7.9584E-01)
ES : 2 -L.0000E+03(1.7170E-03)  -1.0000E+03( -1.0000E+03(8.3777E-12) -LO000E+03(5.1342E-12)  -1.0000E+03(2.6860E-12)
ES  Gallagher2l 10 -9.6047E+02(1.9401E+01)  -9.9514E+02(6.4983E-+00)  -9.9607E-+02(5.1220E+00)  -9.9609E+02(5.4220E+00)  -9.9587E+02(5.7568E+00)
ES  Gallagher2l 40 -9.1650E+02(1.1241E+00)  -9.8991E+02(8.5204E+00)  -9.9159E-+02(8.3005E+00)  -0.9159E-+02(8.2084E+00)  -9.9160E+02(8.3058E+00)

Tabla 4.1: Resumen del andlisis empirico mono-objetivo

particular

para algunos

problemas en

Esta tabla proporciona una visién general de los datos recopilados de cada prueba rea-
lizada, permitiendo evaluar como la heterogeneidad afecta la bisqueda de soluciones
optimas.

Los hallazgos sugieren que en ciertos casos, la heterogeneidad tiene un impacto signi-
ficativo en la identificacién de soluciones éptimas. Es notable que, particularmente en
valores de heterogeneidad mayores o iguales a 0.5, se observa una mayor eficacia en la
obtencién de resultados 6ptimos por parte de los individuos en los problemas propues-
tos. Ademas, con el incremento en la dimensionalidad de los problemas, los mejores
resultados tienden a agruparse en un rango de heterogeneidad que varia entre el 1% vy

el 0.5%.

Esta tendencia nos ofrece perspectivas valiosas sobre la calibracion de la heterogenei-
dad en algoritmos evolutivos aplicados a problemas mono-objetivo. Los datos indican
que ajustes adecuados en los niveles de heterogeneidad pueden conducir a mejoras
significativas en la eficacia de estos algoritmos.

4.1.2. Graficos de convergencia

Para complementar y clarificar estos hallazgos, hemos generado graficos de conver-
gencia para cada algoritmo y problema. Estos graficos visualizan como los valores de
heterogeneidad afectan la convergencia de las soluciones en diferentes contextos.
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Figura 4.1: Gréfico de convergencia para el algoritmo genético en problemas de baja
dimensionalidad.
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Figura 4.2: Grafico de convergencia para el algoritmo genético en problemas de alta
dimensionalidad.

En la Figura [4.1], correspondiente a un problema de baja dimensionalidad, se observa
que los valores de heterogeneidad convergen y obtienen resultados en regiones simila-
res. Por otro lado, la Figura [£.2] que representa un problema de alta dimensionalidad,
muestra que para valores bajos de heterogeneidad la convergencia es menos rapida en
comparacion con valores altos. Patrones similares se observan en las Figuras 4.4

y [4.6] para otros algoritmos.
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Figura 4.3: Evoluciéon Diferencial - Dos dimensiones
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Figura 4.4: Evolucion Diferencial - Cuarenta dimensiones
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Figura 4.5: Estrategias Evolutivas - Dos dimensiones
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Figura 4.6: Estrategias Evolutivas - Cuarenta dimensiones

Estas representaciones visuales refuerzan los resultados obtenidos y proporcionan una
comprension mas profunda de la influencia de la heterogeneidad en el proceso de op-
timizacion, dependiendo de la dimensionalidad del problema y el tipo de algoritmo
utilizado.

4.1.3. Pruebas estadisticas

En esta subseccion, abordamos el andlisis estadistico exhaustivo realizado para res-
paldar y validar los hallazgos obtenidos en los experimentos de optimizacién mono-
objetivo.
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Analisis de Kruskal-Wallis

La prueba de Kruskal-Wallis se aplicd para evaluar la significancia estadistica de la
heterogeneidad en los resultados. Los resultados de esta prueba vistos en la Tabla [4.2]
muestran que se rechaza la hipdtesis nula de que los datos han sido generados de la
misma distribucion.

’ Algoritmo Problema Dimensiones Valor - P ‘
DE Sphere 2 3,546009 x 10~
DE Sphere 10 4,036662 x 10713
DE Sphere 40 1,172101 x 102
DE Weierstrass 2 1,970363 x 10~
DE Weierstrass 10 7,260672 x 10710
DE Weierstrass 40 1,443381 x 1077
DE Gallagher21 2 3,922149 x 10713
DE Gallagher21 10 3,075205 x 10711
DE Gallagher21 40 3,906155 x 10711
ES Sphere 2 2,747200 x 10711
ES Sphere 10 5,291616 x 10~
ES Sphere 40 8,528497 x 10~
ES Weierstrass 2 2,075988 x 10711
ES Weierstrass 10 4,230093 x 10~1°
ES Weierstrass 40 1,239032 x 10~
ES Gallagher21 2 1,030112 x 10710
ES Gallagher21 10 1,106032 x 1078
ES Gallagher21 40 6,883057 x 10710
GA Sphere 2 5,427408 x 10~
GA Sphere 10 1,991402 x 1014
GA Sphere 40 1,002805 x 10~
GA Weierstrass 2 1,676884 x 1010
GA Weierstrass 10 3,367596 x 10710
GA Weierstrass 40 6,195023 x 10712
GA Gallagher21 2 8,651438 x 1078
GA Gallagher21 10 5,409370 x 10~13
GA Gallagher21 40 2,851189 x 10~1!

Tabla 4.2: Resumen de la prueba de Kruskal Wallis para algunos problemas

Los valores de p-valor obtenidos en la prueba de Kruskal-Wallis estan dentro del umbral
critico de 0.05, lo que indica que las diferencias observadas son significativas y no
atribuibles al azar.
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Prueba de Wilcoxon ranksum

Al aplicar la prueba de Wilcoxon ranksum, se muestran resultados consistentes en con-
diciones de heterogeneidad baja (h=0.0) con p-valores cercanos o iguales a 1.000000,
indicando un rendimiento estable en entornos homogéneos para todos los problemas
y dimensiones, mientras que en niveles de heterogeneidad mas altos, los p-valores va-
rian considerablemente, reflejando coémo los ajustes en la heterogeneidad afectan el
desempeno del algoritmo.
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Algoritmo  Problema  Dimensiones Heterogeneidad — h=0.0 h=0.25 h=0.5 h=0.75 h=1.0

DE Gallagher21 2 0.00 - 0.999999 1.000000 1.000000 1.000000
DE Gallagher21 2 0.25 0.000001 - 0.616977 0.500000 0.424909
DE Gallagher21 2 0.50 0.000000  0.383023 - 0.393387 0.298931
DE Gallagher21 2 0.75 0.000000  0.500000 0.606613 - 0.414338
DE Gallagher21 2 1.00 0.000000 0.575091 0.701069 0.585662 -

DE Gallagher21 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Gallagher21 10 0.25 0.000000 - 0.019901 0.111754 0.032928
DE Gallagher21 10 0.50 0.000000  0.980099 - 0.841551 0.543082
DE Gallagher21 10 0.75 0.000000 0.888246 0.158449 - 0.208539
DE Gallagher21 10 1.00 0.000000 0.967072 0.456918 0.791461 -

DE Gallagher21 40 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Gallagher21 40 0.25 0.000000 0.510790 0.991353 0.982567

DE Gallagher21 40 0.50 0.000000 0.489210

- 0.995295 0.987621
DE Gallagher21 40 0.75 0.000000 0.008647 0.004705 - 0.500000
DE Gallagher21 40 1.00 0.000000 0.017433 0.012379 0.500000 -
DE Sphere 2 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 2 0.25 0.000000 0.500000  0.500000 0.500000

DE Sphere 2 0.50 0.000000  0.500000

- 0.500000  0.500000
DE Sphere 2 0.75 0.000000  0.500000 0.500000 - 0.500000
DE Sphere 2 1.00 0.000000  0.500000 0.500000 0.500000 -
DE Sphere 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 10 0.25 0.000000 - 0.007456  0.000219 0.001463
DE Sphere 10 0.50 0.000000  0.992544 - 0.066642 0.271386
DE Sphere 10 0.75 0.000000 0.999781 0.933358 - 0.810334
DE Sphere 10 1.00 0.000000 0.998537 0.728614 0.189666 -
DE Sphere 40 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 40 0.25 0.000000 - 0.990698 0.996853 0.999975
DE Sphere 40 0.50 0.000000  0.009302 - 0.759066  0.999468
DE Sphere 40 0.75 0.000000 0.003147 0.240934 - 0.981368
DE Sphere 40 1.00 0.000000 0.000025 0.000532 0.018632 -
DE Weierstrass 2 0.00 1.000000 1.000000 1.000000 1.000000

DE Weierstrass 2 0.25 0.000000

- 0.500000  0.500000 0.393387
DE Weierstrass 2 0.50 0.000000  0.500000 - 0.500000  0.393387
DE Weierstrass 2 0.75 0.000000  0.500000  0.500000 - 0.393387
DE Weierstrass 2 1.00 0.000000 0.606613 0.606613 0.606613 -
DE Weierstrass 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Weierstrass 10 0.25 0.000000 - 0.767413 0.821136 0.467661
DE Weierstrass 10 0.50 0.000000  0.232587 - 0.616977 0.178864
DE Weierstrass 10 0.75 0.000000 0.178864 0.383023 - 0.178864
DE Weierstrass 10 1.00 0.000000 0.532339 0.821136 0.821136 -
DE Weierstrass 40 0.00 - 0.999870  0.999992  0.999995 0.999999
DE Weierstrass 40 0.25 0.000130 0.775596  0.965034 0.997102

DE Weierstrass 40 0.50 0.000008 0.224404

- 0.834923 0.987621
DE Weierstrass 40 0.75 0.000005 0.034966 0.165077 - 0.938446
DE Weierstrass 40 1.00 0.000001 0.002898 0.012379 0.061554 -

Tabla 4.3: Resumen de la prueba de Willcoxon ranksum en evolucion diferencial para
algunos problemas
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‘ Algoritmo  Problema  Dimensiones Heterogeneidad — h=0.0 h=0.25 h=0.5 h=0.75 h=1.0

ES Gallagher21 2 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 2 0.25 0.000000 - 0.933358 0.988048 0.990354
ES Gallagher21 2 0.5 0.000000 0.066642 - 0.719574  0.737507
ES Gallagher21 2 0.75 0.000000 0.011952 0.280426 - 0.467661
ES Gallagher21 2 1.0 0.000000 0.009646 0.262493 0.532339 -

ES Gallagher21 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 10 0.25 0.000000 - 0.724112  0.696357 0.877616
ES Gallagher21 10 0.5 0.000000 0.275888 - 0.446207 0.696357
ES Gallagher21 10 0.75 0.000000 0.303643 0.553793 - 0.715000
ES Gallagher21 10 1.0 0.000000 0.122384 0.303643 0.285000 -

ES Gallagher21 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 40 0.25 0.000000 0.813978 0.813978 0.898199

ES Gallagher21 40 0.5 0.000000 0.186022

- 0.616977 0.677189
ES Gallagher21 40 0.75 0.000000 0.186022 0.383023 - 0.543082
ES Gallagher21 40 1.0 0.000000 0.101801 0.322811 0.456918 -
ES Sphere 2 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 2 0.25 0.000000 - 0.995295 0.989999 0.999468
ES Sphere 2 0.5 0.000000  0.004705 - 0.532339 0.834923
ES Sphere 2 0.75 0.000000 0.010001 0.467661 - 0.877616
ES Sphere 2 1.0 0.000000 0.000532 0.165077 0.122384 -
ES Sphere 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 10 0.25 0.000000 - 0.616977 0.999969 0.999870
ES Sphere 10 0.5 0.000000  0.383023 - 0.999994  0.999945
ES Sphere 10 0.75 0.000000  0.000031 0.000006 - 0.258104
ES Sphere 10 1.0 0.000000 0.000130 0.000055 0.741896 -
ES Sphere 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 40 0.25 0.000000 - 0.999639 0.995295 0.999999
ES Sphere 40 0.5 0.000000 0.000361 - 0.127957  0.982567
ES Sphere 40 0.75 0.000000 0.004705 0.872043 - 0.999961
ES Sphere 40 1.0 0.000000  0.000001 0.017433 0.000039 -
ES Weierstrass 2 0.0 1.000000 1.000000 1.000000 1.000000

ES Weierstrass 2 0.25 0.000000

- 0.985776  0.958292 0.999704
ES Weierstrass 2 0.5 0.000000 0.014224 - 0.332580 0.916138
ES Weierstrass 2 0.75 0.000000 0.041708 0.667420 - 0.980099
ES Weierstrass 2 1.0 0.000000 0.000296 0.083862 0.019901 -
ES Weierstrass 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Weierstrass 10 0.25 0.000000 - 0.715000 0.935089 0.478428
ES Weierstrass 10 0.5 0.000000  0.285000 - 0.759066  0.186022
ES Weierstrass 10 0.75 0.000000 0.064911 0.240934 - 0.049466
ES Weierstrass 10 1.0 0.000000 0.521572 0.813978 0.950534 -
ES Weierstrass 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Weierstrass 40 0.25 0.000000 - 0.944751 0.998403 0.997333
ES Weierstrass 40 0.5 0.000000  0.055249 - 0.994500 0.981368
ES Weierstrass 40 0.75 0.000000 0.001597 0.005500 - 0.564465
ES Weierstrass 40 1.0 0.000000 0.002667 0.018632 0.435535 -

Tabla 4.4: Resumen de la prueba de Wilcoxon ranksum en estrategias evolutivas para
algunos problemas
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‘ Algoritmo  Problema  Dimensiones Heterogeneidad — h=0.0 h=0.25 h=0.5 h=0.75 h=1.0

GA Gallagher21 2 0.0 - 0.999998  1.000000 0.999961 0.715000
GA Gallagher21 2 0.25 0.000002 - 0.696357 0.313164 0.000643
GA Gallagher21 2 0.5 0.000000 0.303643 - 0.083862 0.000130
GA Gallagher21 2 0.75 0.000039 0.686836 0.916138 - 0.002667
GA Gallagher21 2 1.0 0.285000 0.999357 0.999870 0.997333 -

GA Gallagher21 10 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Gallagher21 10 0.25 0.000000 - 0.995295 0.999945 0.999990
GA Gallagher21 10 0.5 0.000000  0.004705 - 0.938446  0.990698
GA Gallagher21 10 0.75 0.000000 0.000055 0.061554 - 0.893306
GA Gallagher21 10 1.0 0.000000  0.000010 0.009302 0.106694 -

GA Gallagher21 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Gallagher21 40 0.25 0.000000 - 0.927952  0.989255 0.999149
GA Gallagher21 40 0.5 0.000000 0.072048 - 0.854277 0.986726
GA Gallagher21 40 0.75 0.000000 0.010745 0.145723 - 0.791461
GA Gallagher21 40 1.0 0.000000 0.000851 0.013274 0.208539 -

GA Sphere 2 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 2 0.25 0.000000 - 0.958292  0.998403 1.000000
GA Sphere 2 0.5 0.000000 0.041708 - 0.834923  0.999956
GA Sphere 2 0.75 0.000000 0.001597 0.165077 - 0.999758
GA Sphere 2 1.0 0.000000  0.000000 0.000044 0.000242 -

GA Sphere 10 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 10 0.25 0.000000 - 0.999673 0.999998 1.000000
GA Sphere 10 0.5 0.000000  0.000327 - 0.983699 0.998403
GA Sphere 10 0.75 0.000000  0.000002 0.016301 - 0.828118
GA Sphere 10 1.0 0.000000  0.000000 0.001597 0.171882 -

GA Sphere 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 40 0.25 0.000000 - 0.828118 0.965034 0.999673
GA Sphere 40 0.5 0.000000 0.171882 - 0.821136  0.999561
GA Sphere 40 0.75 0.000000 0.034966 0.178864 - 0.960648
GA Sphere 40 1.0 0.000000 0.000327 0.000439 0.039352 -

GA Weierstrass 2 0.0 1.000000 1.000000 1.000000 1.000000

GA Weierstrass 2 0.25 0.000000

- 0.313164 0.975846 0.982567
GA Weierstrass 2 0.5 0.000000 0.686836 - 0.993083 0.998537
GA Weierstrass 2 0.75 0.000000 0.024154 0.006917 - 0.342463
GA Weierstrass 2 1.0 0.000000 0.017433 0.001463 0.657537 -
GA Weierstrass 10 0.0 1.000000 1.000000 1.000000 1.000000

GA Weierstrass 10 0.25 0.000000

- 0.902926  0.962894 0.950534
GA Weierstrass 10 0.5 0.000000 0.097074 - 0.791461 0.446207
GA Weierstrass 10 0.75 0.000000 0.037106 0.208539 - 0.435535
GA Weierstrass 10 1.0 0.000000 0.049466 0.553793 0.564465 -
GA Weierstrass 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Weierstrass 40 0.25 0.000000 - 0.989999 0.999415 0.999673
GA Weierstrass 40 0.5 0.000000 0.010001 - 0.960648 0.962894
GA Weierstrass 40 0.75 0.000000  0.000585 0.039352 - 0.575091
GA Weierstrass 40 1.0 0.000000 0.000327 0.037106 0.424909 -

Tabla 4.5: Resumen de la prueba de Willcoxon ranksum en el algoritmo genético para
algunos problemas

Los resultados de esta prueba vistos en las Tablas 4.4y [A.5] sugieren que el elitismo
no es necesariamente la mejor estrategia en todos los casos, evidenciando la importan-
cia de ajustar el nivel de heterogeneidad en funcién del problema especifico.
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Figura 4.7: Grafica de diferencias criticas mono-objetivo

Para ilustrar de manera mas clara los resultados obtenidos, en la Figura |4.7| se presen-
ta la grafica de distancias criticas. Esta grafica proporciona un ranking de los valores
de heterogeneidad basados en su rendimiento medio en las pruebas, donde el valor 1
corresponde al mejor rendimiento, mientras que el valor 5 representa el peor.

Las lineas horizontales conectan aquellos valores de heterogeneidad cuyos rendimientos
no presentan diferencias estadisticamente significativas. A partir de la grafica, se pueden
destacar los siguientes puntos:

» Los niveles de heterogeneidad 0.75 y 1.0 muestran un rendimiento similar, ya
que estan conectados por una linea, lo que indica que no existe una diferencia
estadisticamente significativa entre ellos.

= Kl valor de heterogeneidad 0.5, a pesar de mostrar un rendimiento intermedio,
no evidencia diferencias significativas con respecto a los valores 0.25 y 0.0, los
cuales obtuvieron los peores resultados en el ranking.

En términos generales, los resultados sugieren que los niveles més altos de heteroge-
neidad (0.75 y 1.0) estan asociados a un rendimiento superior en comparacién con
los niveles més bajos. Sin embargo, no se observa una diferencia significativa entre los
niveles altos de heterogeneidad.

Conteo de Borda

Para reforzar ain més nuestros hallazgos, analizamos la Tabla [4.6] de conteo de Borda,
que destaca la frecuencia con la que diferentes valores de heterogeneidad resultaron ser
los més efectivos.
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‘Algoritmo Dimensiones h=0.0 h=0.25 h=0.5 h=0.75 h=1.0‘

DE 2 25 63 65 60 48
DE 3 24 68 64 95 48
DE ) 24 63 23 48 49
DE 10 24 65 23 93 25
DE 20 24 96 26 60 61
DE 40 24 50 o7 71 88
ES 2 24 49 o8 64 62
ES 3 24 52 o8 29 65
ES ) 24 o6 60 61 62
ES 10 24 52 26 63 62
ES 20 24 52 26 99 69
ES 40 24 o1 60 69 75
GA 2 24 50 o4 61 o8
GA 3 24 48 63 66 66
GA ) 24 47 o4 66 74
GA 10 24 48 63 74 89
GA 20 24 48 63 78 92
GA 40 24 48 61 79 90
‘ Total - 433 966 1054 1146 1213

Tabla 4.6: Resumen de conteos de Borda

Se observo que, con el incremento de las dimensiones, existe una tendencia generalizada
entre los algoritmos para mejorar su rendimiento relativo o su clasificacién en compa-
racion con otros bajo condiciones de alta heterogeneidad. Este fenémeno sugiere que
las estrategias implementadas por dichos algoritmos se benefician de un mayor grado
de elitismo en espacios de busqueda méas complejos. Esta tendencia es particularmente
notable en el algoritmo genético (GA), el cual exhibe una alta predisposicién hacia el
elitismo. Sin embargo, se ha identificado que algoritmos como la Evolucion Diferencial
(DE) obtienen mayores beneficios en entornos de baja heterogeneidad.

4.1.4. Explicabilidad

Mediante el uso de P-Flacco, exploramos las caracteristicas ELA de las funciones ob-
jetivo, las cuales proyectamos utilizando un mapa de calor presente en la Figura 4.8
para visualizar la correlacion entre estas caracteristicas. Identificamos que, a medida
que aumenta la dimensionalidad de los problemas, ciertas caracteristicas, como la dis-
tancia media y el angulo medio, exhiben un impacto significativo en la necesidad de
heterogeneidad. Especificamente, observamos que el angulo medio alcanza valores ab-
solutos de 1 en dimensiones de 40, lo que sugiere que estos factores son cruciales en la
optimizacién de los algoritmos evolutivos.
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Figura 4.8: Mapa de correlacion de caracteristicas de los espacios mono-objetivo

Para validar nuestra hipétesis sobre la influencia de estas caracteristicas en los re-
sultados de optimizacion, recurrimos al analisis proporcionado por el paquete SHAP,
enfocado en el modelo RandomForestRegressor aplicado a nuestros datos experimen-
tales. Los resultados del andlisis SHAP que se muestran en la Figura [£.9] confirman que
las caracteristicas mas influyentes en los resultados son, efectivamente, los algoritmos
utilizados y las métricas de distancia media y propagacion.
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Figura 4.9: Anélisis Mono-Objetivo de SHAP destacando las caracteristicas mas influ-
yentes en la eleccion de heterogeneidad.

Estos hallazgos subrayan la importancia de analizar detenidamente las caracteristicas
de los espacios de bisqueda para comprender cémo influyen en la seleccion éptima de la
heterogeneidad, dependiendo del algoritmo utilizado y la dimensionalidad del problema.

Este enfoque de explicabilidad nos permite no solo entender mejor los mecanismos
detras de los algoritmos de optimizacion sino también guiar la selecciéon de pardmetros
de heterogeneidad de manera mas informada y efectiva.



4.2.

Multi-objetivo

En esta seccién, desplazamos nuestro enfoque hacia el andlisis de problemas multi-
objetivo, con el proposito de explorar como la heterogeneidad afecta el comportamiento
en los resultados para los conjuntos de prueba seleccionados.

4.2.1.

Analisis empirico

Para proporcionar una visién detallada de los efectos de la heterogeneidad en contex-
tos multi-objetivo, analizamos las Tablas [1.7)y [4.8] Estas tablas resumen los resultados
recopilados de las pruebas realizadas, ilustrando como diferentes niveles de heteroge-
neidad impactan el rendimiento de los algoritmos en estos problemas complejos.

Profundizando en el analisis empirico de los resultados obtenidos en los experimentos
de optimizacién multi-objetivo, examinando las tendencias observadas en las métricas

de rendimiento y su implicacién.

Anilisis de hipervolumen (HV)

Los resultados obtenidos por NSGA-II, medidos a través del indicador
men, se resumen en las Tablas [1.7 y 4.8

de hipervolu-

‘Algoritmo Problema Dimensiones

h=0.0

h=0.25

h=0.5

h=0.75

h=1.0 |

NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-III
NSGA-IIT
NSGA-IIL
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIL
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIT
NSGA-IIL
NSGA-IIT
NSGA-IIT
NSGA-IIT

SO0 XRO T TSSO G e W RN =S5 © 0001000 W W
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2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40
2
40

1.7632E-02(3.8790E-17)
1.9257E-02(1.7656E-03)
1.3883E-02(2.2272E-16)
1.1478E-02(1.0120E-03)
6.6582F-02(1.4238E-17)
2.9621E-02(4.1218E-03)
1.0000E-02(1.1368E-16)
2.5099E-02(5.1962E-03)
4.2280F-02(4.6819E-17)
1.8789E-02(1.5293E-03)
7.6170E-02(2.8689E-16)
7.8328F-02(6.5815E-03)
1.0000E-02(4.9252E-17)
4.2232F-02(1.6620E-02)
8.0758E-02(4.5757E-05)
1.1283E-01(1.1402E-02)
1.0000E-02(4.9239E-17)
2.0952E-02(2.4162E-03)
4.9920E-02(9.8986E-03)
1.4526E-02(5.4919E-03)
2.1189E-01(4.2572E-02)
2.4929E-02(1.9641E-03)
2.5915E-01(5.1953E-02)
2.3999E-02(4.9205E-03)
3.8244E-01(8.1350E-02)
3.7200E-02(6.6329E-03)
3.8150E-01(9.1889E-02)
3.8852E-02(9.7052E-03)
2.5182E-01(5.0982E-02)
2.4949E-02(2.7451E-03)
4.0083E-01(5.7904E-02)
9.6836E-02(5.8516E-03)
2.2438E-01(5.4920E-02)
7.4073E-02(1.6934E-02)
3.9594F-01(4.6685E-02)
1.4146E-01(1.0887E-02)
2.4416E-01(6.8229E-02)
3.1027E-02(2.7627E-03)
5.1514E-01(5.0906E-02)
2.6006E-02(5.8383E-03)

1.1990E-+00(2.7230E-03)
1.1221E+00(5.5496E-03)
1.2078E+00(9.3559E-04)
1.1957E+00(3.3989E-03)
1.2098E+00(1.2180E-04)
1.1591E+00(5.7317E-03)
1.2090E+00(7.8701E-04)
1.1726E+00(6.1072E-03)
1.1763E+00(2.0154E-02)
1.0152E-+00(1.2330E-02)
1.1987E+00(2.1951E-03)
1.1795E+00(8.1408E-03)
1.2077E+00(2.0100E-03)
1.1937E+00(3.9636E-03)
1.2095E+00(4.1651E-04)
1.2087E+00(4.9746E-04)
1.2096E+00(3.1461E-04)
1.1782E+00(3.5731E-03)
1.2085E+00(2.4228E-03)
7.3265E-01(9.1413E-02)
1.1987E-+00(4.0672E-03)
1.1309E-+00(7.1112E-03)
1.2084E-+00(4.8479E-04)
1.1903E-+00(4.0018E-03)
1.2099E+00(1.2785E-04)
1.1605E+00(6.9607E-03)
1.2089E-+00(1.4132E-03)
1.1617E-+00(5.6435E-03)
1.1915E+00(1.2725E-02)
1.0117E+00(1.6799E-02)
1.2000E-+00(1.8654E-03)
1.1821E+00(6.7963E-03)
1.2083E-+00(1.7719E-03)
1.1798E+00(4.9031E-03)
1.2098E+00(2.1445E-04)
1.2032E-+00(2.5722E-03)
1.2098E-+00(1.2111E-04)
1.1773E+00(4.7067E-03)
1.2091E+00(1.2064E-03)
7.2076E-01(8.2484F-02)

1.2016E+00(6.6671E-04)
1.1492E-+00(6.0130E-03)
1.2085E+00(2.4423E-04)
1.2017E-+00(1.4748E-03)
1.2099E-+00(1.0630E-04)
1.1785E+00(3.3430E-03)
1.2095E+00(4.2270E-04)
1.1794E-+00(4.1628E-03)
1.1868E-+00(1.4926E-02)
1.0632E+00(1.3717E-02)
1.2008E-+00(1.3876E-03)
1.1931E-+00(4.4673E-03)
1.2091E+00(7.6545E-04)
1.1991E-+00(1.9856E-03)
1.2098E+00(1.7864E-04)
1.2098E+00(1.0254E-04)
1.2099E-+00(1.4002E-04)
1.1925E-+00(3.3406E-03)
1.2088E-+00(2.0325E-03)
9.4849E-01(4.8695E-02)
1.2004E-+00(2.1320E-03)
1.1464E-+00(6.7775E-03)
1.2086E-+00(1.9207E-04)
1.1974E+00(2.1016E-03)
1.2099E-+00(1.2010E-04)
1.1760E-+00(5.5053E-03)
1.2096E+00(3.3094E-04)
1.1710E+00(6.3789E-03)
1.1889E+00(1.2453E-02)
1.0447E-+00(1.6543E-02)
1.2013E-+00(9.2849E-04)
1.1872E-+00(6.0552E-03)
1.2094E+00(7.0602E-04)
1.1980E-+00(3.4947E-03)
1.2098E-+00(1.3934E-04)
1.2093E-+00(3.0847E-04)
1.2099E-+00(4.0012E-05)
1.1880E+00(3.5784E-03)
1.2095E-+00(5.9072E-04)
8.2769E-01(8.0112E-02)

1.2025E+00(1.5522E-05)
1.1668E-+00(4.4089E-03)
1.2088E-+00(3.2634E-06)
1.2034E+00(1.4063E-03)
1.2100E+00(6.4450E-06)
1.1904E-+00(3.2868E-03)
1.2098E-+00(1.6722E-06)
1.1890E-+00(4.8146E-03)
1.2005E+00(1.9442E-03)
1.0828E-+00(1.2615E-02)
1.2026E+00(1.4024E-05)
1.1979E+00(2.4535E-03)
1.2094E+00(4.1021E-04)
1.2054E-+00(1.4237E-03)
1.2099E-+00(6.9521E-05)
1.2099E-+00(4.3878E-05)
1.2100E+00(1.7740E-06)
1.2000E+00(1.6453E-03)
1.2098E+00(5.0397E-06)
1.0385E-+00(3.8375E-02)
( )

( )

( )

( )

( )

( )

(8 )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

)

1.2015E+00(1.0672E-03
1.1535E400(5.9832E-03
1.2087E-+00(6.8345E-05
1.1998E+00(1.8181E-03
1.2099E+00(1.9936 E-04
1.1801E-+00(6.2836E-03
1.2097E+00(8.5522E-05
1.1766E+00(2.0207E-03
1.1970E+00(6.6614E-03
1.0548E+00(9.9534E-03
1.2006E+00(1.1969E-03
1.1924E400(3.1341E-03
1.2091E+00(8.5949E-04
1.2017E+00(2.0035E-03
1.2098E-+00(1.2994E-04
1.2097E+00(1.2447E-04
1.2099E-+00(2.6158E-05
1.1901E+00(3.3627E-03
1.2096E+00(4.5283E-04
8.8582E-01(6.8925E-02)

1.2025E+00(2.7910E-06)
1.1992E+00(7.0035E-04)
1.2088E-+00(1.3674E-06)
1.2094E-+00(1.8934F-05)
1.2100E-+00(6.0390E-10)
1.2059E+00(8.0616E-04)
1.2098E-+00(3.3603E-07)
1.2076E-+00(2.0231E-04)
1.2039E-+00(1.9354F-05)
1.1710E+00(5.6621E-03)
1.2027E+00(1.3013E-05)
1.2092E+00(2.7847E-04)
1.2100E-+00(3.9491E-07)
1.2096E-+00(1.8176E-04)
1.2100E+00(3.1512E-06)
1.2100E-+00(1.7562E-05)
1.2100E-+00(2.9764F-08)
1.2086E-+00(8.2078E-05)
1.2098E+00(1.0588E-07)
1.1469E-+00(6.1918E-03)
1.2025E+00(3.6680E-05)
L1771E-+00(3.0917E-03)
1.2087E-+00(3.1652E-05)
1.2080E+00(3.2929E-04)
1.2100E+00(4.7475E-09)
1.1917E-+00(3.7321E-03)
1.2098E+00(2.5915E-06)
1.1963E+00(2.3895E-03)
1.2038E-+00(1.2030E-04)
1.1120E+00(8.5769E-03)
1.2026E-+00(6.6429F-05)
1.2021E-+00(2.0071E-03)
1.2100E+00(4.8978E-07)
1.2044E+00(1.2711E-03)
1.2100E-+00(4.5162E-06)
1.2096E+00(1.6055E-04)
1.2100E-+00(4.4230E-07)
1.2043E+00(1.0419E-03)
1.2098E-+00(1.4459E-05)
1.0681E-+00(1.9711E-02)

Tabla 4.7: Resumen

de resultados BiBBOB con hipervolumen
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‘ Algoritmo Problema K h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA-II ~ WFGL 3 1.0658E-14(0.0000E+00)  2.3432E+01(1.7814E+00) 2.5693E+01(1.3080E+00) 5.3147E+01(1.0799E+00) 5.7917E401(1.6687E+00)
NSGA-II WFG1 5 1.7053E-12(0.0000E-+00)  2.2859E+03(1.6067TE+02) 2.2153E+03(1.0036E+02) 4.4995E+03(7.5586E+01) 4.6695E+03(9.1086E+01)
NSGA-II ~ WFG2 3 5.0284E-01(1.1083E+00)  7.1435E+01(4.7282E+00) 8.4288E+01(4.9502E+00) 9.9183E+01(3.2257E+00)  9.8136E+01(5.4061E+00)
NSGA-II WFG2 5 3.4414E400(8.8640E+00) 7.2924E+03(8.3749E+02) 8.1449E+03(5.2702E4+02) 1.0284E+04(1.1538E+01) 1.0292E+04(1.2327E+01)
NSGA-IT WFG3 3 4.6755E400(3.5768E+00) 4.3496E+01(7.1499E+00) 4.2122E+01(2.4497E4+00)  7.5480E+01(1.1179E-01)  7.5826E+01(1.0216E-01)
NSGA-II  WFG3 5 1.8182E+02(1.3077E+02) 4.1160E+03(2.4565E+02) 4.3343E+03(2.2694E+02) 7.1865E+03(5.6788E+01) 7.2426E+03(3.5297E+01)
NSGA-IT WFG4 3 8.7789E-01(2.3315E-01)  3.7005E+01(4.8181E+00) 4.7756E+01(3.8061E400) 7.3964E+01(4.0269E-01)  7.4611E+01(2.7216E-01)
NSGA-II  WFG4 5 4.0334E+01(8.2917E+00) 2.1238E+03(2.8864E+02) 2.8380E+03(6.0052E+02) 7.2625E+03(3.4983E+02) 7.4471E+03(2.6836E+02)
NSGA-II WFG5 3 1.7430E+00(8.9520E-01)  3.0558E+01(4.7061E+00) 2.9985E+01(5.1547E4+00)  7.1675E+01(2.7048E-01)  7.1784E+01(4.2525E-01)
NSGA-IT ~ WFG5 5 1.3096E-+02(5.3685E+01) 1.4948E+03(2.6938E+02) 3.8280E+03(6.0393E+02) 6.8859E-+03(1.5449E+02) 7.2818E+03(1.3192E+02)
NSGA-IT WFG6 3 2.0802E+00(1.3617E+00) 3.7578E+01(1.0423E+01) 4.3834E+01(9.8491E4+00) 7.2047E+01(4.2122E-01)  7.2617E+01(3.6653E-01)
NSGA-II WFG6 5 4.8432E+01(2.4592E+01) 1.8461E+03(5.1133E+02) 2.6766E+03(5.6379E+02) 7.3009E+03(2.3975E+02) 7.4327TE+03(1.6349E+02)
NSGA-II ~ WFG7 3 5.5033E-03(1.2611E-02)  3.5590E+01(4.3197E+00) 4.2380E+01(2.7246E+00)  7.4778E+01(5.7333E-01)  7.5398E+01(4.2521E-01)
NSGA-II WFGT7 5 7.5651E401(5.5494E+01) 2.8051E+03(1.9664E+02) 3.3382E+03(1.9345E+02) 7.2612E+03(2.0541E+02) 7.4388E+03(1.8143E+02)
NSGA-II ~ WFG8 3 1.0553E-+00(8.5153E-01)  2.8619E+01(3.8099E+00) 3.4401E+01(3.6869E-+00)  6.6635E-+01(5.1002E-01)  6.8032E+01(2.8151E-01)
NSGA-II WFG8 5 4.1957E4+01(2.2711E+01) 1.6900E+03(2.4758E+02) 2.3718E+03(1.8411E402) 6.0115E+03(1.8918E+02) 6.1372E+03(1.0655E+02)
NSGA-IT WFG9 3 6.6021E-02(4.9340E-03)  4.5999E+01(3.8896E+00) 5.3707E+01(3.1752E400) 6.7996E+01(1.6031E+00) 6.7908E+01(1.5281E+00)
NSGA-II ~ WFGY9 5 9.9691E+00(5.0953E+00) 3.1386E+03(4.3593E+02) 3.8913E+03(4.0748E+02) 6.3100E+03(1.9283E+02) 6.5530E+03(1.1814E+02)
NSGA-ITI WFG1 3 1.3530E-01(4.4051E-02)  2.4269E+01(1.2415E+00) 3.5767E+01(1.6013E400) 5.5443E+01(1.7266E+00) 6.3523E+01(1.2975E400)
NSGA-III ~ WFG1 5 1.2666E+01(3.4929E+00) 2.2122E+03(1.3100E+02) 3.1042E+03(1.1458E+02) 4.4234E+03(1.1443E+02) 4.7417E+03(1.1579E+02)
NSGA-III WFG2 3 1.6700E+01(5.1059E+00) 7.6305E+01(2.8631E+00) 7.8478E+01(4.8778E+00) 9.7611E+01(5.3311E+00) 9.8471E+01(5.4989E+00)
NSGA-IIT ~ WFG2 5 6.9919E+02(3.5615E+02) 7.7175E+03(4.8185E+02) 7.9954E+03(1.0237E4+03)  1.0042E+04(3.7903E+02)  1.0319E+04(1.2694E+01)
NSGA-III ~ WFG3 3 1.0389E+01(3.6995E+00) 4.3638E+01(4.0713E+00) 5.9539E+01(2.6997E+00)  7.3720E+01(2.5634E-01)  7.3995E+01(2.1104E-01)
NSGA-ITL WFG3 5 T7.4726E+02(2.8657E+02) 4.3454E+03(3.2418E+02) 6.8410E+03(8.6320E+01) 6.9922E+03(3.0004E+01) 7.0032E+03(3.4378E+01)
NSGA-III ~ WFG4 3 3.0494E400(7.2583E-01)  4.1379E+01(5.1188E+00)  6.4367E-+01(9.9168E-01)  7.2747E+01(3.6697E-01)  7.7353E+01(6.9158E-02)
NSGA-III WFG4 5 1.7978E+02(3.3397E+01) 2.9421E+03(2.2752E+02) 6.8878E+03(1.4693E+02) 7.9101E+03(8.1412E+01) 8.9753E+03(3.8997E+01)
NSGA-IIT ~ WFG5 3 5.4455E+00(1.0381E+00) 3.2694E+01(4.1825E-+00)  6.7061E-+01(5.6137E-01)  7.1448E+01(2.6398E-01)  7.4106E+01(2.6197E-01)
NSGA-III WFG5H 5 3.6621E402(7.7810E+01) 2.4523E+03(4.5823E+02) 7.3802E+03(1.6664E+02) 8.1795E+03(4.4347E+01) 8.7270E+03(1.7067E+01)
NSGA-ITI WFG6 3 5.2386E+00(8.2209E-01)  4.1836E+01(6.9853E+00) 3.3885E+01(8.1587E+00)  7.1930E+01(3.4415E-01)  7.4726E+01(4.0188E-01)
NSGA-III ~ WFG6 5  3.1508E+02(6.0188E+01) 2.4704E+03(2.9399E+02) 6.8310E+03(1.8621E402) 7.9604E+03(7.1953E+01) 8.6857E+03(8.9656E+01)
NSGA-III WFG7 3 3.0437E+00(1.4228E+00) 4.2109E+01(2.8706E+00) 6.5899E+01(1.2202E4+00) 7.4211E+01(2.0979E-01)  7.7589E+01(3.2094E-02)
NSGA-IIT ~ WFG7 5 3.6738E+02(1.1036E+02) 3.1897E+03(1.9176E+02) 7.3697E+03(1.1350E402) 8.3113E+03(6.4070E+01) 9.1296E+03(1.0447E+01)
NSGA-III WFG8 3 2.6648E+00(1.1001E+00) 2.9975E+01(4.5465E+00) 2.7976E+01(4.4372E4+00)  6.7076E+01(5.0398E-01)  7.0959E+01(1.8238E-01)
NSGA-III ~ WFG8 5 1.5130E+02(3.9786E+01) 2.2096E+03(2.5941E+02) 5.6445E+03(8.6754E+01) 6.4981E+03(3.9869E+02) 8.5705E+03(2.5747E+02)
NSGA-IIL WFG9 3 6.4964E-01(8.5365E-01)  4.5294E+01(3.9249E+00)  6.6277E+01(8.9142E-01)  7.0315E+01(1.5077E+00) 7.2209E+01(1.9136E+00)
NSGA-III WFG9 5 6.5621E401(7.3099E+01) 3.3359E+03(2.4258E+02) 6.8451E+03(8.2306E+01) 7.2766E+03(3.6846E+01) 7.5449E+03(2.6381E+01)

Tabla 4.8: Resumen de resultados WFG con hipervolumen

En estas se revela que, en la mayoria de los casos, un valor de heterogeneidad H = 1
obtuvo los mejores resultados, con ciertas excepciones en multiples problemas como F'1
en BiBBOB para NSGA-III y para WFG2, WFG5, y WFG9 en k£ = 3 con NSGA-III.

Analisis de IGD+

A continuacion, presentamos los resultados utilizando el indicador IGD+ en las Tablas
y que respaldan las observaciones hechas con el hipervolumen.
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‘ Algoritmo  Problema K 0.0 0.25 0.5 0.75 1.0
NSGA-II  WFGI 3 25711E+00(1.9797E-03)  1.7376E+00(5.3006E-02)  1.6912E-+00(3.4967E-02) 1.1556E-+00(3.0270E-02) 1.0066E-+00(4.5573E-02)
NSGA-Il  WFGI 5 3.02090E+00(2.5336E-03)  2.0788E-+00(7.9665E-02)  2.1405E+00(3.3975E-02)  1.6866E-+00(2.6430E-02) 1.6361E-+00(4.0216E-02)
NSGA-II  WFGI 7  3.3319E+00(6.4601E-03)  2.2536E-+00(8.4244E-02)  2.4086E-+00(4.5030E-02) 2.0549E-+00(3.4088E-02) 2.0372E-+00(3.6994E-02)
NSGA-II ~ WFGI 10 3.5900E+00(1.3900E-02)  2.2673E+00(8.8005E-02)  2.4601E-+00(1.4297E-01) 2.0374E-+00(7.2278E-02)  1.8602E-+00(1.3415E-01)
NSGA-II  WFG2 3 54570E+00(2.5688E-01)  7.1601E-01(2.2800E-01)  3.3905E- 01(1 0615E-01)  7.8740E-02(5.2292E-02)  9.3808E-02(9.6728E-02)
NSGA-II  WFG2 5 1.0591E+01(8.1382E-01)  1.6604E+00(6.6736E-01) 1.1946E-+00(2.8881E-01)  4.3194E-01(44673E-02)  4.5440E-01(5.6088E-02)
NSGA-II  WFG2 7 1.5095E+01(1.3631E+00) 3.0111E400(9.6862E-01)  1.9325E+00(3.5199E-01)  6.1885E-01(8.8013E-02)  6.1940E-01(7.8406E-02)
NSGA-II  WFG2 10 2.2137E+01(2.1841E+00)  4.8418E+00(1.5096E-+00) 3.2001E-+00(7.9964E-01)  7.1074E-01(6.8347E-02)  7.7418E-01(1.2179E-01)
NSGA-II  WFG3 3  3.3061E+00(4.8218E-01)  8.8339E-01(2.4647E-01)  9.3878E-01(1.1505E-01)  4.2239E-02(5.7073E-03)  3.0032E-02(3.3062E-03)
NSGA-II  WFG3 5 3.8878E+00(3.1722E-01)  1.5073E+00(2.3186E-01)  1.3647E+00(1.1946E-01)  1.7643E-01(4.5637E-02)  1.5044E-01(3.2992E-02)
NSGA-II  WFG3 7  3.7347E+00(3.5185E-01)  2.2462E+00(3.2005E-01)  1.9734E+00(3.0050E-01) ~ 2.6062E-01(5.2532E-02)  2.2788E-01(6.4730E-02)
NSGA-II  WFG3 10 3.7005E+00(3.0268E-01)  3.5068E+00(5.4478E-01)  2.8591E+00(5.9588E-01)  4.0515E-01(1.7181E-01)  3.1128E-01(1.2257E-01)
NSGA-II  WFG4 3 4.1709E+00(2.5634E-02)  1.0941E+00(3.2375E-01)  6.3661E-01(1.0876E-01)  1.3147E-01(6.6108E-03)  1.1629E-01(5.3263E-03)
NSGA-II  WFG4 5  6.9204E+00(1.1157E-01)  2.8612E+00(4.4235E-01)  2.4533E+00(6.0301E-01)  7.1513E-01(8.6957E-02)  6.5064E-01(6.0923E-02)
NSGA-II  WFG4 7  9.3485E+00(1.3834E-01)  4.6810E+00(6.2427E-01)  2.6884E-+00(2.3983E-01) 1.6811E-+00(9.8703E-02) 1.6413E+00(1.1102E-01)
NSGA-Il  WFG4 10 1.3982E+01(2.5190E-01)  8.6270E+00(7.5325E-01)  4.7654E-+00(4.0291E-01) 2.5365E-+00(2.0661E-01)  2.4354E-+00(1.4324E-01)
NSGA-Il  WFG5 3 4.0013E+00(3.0123E-01)  1.6555E+00(4.6349E-01)  1.8566E-+00(4.1917E-01)  1.4558E-01(3.5866E-03)  1.4064FE-01(5.1831E-03)
NSGA-Il  WFG5 5 7.1411E+00(2.0347E-01)  3.9584E+00(4.6049E-01)  1.6549E-+00(4.2519E-01)  7.1619E-01(2.9858E-02)  6.2436E-01(2.9982E-02)
NSGA-Il ~ WFG5 7 9.7053E+00(2.3448E-01)  5.8200E+00(8.2717E-01)  2.3022E-+00(1.6122E-01) 1.6633E-+00(6.3039E-02)  1.5911E-+00(9.4298E-02)
NSGA-II ~ WEG5 10 1.29040E+01(3.5983E-01)  6.9064E+00(1.2047E-+00) 3.2866E+00(2.5342E-01) 2.5650E-+00(9.1577E-02)  2.5866E-+00(6.9790E-02)
NSGA-Il  WFG6 3 3.7049E+00(5.4911E-01)  1.3509E+00(7.6988E-01) 1.0673E-+00(5.9792E-01)  1.6503E-01(7.4377E-03)  1.4963E-01(6.2517E-03)
NSGA-II  WFG6 5 7.7200E+00(4.3990E-02)  3.6673E+00(6.0460E-01)  3.3535E-+00(3.9256E-01)  7.1257E-01(4.8358E-02)  6.7196E-01(3.3843E-02)
NSGA-II  WFG6 7  1.1475E+01(9.1237E-02)  7.1138E-+00(9.8394E-01)  3.3953E-+00(3.2811E-01) 1.9765E-+00(2.4928E-01)  1.8630E-00(2.0226E-01)
NSGA-II  WFG6 10  1.8180E+01(1.5511E-01)  1.1187E+01(9.7825E-01)  6.0899E-+00(6.6231E-01) 3.2042E-+00(4.8109E-01) 3.2386E-+00(5.9550E-01)
NSGA-II  WFG7 3  4.2390E+00(1.1905E-02)  1.2287E+00(2.7270E-01)  1.0359E+00(1.5403E-01)  1.1263E-01(6.6983E-03)  9.9310E-02(5.6760E-03)
NSGA-II  WFG7 5  7.5805E+00(1.3727E-01)  2.8074E+00(2.1589E-01)  2.4586E+00(1.9758E-01)  7.2286E-01(4.6944E-02)  6.8184E-01(3.6317E-02)
NSGA-II  WFG7 7 1.1388E+01(2.3889E-01)  5.2151E+00(6.2695E-01)  4.7580E+00(2.4821E-01) 1.9498E+00(1.6834E-01) 1.9143E-+00(1.4625E-01)
NSGA-II  WFG7 10 1.7613E+01(1.9474E-01) 9.9074E+00(1.2108E+00) 9.1549E+00(5.4191E-01) 3.7396E+00(1.4263E-01) 3.7940E-+00(1.1934E-01)
NSGA-II  WFG8 3  4.1584E+00(1.5656E-01)  1.8773E+00(3.5751E-01)  1.5021E+00(3.0692E-01) ~ 2.7566E-01(1.0130E-02)  2.4758E-01(4.7858E-03)
NSGA-II  WFG8 5  7.6838E-+00(6.0302E-02)  4.4499E+00(4.5177E-01) 4.1620E+00(4.3615E-01) 1.1572E+00(4.4360E-02) 1.1246E-+00(3.3745E-02)
NSGA-II  WFG8 7 1.1596E+01(6.0502E-02)  7.5885E+00(7.7176E-01)  3.5480E+00(3.6449E-01) 2.2956E+00(9.2373E-02) 2.2475E-+00(7.5685E-02)
NSGA-II  WFG8 10 1.7786E+01(1.3683E-01) 9.9649E+00(1.6385E+00) 4.6442E+00(5.1340E-01) 3.5489E+00(1.7904E-01) 3.6473E-+00(1.2502E-01)
NSGA-II  WFG9 3  4.2723E+00(1.9197E-02)  7.2840E-01(1.0069E-01)  5.3917E-01(8.1846E-02)  2.1080E-01(3.0420E-02)  2.1214E-01(2.9456E-02)
NSGA-Il ~ WFGY 5  8.0862E+00(4.5759E-02)  2.7122E+00(2.6982E-01)  2.3203E-+00(1.5347E-01)  1.0887E-+00(7.8197E-02)  1.0240E-+00(4.9375E-02)
NSGA-Il ~ WFGY 7  1.2152E+01(6.1741E-02)  5.3377E+00(3.1207E-01)  4.7968E-+00(2.2066E-01) 2.7193E-+00(2.0743E-01)  2.6372E-+00(1.7433E-01)
NSGA-Il  WFGY 10 1.8281E+01(1.4350E-01)  9.6028E+00(4.2034E-01)  8.5471E-+00(5.3825E-01) 4.4317E-+00(2.6263E-01) 4.3547E-+00(2.1179E-01)
Tabla 4.9: Resumen de resultados WFG con NSGA-II en IGD+
| Algoritmo  Problema 0.0 0.25 0.5 0.75 1.0
NSGA-III  WFGL 3 25651E+00(3.3162E-03)  1.7393E+00(4.1661E-02)  1.4418E+00(5.0657E-02)  9.9824E-01(4.3217E-02)  7.9781E-01(3.4752E-02)
NSGA-TII  WFG1 5  3.0132E+00(4.4126E-03)  2.1151E+00(4.4773E-02)  1.8376E+00(4.1284E-02)  1.4475E+00(2.4165E-02)  1.3697E-+00(1.8544F-02)
NSGA-III ~ WFG1 7 3 3241E+00(7.3818E-03)  2.3655E+00(8.6522E-02)  2.0441E4+00(3.2609E-02)  1.0866E+00(9.7425E-02)  9.9030E-01(1.3468E-01)
NSGA-III  WFGL 10 3.5785E+00(2.0214E-02)  2.3346E+00(1.3869E-01) ~ 2.1466E-+00(6.6710E-02)  3.6119E-01(1.1763E-01)  3.4648E-01(1.3737E-01)
NSGAI  WFG2 3 2. TT07E-+00(6.6230E-01)  5.3183E-01(9.7474F-02)  5.1804E-01(1.7863E-01)  8.3480E-02(9.7369E-02)  6.7318E-02(1.0512E-01)
NSGA-III ~ WFG2 5 7.3620E-+00(1.3511E-+00)  1.4999E-+00(3.9749E-01)  1.2984E+00(7.2456E-01)  2.2469E-01(1.6432E-01)  1.4850E-01(9.2468E-03)
NSGA-III ~ WFG2 7 1.0230E+01(2.2566E+00) 2.7013E-+00(6.1776E-01)  1.0166E+00(9.1554E-01)  5.4664E-01(6.6241E-01)  3.8939E-01(5.0065E-01)
NSGA-III ~ WFG2 10 1.4769E+01(3.0893E+00)  4.8041E+00(9.4512E-01)  1.5191E+00(1.3380E+00)  1.2089E-+00(1.3296E-+00)  8.1144E-01(1.1171E-+00)
NSGA-III  WFG3 3 2.6833E+00(44791E-01)  9.4427E-01(1.7890E-01)  3.8043E-01(8.3742E-02)  1.0092E-01(1.2085E-02)  8.9849F-02(6.9000E-03)
NSGA-III ~ WFG3 5 2.9222E+00(4.4048E-01)  1.3503E-+00(2.0965E-01)  3.3909E-01(4.5098E-02)  2.7276E-01(2.7712E-02)  2.7207E-01(4.1225E-02)
NSGA-III  WFG3 7 3.3426E+00(3.2071E-01)  1.5454E+00(3.1901E-01)  8.6914E-01(2.7470E-01)  8.5301E-01(2.1614E-01)  9.1217E-01(1.6500E-01)
NSGA-IIT  WFG3 10 3.3727E+00(5.1651E-01)  1.9557E-+00(4.0201E-01)  9.9693E-01(8.5384E-01)  1.4970E+00(8.8789E-01)  1.1974E+00(8.3381E-01)
NSGA-III ~ WFG4 3 3.8805E+00(1.1055E-01)  9.0336E-01(3.1212E-01)  2.7166E-01(1.7835E-02)  1.3132E-01(8.3219E-03)  3.3199E-02(2.5742E-03)
NSGA-III  WFG4 5  6.5594E+00(1.1621E-01)  2.3324E+00(2.6834E-01)  7.4675E-01(5.2361E-02)  5.4002E-01(2.9481E-02)  3.3549E-01(1.1949E-02)
NSGA-III  WFG4 7 8.8384E+00(1.8590E-01)  3.5507E-+00(3.1124E-01)  1.4778E+00(9.4947E-02)  1.1737E+00(7.8060E-02)  7.3384F-01(1.7963E-02)
NSGA-III ~ WFG4 10  1.3438E+01(5.2346E-01)  6.9154E-+00(6.4913E-01)  3.1017E+00(3.6351E-01)  1.9967E+00(1.9670E-01)  8.3465E-01(4.4447E-02)
NSGA-III  WFG5 3 3.2800E+00(3.4051E-01)  1.5337E+00(3.4715E-01)  2.0880E-01(9.5185E-03)  1.2593E-01(3.1441E-03)  9.8951E-02(7.6800E-03)
NSGA-III ~ WFGH 5 5.9536E+00(5.3304E-01)  2.6776E-+00(5.0690E-01)  5.3819E-01(3.1047E-02)  3.8848E-01(1.2437E-02)  2.7019E-01(6.9017E-03)
NSGA-III ~ WFGH 7 8.6570E+00(6.3787E-01)  3.5706E-+00(5.2227E-01)  9.8476E-01(5.1659E-02)  7.8174E-01(2.9257E-02)  6.5399E-01(1.7837E-02)
NSGA-III  WFG5 10 1.1028E+01(1.3196E+00) 4.0270E+00(8.7077E-01)  1.6720E+00(1.0976E-01)  1.3956E+00(4.8206E-02)  1.2058E-+00(2.8050E-02)
NSGA-III ~ WFG6 3 3.1849E+00(3.5244E-01)  1.0324E-+00(3.9390E-01)  1.6690E+00(5.6321E-01)  1.4260E-01(6.8752E-03)  7.6208F-02(9.0571E-03)
NSGA-III ~ WFG6 5  6.3635E+00(5.6749E-01)  2.9987E-+00(4.5346E-01)  7.2468E-01(4.3458E-02)  4.7470E-01(1.6686E-02)  2.6128E-01(1.7163E-02)
NSGA-III  WFG6 7  1.0207TE+01(5.6036E-01)  4.9202E+00(4.7477E-01)  1.1098E+00(5.1231E-02)  8.0052E-01(2.8950E-02)  4.9010E-01(2.5988E-02)
NSGA-TIT ~ WFG6 10 1.6827E+01(1.0924E+00) 9.1831E+00(7.9924E-01)  1.4427E+00(1.1493E-01)  1.1405E400(8.5842E-02)  6.7957E-01(6.3734E-02)
NSGA-III ~ WFG7 3 3.7578E+00(2.8314E-01)  9.5448E-01(1.3721E-01)  2.5044FE-01(2.5753E-02)  9.4691E-02(4.1695E-03)  2.0722E-02(1.2582E-03)
NSGA-III  WFG7 5  6.3775E+00(4.1762E-01)  2.5931E+00(2.0811E-01)  5.9523E-01(2.6231E-02)  4.0499E-01(1.6902E-02)  2.0127E-01(6.1812E-03)
NSGA-IIT  WFG7 7 9.8063E+00(6.9371E-01)  5.0710E+00(2.6822E-01)  1.2046E+00(9.7827E-02)  9.2140E-01(5.1178E-02)  4.8722F-01(1.4471E-02)
NSGA-IIT ~ WFG7 10 1.5924E+01(1.1678E+00)  9.3861E-+00(4.8256E-01)  3.0607E+00(2.0020E-01)  1.7724E+00(1.1758E-01)  8.8690E-01(2.0901E-02)
NSGA-III  WFGS 3 3.9639E+00(1.7629E-01)  1.7502E+00(4.0881E-01)  2.0611E+00(3.3070E-01)  2.4828E-01(1.1321E-02)  1.8425E-01(3.1886E-03)
NSGA-IIT  WFG8 5  T7.4259E+00(1.2091E-01)  3.7711E400(6.9422E-01)  1.1251E+00(4.5826E-02)  8.5309E-01(1.1315E-01)  3.3884F-01(6.8668E-02)
NSGA-IIT ~ WFG8 7 1.1078E+01(7.6632E-01)  5.7595E-+00(8.8009E-01)  1.5516E+00(7.7562E-02)  1.0150E+00(5.3721E-02)  5.4504F-01(1.4287E-02)
NSGA-III ~ WFG8 10  1.7510E+01(2.9643E-01)  1.0225E+01(1.1303E+00)  1.7301E+00(1.4559E-01)  1.3890E+00(5.6890E-02) ~ 8.7749E-01(1.7255E-02)
NSGA-TIT  WFG9 3 4.1743E+00(1.9044E-01)  7.5797E-01(1.3803E-01)  2.3155E-01(1.6065E-02)  1.5283E-01(3.1253E-02)  1.1733E-01(3.8842E-02)
NSGA-III ~ WFGY 5 7.9385E+00(2.8389E-01)  2.6014E-+00(2.0562E-01)  9.5563E-01(4.2611E-02)  7.5523E-01(1.7622E-02)  5.2160E-01(1.4191E-02)
NSGA-III ~ WFG9 7  1.1923E+01(1.3888E-01)  4.9629E-+00(3.0276E-01)  1.8717E+00(1.5585E-01)  1.3077E+00(1.6884E-01)  9.1350E-01(1.5195E-01)
NSGA-TII  WFG9 10  1.7935E+01(3.0478E-01)  9.2131E+00(3.2086E-01)  2.9929E+00(2.2111E-01)  2.0545E+00(1.1753E-01)  1.4839E-+00(1.0958E-01)

Tabla 4.10: Resumen de resultados WFG con NSGA-III en IGD+
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Los resultados demuestran una preferencia por H = 1, seguido de cerca por H = 0,75,
reforzando la idea de que una alta heterogeneidad favorece la convergencia hacia solu-
ciones Optimas.

Los datos sugieren que, en general, niveles altos de heterogeneidad tienden a favorecer la
obtencion de mejores resultados en contextos multi-objetivo. No obstante, es interesante
observar que, similar a los hallazgos en el andlisis mono-objetivo, existen casos donde
niveles mas bajos de heterogeneidad también conducen a resultados optimos. Esta
variabilidad subraya la importancia de considerar el nivel adecuado de heterogeneidad
para cada problema especifico, en funcién de sus caracteristicas y la dimensionalidad
del espacio de busqueda.

4.2.2. Graficos de convergencia

Los graficos de convergencia mostrados en las Figuras N ilustran cémo los
niveles de heterogeneidad afectan la convergencia de los algoritmos.
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"
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Figura 4.10: NSGA-III - Hipervolumen - Dos dimensiones
NSGA3 - FO - d 40 - Results
== H = 0.25 - Result
@ H=025-Best }
11175 nios b
c —— H=0.75 - Result
8 @ H=0.75-Best
o == H=1.0-Result
s 1.0 @ H=10-Best
0.9 4 ,

0 200 400 600 800 1000

Figura 4.11: NSGA-III - Hipervolumen - Cuarenta dimensiones

Estos patrones se confirman en los graficos de cajas de las Figuras [£.12] y [£.13] que
examinan la distribucién de los resultados y su variabilidad en funciéon de los niveles
de heterogeneidad.
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Figura 4.12: NSGA-IIT - Boxplots - Dos dimensiones
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Figura 4.13: NSGA-III - Boxplots - Cuarenta dimensiones

4.2.3. Pruebas estadisticas

A continuacién, se presentan los analisis aplicados para evaluar el impacto de la hete-
rogeneidad temporal en los algoritmos estudiados.

Analisis de Kruskal-Wallis

La prueba de Kruskal-Wallis se utilizé para evaluar la significancia estadistica de los
datos obtenidos en los resultados para mostrar los efectos de la heterogeneidad. Los
datos obtenidos, presentados en las Tablas y [4.12] indican que todos los valores
de p-valor superan el umbral critico de 0.05, lo que confirma la relevancia estadistica
de nuestros resultados en las pruebas BiBBOB.
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‘Algoritmo Problema Dimensiones Valor - P ‘

NSGA-II 1 2 1.161788E-19
NSGA-II 1 40 1.161788E-19
NSGA-II 2 2 1.161788E-19
NSGA-II 2 40 1.161788E-19
NSGA-II 3 2 1.161788E-19
NSGA-II 3 40 1.161788E-19
NSGA-II 4 2 1.161788E-19
NSGA-II 4 40 1.161788E-19
NSGA-II ) 2 1.161788E-19
NSGA-II ) 40 1.161788E-19
NSGA-II 6 2 1.161788E-19
NSGA-II 6 40 1.161788E-19
NSGA-II 7 2 1.161788E-19
NSGA-II 7 40 1.161788E-19
NSGA-II 8 2 1.161788E-19
NSGA-II 8 40 1.161788E-19
NSGA-II 9 2 1.16178S8E-19
NSGA-II 9 40 1.161788E-19
NSGA-II 10 2 1.161788E-19
NSGA-II 10 40 1.161788E-19

Tabla 4.11: Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-II en hiper-
volumen
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Algoritmo Problema Dimensiones Valor - P ‘

NSGA-III 1 2 3.524316E-19
NSGA-III 1 40 3.524316E-19
NSGA-III 2 2 3.524316E-19
NSGA-III 2 40 3.524316E-19
NSGA-III 3 2 3.524316E-19
NSGA-III 3 40 3.524316E-19
NSGA-III 4 2 3.524316E-19
NSGA-III 4 40 3.524316E-19
NSGA-III ) 2 3.524316E-19
NSGA-III ) 40 3.524316E-19
NSGA-III 6 2 3.524316E-19
NSGA-III 6 40 3.524316E-19
NSGA-III 7 2 3.524316E-19
NSGA-III 7 40 3.524316E-19
NSGA-III 8 2 3.524316E-19
NSGA-III 8 40 3.524316E-19
NSGA-III 9 2 3.524316E-19
NSGA-III 9 40 3.524316E-19
NSGA-III 10 2 3.524316E-19
NSGA-III 10 40 3.524316E-19

Tabla 4.12: Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-III en hiper-
volumen

Mostrando de igual forma los mismos resultados en las Tablas y para los
problemas de WFG tomando en cuenta de la limitante del calculo del hipervolumen
para mas de cinco dimensiones.
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‘Algoritmo Problema K

HV

IGD+

NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II
NSGA-II

WFG1
WFG1
WFG1
WFG1
WFG2
WFG2
WFG2
WFG2
WFG3
WFG3
WFG3
WFG3
WFG4
WFG4
WFG4
WFG4
WFGH
WEFGH
WFGH
WFGH
WFG6
WFG6
WFG6
WFG6
WFEGT
WFEGT
WFEGT
WFGT7
WEFGS8
WFGS8
WFGS8
WFGS8
WFG9
WFG9
WFG9
WFG9

3

— — — — — — — —
\IOTOOO\]OTCOO\]O‘(OJO\]OTOJO\IOTOOO\IOTOOO\]O‘(COO\]OTOJO\IOT

—_
=)

2.868101E-19
1.373986E-18

1.889840E-18
3.269007E-18

1.173661E-18
2.804691E-18

2.445484E-19
2.547132E-18

1.072532E-17
1.272764E-19

2.688698E-18
2.795256E-18

1.025247E-18
9.569499E-19

4.452856E-19
8.900907E-19

1.835296E-18
9.141590E-19

6.290090E-19
2.219591E-18
2.421277E-18
6.249993E-19
2.752182E-18
4.998850E-18
2.115462E-18
2.465708E-18
1.255335E-18
6.129765E-18
5.151214E-18
2.519298E-16
1.869243E-19
4.338122E-18
9.551041E-19
9.959799E-19
4.045596E-18
1.429720E-19
7.555988E-19
1.104602E-18
1.835627E-18
5.327367E-18
8.424612E-19
1.107109E-18
1.276894E-18
1.511281E-18
3.592501E-18
5.302982E-18
6.065023E-19
6.015865E-18
9.364689E-19
8.879647E-19
1.891716E-18
1.705343E-18
2.377231E-18
1.828495E-18

Tabla 4.13: Resumen de la prueba WFG de Kruskal Wallis con NSGAII
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‘ Algoritmo Problema K HV IGD+ ‘
NSGA-III  WFG1 3  1.112309E-19 1.112309E-19
NSGA-III  WFG1 5 1.458365E-19 1.112309E-19
NSGA-III  WFG1 7 - 7.185443E-19
NSGA-III  WFG1 10 - 2.556141E-18
NSGA-IIT  WFG2 3 5.096463E-18 5.450033E-18
NSGA-IIT ~ WFG2 5 1.424388E-18 1.219169E-18
NSGA-III  WFG2 7 - 6.427244E-17
NSGA-III  WFG2 10 - 4.158801E-16
NSGA-III  WFG3 3 5.420651E-19 5.402717E-19
NSGA-IIT ~ WFG3 5 4.192228E-18 1.175711E-17
NSGA-IIT ~ WFG3 7 - 6.836976E-15
NSGA-III  WFG3 10 - 2.639723E-11
NSGA-III  WFG4 3 1.112309E-19 1.112309E-19
NSGA-III  WFG4 5 1.112309E-19 1.112309E-19
NSGA-III  WFG4 7 - 1.192118E-19
NSGA-IIT  WFG4 10 - 1.112309E-19
NSGA-IIT ~ WFGH 3 1.112309E-19 1.112309E-19
NSGA-III  WFG5H 5 1.112309E-19 1.112309E-19
NSGA-III  WFG5H 7 - 1.112309E-19
NSGA-III  WFG5 10 - 1.138433E-19
NSGA-IIT  WFG6 3 5.707854E-19 4.719595E-19
NSGA-IIT ~ WFG6 5 1.112309E-19 1.112309E-19
NSGA-III  WFG6 7 - 1.112309E-19
NSGA-III  WFG6 10 - 1.305375E-19
NSGA-III  WFEGT 3 1.112309E-19 1.112309E-19
NSGA-IIT  WFGT 5 1.112309E-19 1.112309E-19
NSGA-IIT ~ WFGT 7 - 1.112309E-19
NSGA-III  WFG7 10 - 1.112309E-19
NSGA-III  WFGS 3 9.671707E-19 7.036632E-19
NSGA-III  WFGS 5 1.112309E-19 1.112309E-19
NSGA-IIT ~ WFGS8 7 - 1.112309E-19
NSGA-IIT  WFG8 10 - 1.165034E-19
NSGA-III  WFG9 3 5.325995E-19 6.196537E-19
NSGA-III  WFG9 5 1.112309E-19 1.112309E-19
NSGA-III  WFG9 7 - 1.566267E-19
NSGA-III  WFG9 10 - 1.112309E-19

Tabla 4.14: Resumen de la prueba WFG de Kruskal Wallis NSGAIII
Prueba de Wilcoxon ranksum

Posteriormente, la prueba de Wilcoxon ranksum fue aplicada, cuyos resultados se de-
tallan en la Tabla Wilcoxon BiBBOB. Esta prueba subraya que, aunque el elitismo es
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predominante en varios escenarios, los resultados mas significativos se sitiian entre los
valores de 0.75 y 1.00, sugiriendo que el elitismo puro no es siempre la estrategia mas
efectiva para abordar problemas bi-objetivo.

‘ Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA2 1 2 0.0 - 1.000000e+00  1.000000e4-00 1.000000e+00 1.000000e+00
NSGA2 1 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00  1.000000e+00
NSGA2 1 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 1 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 1 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 2 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 2 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 2 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 2 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 2 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924¢-08 -
NSGA2 3 2 0.0 - 1.000000e+00  1.000000e400 1.000000e+00 1.000000e+00
NSGA2 3 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00  1.000000e+00
NSGA2 3 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e4-00
NSGA2 3 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 3 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 4 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 2 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 4 2 0.5 3.150924e-08  4.256164¢e-08 - 1.000000e+00  1.000000e+-00
NSGA2 4 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 5 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 5 2 0.0 - 1.000000e+00  1.000000e400 1.000000e+00 1.000000e+00
NSGA2 5 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00  1.000000e+00
NSGA2 5 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 5 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 5 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 6 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 6 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 6 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 6 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 7 2 0.0 - 1.000000e+00  1.000000e4-00 1.000000e+00 1.000000e+00
NSGA2 7 2 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 7 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 7 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 7 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 8 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 8 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 8 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 8 2 1.0 3.150924¢-08  3.150924e-08  3.150924¢-08  3.150924¢-08 -
NSGA2 9 2 0.0 - 1.000000e+-00  1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 9 2 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00 1.000000e+00
NSGA2 9 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 9 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 9 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 10 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 10 2 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 10 2 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 10 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 10 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -

Tabla 4.15: Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 2 dimensiones
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‘ Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA2 1 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 1 40 0.25 3.150924¢-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 1 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+00
NSGA2 1 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 1 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 2 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 40 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 2 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e4-00
NSGA2 2 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 2 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 3 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 3 40 0.25 3.150924¢-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 3 40 0.5 3.150924e-08  4.256164¢e-08 - 1.000000e+00  1.000000e+-00
NSGA2 3 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+4-00
NSGA2 3 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 4 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 40 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 4 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 4 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 4 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 5 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 5 40 0.25 3.150924¢-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 5 40 0.5 3.150924e-08  4.256164¢e-08 - 1.000000e+00  1.000000e+-00
NSGA2 5 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+4-00
NSGA2 5 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 6 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 40 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00 1.000000e+00
NSGA2 6 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e4-00  1.000000e4-00
NSGA2 6 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 6 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 7 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 7 40 0.25 3.150924¢-08 - 1.000000e+-00  1.000000e+00 1.000000e+00
NSGA2 7 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 7 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 7 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 8 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 40 0.25 3.150924e-08 - 1.000000e4-00  1.000000e+00  1.000000e+00
NSGA2 8 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e4-00
NSGA2 8 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 8 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 9 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+-00
NSGA2 9 40 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 9 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 9 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+00
NSGA2 9 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -
NSGA2 10 40 0.0 - 1.000000e+00  1.000000e4-00 1.000000e+00 1.000000e+00
NSGA2 10 40 0.25 3.150924e-08 - 1.000000e+-00  1.000000e+00  1.000000e+00
NSGA2 10 40 0.5 3.150924e-08  4.256164e-08 - 1.000000e+00  1.000000e+-00
NSGA2 10 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 1.000000e+-00
NSGA2 10 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  3.150924e-08 -

Tabla 4.16: Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 40 dimensiones
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‘ Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA3 1 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 1 2 0.25 3.150924¢-08 - 9.999388¢-01  1.000000e+00  1.000000e+00
NSGA3 1 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+00
NSGA3 1 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 1 2 1.0 3.150924¢-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 2 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 2 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 2 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 2 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 2 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 3 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 3 2 0.25 3.150924¢-08 - 9.999388e-01  1.000000e+00  1.000000e-+00
NSGA3 3 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 3 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 3 2 1.0 3.150924¢-08  3.150924¢-08  3.150924¢-08  1.000000e+00 -
NSGA3 4 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 4 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e+-00  1.000000e+00
NSGA3 4 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 4 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 4 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 5 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 5 2 0.25 3.150924¢-08 - 9.999388e-01  1.000000e-+00  1.000000e-+00
NSGA3 5 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 5 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 5 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 6 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 6 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 6 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 6 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 6 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 7 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 7 2 0.25 3.150924¢-08 - 9.999388¢-01  1.000000e+00  1.000000e+00
NSGA3 7 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 7 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 7 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 8 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 8 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 8 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e4-00
NSGA3 8 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 8 2 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -
NSGA3 9 2 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 9 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e-+00  1.000000e-+00
NSGA3 9 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 9 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 9 2 1.0 3.150924¢-08  3.150924¢-08  3.150924¢-08  1.000000e+00 -
NSGA3 10 2 0.0 - 1.000000e+00  1.000000e4-00 1.000000e+00 1.000000e+00
NSGA3 10 2 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 10 2 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+4-00
NSGA3 10 2 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 10 2 1.0 3.150924e-08  3.150924¢-08  3.150924¢-08  1.000000e+00 -

Tabla 4.17: Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 2 dimensiones
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‘Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0

NSGA3 1 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 1 40 0.25 3.150924¢-08 - 9.999388¢-01  1.000000e+4-00  1.000000e+-00
NSGA3 1 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 1 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 1 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 2 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+4-00
NSGA3 2 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 2 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+00
NSGA3 2 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 2 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 3 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+-00
NSGA3 3 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 3 40 0.5 3.150924e-08  6.123895¢e-05 - 1.000000e+00  1.000000e+-00
NSGA3 3 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 3 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 4 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 4 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 4 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+00
NSGA3 4 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 4 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 5 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+-00
NSGA3 5 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 5 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00 1.000000e+-00
NSGA3 5 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924¢-08
NSGA3 5 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 6 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00  1.000000e+00
NSGA3 6 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 6 40 0.5 3.150924e-08  6.123895¢e-05 - 1.000000e+00  1.000000e+00
NSGA3 6 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 6 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 7 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+-00
NSGA3 7 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 7 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 7 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 7 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 8 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00  1.000000e+00
NSGA3 8 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 8 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+00
NSGA3 8 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 8 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

NSGA3 9 40 0.0 - 1.000000e+00  1.000000e+00 1.000000e+00 1.000000e+-00
NSGA3 9 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+00  1.000000e+00
NSGA3 9 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+-00
NSGA3 9 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 9 40 1.0 3.150924¢-08  3.150924¢-08  3.150924e-08  1.000000e+00 -

NSGA3 10 40 0.0 - 1.000000e+00  1.000000e4-00 1.000000e+00 1.000000e+00
NSGA3 10 40 0.25 3.150924e-08 - 9.999388e-01  1.000000e+-00  1.000000e+00
NSGA3 10 40 0.5 3.150924e-08  6.123895e-05 - 1.000000e+00  1.000000e+00
NSGA3 10 40 0.75 3.150924e-08  3.150924e-08  3.150924e-08 - 3.150924e-08
NSGA3 10 40 1.0 3.150924e-08  3.150924e-08  3.150924e-08  1.000000e+00 -

Tabla 4.18: Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 40 dimensiones

Bi-Objective - CD

5 4 3 2 1
| 1 | 1 ] 1 ] L |
0 JUDO 111386 1.0
0.25 3.5303 2.3561 0.75
0.5 2.9751

Figura 4.14: Gréfica de diferencias criticas bi-objetivo
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Bi-Objective-Achive - CD

5 4 3 2 1
L . 1 : | : | . |
0 J’““" L1342 1 o
0.25 3.6901 22313 0.75
05 2.8844

Figura 4.15: Grafica de diferencias criticas bi-objetivo con archivo externo

Al igual que en las pruebas mono-objetivo, se generaron las graficas de diferencias cri-
ticas para las pruebas multi-objetivo, tanto en las pruebas bi-objetivo sin el uso de un
archivo externo, como se muestra en la Figura [4.14] asi como con el uso de un archivo
externo, como se presenta en la Figura 4.15

En ambos escenarios, los niveles de heterogeneidad méas altos, 0.75 y 1.0, muestran
un rendimiento superior, con diferencias estadisticamente significativas respecto a los
niveles mas bajos. Los resultados sugieren una clara mejora en el rendimiento al in-
crementar la heterogeneidad, tanto en los problemas bi-objetivo que hacen uso de un
archivo de soluciones como en aquellos que no lo utilizan.

Multi-Objective - CD

5 4 3 2 1
| 1 1 1 1 1 1 1 I
0 il:gss 12354 4
0.25 28504 18229 755
0.5 20875

Figura 4.16: Grafica de diferencias criticas multi-objetivo

Por otro lado, los resultados multi-objetivo presentados en la Figura|4.16[confirman que,
al igual que en los andlisis previos, un aumento en la heterogeneidad, especificamente
con valores (.75 y 1.0, conduce a una mejora significativa en el rendimiento de los pro-
blemas multi-objetivo. Los valores bajos de heterogeneidad, como 0.0 y 0.25, exhiben
un rendimiento considerablemente inferior, sin diferencias relevantes entre ellos.

Conteo de Borda

El andlisis mediante el conteo de Borda, presentado en la Tabla [£.19] ofrece una pers-
pectiva adicional, destacando casos en los cuales valores de heterogeneidad de 0.75
resultan ser particularmente efectivos, especialmente en el algoritmo NSGA-III y en
problemas de dimensiones reducidas.
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‘ Algoritmo Dimensiones h =00 h=025 h=05 h=0,7 h=1,0 ‘

NSGA-II 2 55 110 131 218 275
NSGA-II 3 55 110 131 218 275
NSGA-II 5 55 110 131 218 275
NSGA-II 10 55 110 131 218 275
NSGA-II 20 55 110 131 218 275
NSGA-II 40 55 110 131 218 275
NSGA-III 2 55 110 164 199 259
NSGA-III 3 55 110 164 199 259
NSGA-III 5 55 110 164 199 259
NSGA-III 10 55 110 164 199 259
NSGA-III 20 55 110 164 199 259
NSGA-III 40 55 110 164 199 259
| Total - 660 1320 1768 2414 3034 |

Tabla 4.19: Tabla de resultados del conteo de Borda en BiBBOB

Ademas de ello mostrando notables resultados por la parte de WFG como se muestran

en las Tablas [.20] y

| Algoritmo K h=00 h=025 h=05 h=075 h=10
NSGA-II 3 9 18 25 36 43
NSGA-II 5 9 18 26 36 44
NSGA-IIL 3 9 19 25 36 45
NSGA-III 5 8 16 23 32 39

| Total - 35 71 99 140 171

Tabla 4.20: Tabla de resultados del conteo de Borda en WFG con hipervolumen

| Algoritmo K A =00 h=025 h=05 h=075 h=10]
NSGA-II 3 9 18 24 36 44
NSGA-II 5 9 19 26 37 44
NSGA-II 7 9 19 26 36 39
NSGA-IT 10 9 18 26 37 38
NSGA-IIT 3 9 20 24 36 45
NSGA-IIT 5 9 18 26 36 44
NSGA-IIT 7 9 18 27 35 42
NSGA-III 10 8 16 25 30 36

| Total - 71 146 204 283 332 |

Tabla 4.21: Tabla de resultados del conteo de Borda en WFG con IGD-+
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En conjunto, estos andlisis estadisticos refuerzan la nocién de que la heterogeneidad
tiene un impacto significativo en la optimizacion mono-objetivo y multi-objetivo. Ade-
mas, revelan que una seleccién cuidadosa del nivel de heterogeneidad puede optimizar
el rendimiento de los algoritmos en estos complejos espacios de busqueda, desafiando
la suposicion de que una estrategia de elitismo puro es universalmente preferible.

4.2.4. Explicabilidad

Al igual que en los experimentos mono-objetivo, realizamos un andlisis exhaustivo de
estas caracteristicas ELA para todos los problemas evaluados.

Estos resultados se muestran en las Figuras En ellas se muestran con relevan-
cia las métricas de dispersion y los angulos como factores que impactan el rendi-
miento y la eficacia del uso de la heterogeneidad. Mientras que caracteristicas como
ela meta.quad_simple.adj_r2 y las métricas asociadas con la escalada de colinas
hill_climbing se presentan con variabilidad significativa, lo que sugiere su impacto
relevante en la salida del modelo.

Figura 4.17: Mapa de correlacion de caracterisitcas de los espacios Bi-Objetivo

El analisis de SHAP en bi-objetivo que se muestra en la Figura [£.1§ confirman que las
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caracteristicas relacionadas con la metaheuristica cuadratica ajustada impacta en un
rango amplio en la salida del modelo. Esto sugiere que tales caracteristicas son cruciales
para el ajuste del modelo, evidenciando una fuerte dependencia del modelo en estas
variables para la generaciéon de resultados precisos.

Hgh
el moto.qued simple. ad] r2 v ’ L]

MNaorithm_NSGAS P-l l -

Mgorithm_NSGAZ - —'l ' ]
cla metn.quad w interockad] r2
ala local bestZmean contr.orig.l
hill elimbing awg dist oral 1w global.1
hill ¢limbing. std aist lecal ta glaball
ala_mets quad_w_interact.ad|_r2.1
an neutral_nodes_proporian
@la_cony,cony_prob.l

alll_climblng. std_dist_between_opt.l

eatura value

#la_convlin_dev_orig

cm angleangle sd.l

fitness distance fitness soo.1

ela metain simple.intercoot
..l

nill_climbing. avg_dist_betwesn_opt.1
eia_level mmce_gda_S0

.-_Ia_!.:fal bestZn W an_Coner. ratho.1

nbc.nn_nb.cor.l

e o b o T e S e 3

r— — = Low
L =005 0 03 ans

SHAP value {impact on modal output)

Figura 4.18: Analisis Bi-Objetivo de SHAP destacando las caracteristicas mas influ-
yentes en la eleccién de heterogeneidad.

Por otro lado, las métricas asociadas a la escalada de colinas, como la distancia prome-
dio y la desviacion estandar de la distancia desde local a global, asi como el algoritmo
aplicado, también mostraron impactos considerables. Estos resultados indican que el
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ajuste espacial y la exploracién de soluciones locales frente a globales y el su aplicacién
respectiva en cada algoritmo juegan roles significativos con el uso de la heterogeneidad.

4.3. Discusion

Esta investigacion se centré inicialmente en evaluar si la heterogeneidad temporal pue-
de influir de manera significativa en el balance entre la exploracién y la explotacion.
Los resultados obtenidos confirman que la heterogeneidad temporal contribuye a este
balance, particularmente se denota mas en entornos de baja dimensionalidad y en pro-
blemas con un solo objetivo.

Como se denot6 en el analisis, se observé un aumento consistente en la efectividad de los
algoritmos conforme aumentaba la heterogeneidad, lo que indica una mejor adaptacion
en escenarios mas complejos. Este fenémeno puede interpretarse como un incremento
en la capacidad de explotacion sin sacrificar la eficacia en la exploracion, especialmente
en configuraciones donde los desafios del problema se intensifican.

Sin embargo, es relevante destacar que, a pesar de la tendencia general hacia una mejor
adaptabilidad en condiciones heterogéneas, los algoritmos evolutivos como el Algoritmo
Genético (GA) mostraron preferencias hacia estrategias elitistas en situaciones de alta
complejidad y dimensionalidad al igual que en los casos para los algoritmos en multi-
ples objetivos. Este enfoque elitista puede ser beneficioso para preservar individuos de
alto rendimiento, pero también puede limitar la diversidad genética necesaria para una
exploracion efectiva a largo plazo.

Ademas, se encontraron evidencias de que en ciertos casos, especialmente en problemas
gestionados por el algoritmo de Evolucién Diferencial (DE), el elitismo no siempre pro-
duce los mejores resultados. Aportando a la importancia de adaptar la estrategia de
balance entre exploracion y explotacion segun las caracteristicas especificas del proble-
ma y la heterogeneidad del entorno. Los resultados indican que la heterogeneidad puede
ser un factor determinante para mitigar los efectos limitantes del elitismo, promovien-
do un enfoque méas equilibrado que pueda adaptarse eficazmente a la variabilidad del
espacio de busqueda.
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Capitulo 5

Conclusiones y trabajo futuro

En este estudio exhaustivo sobre la influencia de la heterogeneidad en algoritmos evo-

lutivo

s, se han obtenido resultados significativos que arrojan luz sobre su impacto en

problemas mono-objetivo y multi-objetivo. Dentro de este capitulo, resumiremos los

princi

5.1.

5.2.

pales hallazgos del mismo.

Resultados en problemas mono-objetivo

La heterogeneidad juega un papel relevante en la optimizacién mono-objetivo,
con resultados interesantes en la bisqueda de soluciones con buena calidad.

Se ha observado que, en problemas de baja dimensionalidad, valores moderados
de heterogeneidad, alrededor del 0.5, tienden a ofrecer los mejores resultados. A
medida que la dimensionalidad aumenta, los valores de heterogeneidad entre el
0.75 y 1.0 se vuelven mas efectivos.

Las gréficas de convergencia respaldan estos hallazgos al mostrar como los valores
de heterogeneidad influyen en la velocidad de convergencia de los algoritmos.

Los analisis estadisticos, incluyendo Kruskal-Wallis y Wilcoxon Ranksum, con-
firman la relevancia de estos resultados, con una clara tendencia hacia la impor-
tancia de la heterogeneidad en la optimizacién mono-objetivo.

Resultados en problemas multi-objetivo

En el contexto bi-objetivo, la alta heterogeneidad generalmente conduce a mejores
resultados, pero no se puede descartar la efectividad de la baja heterogeneidad
como lo son en las pruebas con NSGA-III, mientras que en el contexto multi-
objetivo, encontramos resultados favorables para altas dimensiones como se puede
ver en WFG3 para NSGA-III con siete y diez dimensiones.

Las gréaficas de convergencia muestran que, en muchos casos, los valores de hete-
rogeneidad mas altos resultan en una convergencia més rapida hacia el frente de
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Pareto. Sin embargo, existen excepciones notables como lo es el experimento de
WEFG3 con NSGA-III en diez dimensiones.

» Los analisis estadisticos, tanto Kruskal-Wallis como Wilcoxon Ranksum, respal-
dan la relevancia estadistica de estos hallazgos, subrayando la influencia de la
heterogeneidad en la optimizacién bi-objetivo.

5.3. Explicabilidad de los resultados

La interpretacion de los resultados obtenidos mediante el grafico SHAP revela patro-
nes distintivos en la influencia de las caracteristicas sobre las predicciones del modelo.
En particular, la caracteristica denotada como Algorithm__GA muestra una agrupacion
densa de valores SHAP cercanos a cero en la parte superior del grafico, lo que indica
una influencia estable y homogénea en las predicciones. Este hallazgo es notable ya
que, a pesar de ser la caracteristica de mayor importancia, su efecto sobre el modelo es
consistente a través de las observaciones, sugiriendo que el Algoritmo Genético (GA)
ejerce un efecto uniforme en las predicciones.

Por su parte, Algorithm_DFE (Algoritmo de Evoluciéon Diferencial) presenta una in-
fluencia predominantemente negativa, como se evidencia por la concentracion de pun-
tos hacia el lado izquierdo del eje cero en el grafico SHAP, indicando que generalmente
disminuye la probabilidad de las predicciones del modelo.

En contraste, caracteristicas como ela_level.costs _runtime y Algorithm__ES (Algorit-
mo de Estrategia Evolutiva) exhiben una distribucién de valores SHAP tanto positivos
como negativos, aunque con una variabilidad menos marcada que las caracteristicas
anteriormente mencionadas.

Otras caracteristicas, como fitness _distance.distance__mean 'y ela__conv.conv__prob, des-
tacan por su notable dispersion de valores SHAP, senalando que el impacto de estas
sobre el modelo varia significativamente entre las observaciones.

Las caracteristicas situadas en la mitad inferior del grafico, incluyendo:
= ela_level: lda_qda_ 50,
= cla_local: best2mean_ contr.orig,
= lon n optima.

Se caracterizan por valores SHAP mayoritariamente agrupados cerca de cero, sugirien-
do una contribuciéon menor y mas uniforme a las predicciones del modelo.

cm__angle: angle_mean se identifica como la caracteristica de menor importancia rela-
tiva, ubicandose al final de la lista de caracteristicas evaluadas.
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La coloracion de los puntos en el gréafico, ilustra como algunas caracteristicas, tales co-
mo Algorithm__DE'y fitness _distance: distance _mean, estan asociadas con un amplio
rango de valores y cambios significativos en la salida del modelo. En contraposicion,
Algorithm__GA muestra un rango mas estrecho de valores de caracteristicas, subrayan-
do su efecto robusto en diversos escenarios.

Este analisis proporciona una jerarquia detallada de la influencia y la variabilidad en
la contribucién de cada caracteristica a la salida del modelo. Se revel6 que caracteristi-
cas especificas, como ela__meta: quad__simple.adj 12, Algorithm__NSGA2, y ela__meta:
quad__w_interact.adj r2, tienen una preponderancia significativa, con una dispersion
de sus valores SHAP que indica una variabilidad considerable en su contribucién, su-
giriendo un impacto marcado en las predicciones finales.

Contrastantemente, caracteristicas situadas en el centro del espectro, como ela__conv:
conv_prob.1 y hill_climbing: std_ dist_between__opt.1, ejercieron una influencia mo-
derada, con una menor variabilidad en sus valores SHAP, apuntando a un efecto mas
homogéneo en las observaciones.

Las caracteristicas con una posicion més baja en el grafico, incluidas:
» ela_local: best2mean_ contr.ratio. 1,
n nbe: nn_ nb.cor. 1.

Se caracterizaron por una importancia marginal, con valores SHAP agrupados cerca
de cero que reflejan un impacto reducido en la salida del modelo.

La distribucién de los valores SHAP subraya una relacién compleja entre el valor de
las caracteristicas y su influencia en las predicciones del modelo. Este patrén, inferido
a partir del color asignado a cada punto, sugiere como ciertas caracteristicas aumentan
o disminuyen la probabilidad de la predicciéon del modelo conforme varian sus valores.

En conclusion, este estudio subraya la heterogeneidad como un elemento critico en la
optimizacién evolutiva, cuyo efecto fluctiia segiin el tipo de problema y la dimensio-
nalidad. Los hallazgos, apoyados por andlisis estadisticos y exploracion de las caracte-
risticas de los espacios de biisqueda, proporcionan una base sélida para la seleccion de
estrategias de heterogeneidad 6ptimas en distintos contextos de optimizacion.

5.4. Trabajo futuro

Estos hallazgos son valiosos tanto para investigadores como para profesionales que
trabajan en la optimizacion de problemas, ya que generan un gran precedente en el
estado del arte para investigar més a fondo en dos puntos claves:

= Generacién de mecanismos de ajuste en linea para el parametro de heterogeneidad
para generar una mayor adaptabilidad en variaciones de problemas.
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o Aplicacién de técnicas de aprendizaje por refuerzo para el ajuste en linea
[caracteristicas - valor de heterogeneidad]

» Exploracion exhaustiva de las caracteristicas de la poblacién con el archivo
externo para un ajuste fino

= Pruebas en diferentes algoritmos de optimizacién para multi-objetivo.

« MOEA/D: Descomposicién
e SMS-EMOA: Basado en Indicadores

» Exploracion mas exhaustiva para un detallado mas profundo en caracteristicas
de mayor impacto para los valores de heterogeneidad.

= Pruebas exhaustivas en problemas que asemejen muestras del mundo real.

Estos aspectos destacan la necesidad de continuar explorando la heterogeneidad dentro
de los algoritmos evolutivos, no solo para mejorar el entendimiento teérico y préctico
de estos sistemas, sino también para desarrollar herramientas mas robustas y eficaces
que puedan ser aplicadas a una gama mas amplia de problemas de optimizacion. La
adaptabilidad y la capacidad de realizar pruebas en escenarios que reflejen desafios del
mundo real seran cruciales para el avance de esta area de investigacion.
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