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Resumen

Los algoritmos evolutivos de última generación han demostrado ser altamente elitistas,
privilegiando una selección determinista (µ + λ) que favorece a los mejores individuos
para la siguiente generación. Esta aproximación, aunque eficiente en ciertos contextos,
puede limitar la diversidad genética necesaria para una exploración efectiva del espacio
de soluciones, especialmente en problemas complejos. La investigación actual se enfoca
en evaluar cómo la introducción de la heterogeneidad temporal en los algoritmos evo-
lutivos puede equilibrar la exploración y explotación, a través de la modificación de la
presión de selección entre estrategias (µ+λ) y (µ, λ). Esta adaptación se ha examinado
tanto en contextos de optimización mono-objetivo como multi-objetivo, aplicando los
algoritmos a conjuntos de datos referenciales en el ámbito académico.
Los resultados preliminares muestran diferencias estadísticamente significativas en la
optimización mono-objetivo y multi-objetivo, lo que sugiere que la adaptación de la
presión de selección podría ser crucial para mejorar la eficacia de los algoritmos en
diferentes problemas y etapas de la búsqueda. Este hallazgo subraya la importancia de
la flexibilidad en los algoritmos evolutivos y plantea la necesidad de una mayor adap-
tabilidad para enfrentar la variedad y complejidad de los problemas de optimización.
Este estudio aporta valiosos perspectivas sobre la importancia de la adaptabilidad de
los algoritmos evolutivos en función de la naturaleza y complejidad de los problemas
abordados, promoviendo una mejor comprensión de las estrategias de selección en la
resolución de desafíos de optimización complejos y variados.
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Capítulo 1

Introducción

Los algoritmos evolutivos, tanto mono-objetivo como multi-objetivo (MOEAs - por sus
siglas en inglés), de última generación destacan por su enfoque elitista. Estos algoritmos
suelen implementar una selección determinista (µ + λ), en la cual se eligen exclusiva-
mente los mejores individuos para avanzar a la siguiente generación. En el contexto
mono-objetivo, esta selección se centra en optimizar un único criterio, mientras que
en el multi-objetivo se busca un equilibrio entre múltiples criterios. No obstante, en
ambos enfoques se ha identificado la importancia de fomentar la diversidad dentro de
la población. Esto permite una exploración más amplia del espacio de búsqueda, vital
para identificar soluciones óptimas en problemas complejos, ya sea enfocándose en un
único objetivo o equilibrando entre varios.

1.1. Motivación
En la era actual, dominada por avances significativos en informática y tecnología, la
optimización efectiva de procesos y la toma de decisiones eficaz son cruciales para su-
perar desafíos en una amplia gama de disciplinas, desde la ingeniería, la investigación
operativa y la ciencia de datos. Dentro de este contexto, tanto los algoritmos evolutivos
mono-objetivo como los MOEAs desempeñan un papel indispensable en problemas no
lineales. Estos algoritmos se han convertido en herramientas clave para abordar proble-
mas de optimización complejos, donde la tarea puede involucrar la mejora de un único
criterio o el equilibrio entre múltiples criterios simultáneamente, lo cual es esencial en
situaciones donde se requiere considerar diversas metas concurrentemente.

La motivación detrás de esta tesis radica en explorar el efecto de la heterogeneidad tem-
poral en los algoritmos evolutivos, tanto en su aplicación mono como multi-objetivo,
en cómo puede enfatizar la exploración para descubrir soluciones aceptables en la prác-
tica. En particular, se pone énfasis en la capacidad de los MOEAs para identificar
conjuntos de soluciones cercanas a óptimas, conocidas como soluciones de Pareto, en
escenarios donde se busca un compromiso entre múltiples objetivos. Simultáneamente,
se investigará cómo los algoritmos mono-objetivo contribuyen a la optimización enfo-
cada, abordando problemas donde un único objetivo predomina.

6



Esta investigación aspira a aportar conocimiento nuevo mediante la exploración de
esta nueva perspectiva en aplicación de algoritmos evolutivos, tanto mono como multi-
objetivo. Se busca avanzar en la comprensión de cómo esta herramientas pueden ser
empleada para enfrentar los desafíos de optimización que presentan las disciplinas men-
cionadas, ofreciendo soluciones que puedan ser aplicadas en la resolución de problemas
complejos y multifacéticos.

1.2. El problema
La mayoría de los MOEAs de última generación han adoptado estrategias altamente
elitistas que priorizan la selección de los mejores individuos en cada generación, lo
que comúnmente se denomina selección (µ + λ). Si bien esta estrategia ha demostrado
ser efectiva en la explotación de soluciones óptimas, puede resultar insuficiente en
situaciones donde la exploración del espacio de búsqueda es esencial [8, 36, 35, 53, 30].
En tales contextos, es necesario fomentar una mayor diversidad en la población para
descubrir soluciones no dominadas adicionales, evitar la convergencia prematura hacia
un óptimo local y además de añadir adaptabilidad a diferentes tipos de problemas.

1.3. Hipótesis
La heterogeneidad temporal influye significativamente en el equilibrio entre la explora-
ción y la explotación en algoritmos evolutivos multi-objetivo, mediante la incorporación
de un parámetro que permita transitar entre estrategias (µ + λ), orientadas hacia la
explotación, y estrategias (µ, λ), más inclinadas hacia la exploración, optimizando así
el desempeño del algoritmo en entornos dinámicos [40].

Este estudio se propone investigar el impacto de la heterogeneidad temporal mediante
la incorporación de un parámetro que ajusta la presión de selección, variando desde
estrategias (µ+λ), que inclinan la balanza hacia la explotación, hasta estrategias (µ, λ),
que promueven la exploración.

1.4. Objetivos
En el presente trabajo, se busca abordar el impacto de la heterogeneidad temporal
en los algoritmos evolutivos, explorando cómo esta característica puede influir en el
equilibrio entre la exploración y la explotación durante la búsqueda de soluciones ópti-
mas. La investigación se enfoca tanto en contextos mono-objetivo como multi-objetivo,
proponiendo la introducción de un parámetro adicional que modula la presión de se-
lección como una vía para mejorar el desempeño de estos algoritmos. A continuación,
se detallan los objetivos generales y específicos que guiarán este estudio.
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1.4.1. Generales
Estudiar el impacto de la heterogeneidad temporal en el equilibrio entre exploración
y explotación en algoritmos evolutivos, tanto en contextos mono-objetivo como multi-
objetivo, mediante la introducción de un parámetro adicional que modula la presión
de selección.

1.4.2. Particulares
Analizar la influencia de la heterogeneidad temporal en la efectividad de los
algoritmos evolutivos para encontrar soluciones óptimas en problemas tanto de
optimización mono-objetivo como multi-objetivo.

Diseñar y validar un mecanismo adaptativo que permita ajustar la presión de
selección en algoritmos evolutivos, evaluando su efecto en estrategias de selección
que van desde (µ + λ), enfocadas en la explotación, hasta (µ, λ), orientadas hacia
la exploración.

Realizar experimentos comparativos para evaluar el rendimiento de los algoritmos
evolutivos con este parámetro de presión de selección ajustable, en una variedad
de problemas de optimización, tanto mono como multi-objetivo.

Investigar cómo la adaptación de la presión de selección basada en la heteroge-
neidad temporal mejora la convergencia hacia soluciones óptimas y la diversidad
de soluciones en el espacio de búsqueda.

Desarrollar guías para la aplicación y ajuste del parámetro de presión de selección
en algoritmos evolutivos, considerando las peculiaridades de los problemas de
optimización a los que se aplican, incluyendo el análisis de la complejidad del
espacio de búsqueda y la interacción entre objetivos.

1.5. Contribuciones y productos de investigación
Esta investigación busca contribuir a la comprensión y mejora de las estrategias de
selección utilizadas en MOEAs, promoviendo la adaptabilidad de estos algoritmos en
función de la naturaleza y complejidad de los problemas abordados. A continuación,
se presentan las principales contribuciones y productos derivados de este trabajo:

La adaptación de algoritmos para considerar el nuevo parámetro.

Generar una amplia base de datos de resultados estadísticos de la introducción
del nuevo parámetro.

Un paquete de software para pruebas y ajuste fuera de línea en GitHub.

Una publicación realizada en el evento de GECCO 2023 [47].
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1.6. Organización de la tesis
Esta tesis se compone de cinco capítulos, cada uno de los cuales se enfoca en aspectos
específicos de la investigación en el campo de algoritmos evolutivos y la adaptación
de algoritmos evolutivos. A continuación, se presenta una breve descripción de cada
capítulo:

Capítulo 1: Introducción

• Este capítulo introductorio establece el contexto y los objetivos de la inves-
tigación.

• Se plantea la importancia de los algoritmos evolutivos en la optimización
multi-objetivo y se delinea la estructura de la tesis.

Capítulo 2: Marco teórico

• En este capítulo, se presentan los conceptos básicos de la optimización multi-
objetivo y los sistemas complejos fundamentales para comprender la inves-
tigación.

• Se incluye un análisis de trabajos relevantes en el estado del arte relacionados
con la investigación y sus propuestas.

Capítulo 3: Metodología

• Este capítulo detalla la metodología de la investigación, describiendo los
entornos de desarrollo utilizados.

• Se proporciona información sobre los parámetros aplicados en el desarrollo
y se describen los mecanismos de selección modificados de los algoritmos
utilizados.

Capítulo 4: Análisis de resultados

• En este capítulo se realiza un análisis detallado de los resultados obtenidos
en la investigación.

• Se presentan tablas de resultados y comparaciones importantes de los obje-
tivos estudiados.

Capítulo 5: Conclusiones y trabajo futuro

• El capítulo de conclusiones resume las principales conclusiones extraídas de
la investigación.

• Se presentan propuestas de trabajo futuro que podrían desarrollarse a partir
de los hallazgos de esta tesis.
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Capítulo 2

Marco Teórico

En este capítulo, se introducen los principios fundamentales y conceptos clave para
comprender la investigación en el campo de la optimización a través de algoritmos
evolutivos, abarcando tanto la optimización mono-objetivo como la multi-objetivo. Los
algoritmos evolutivos son herramientas poderosas que se aplican para optimizar una
amplia gama de problemas, utilizando estrategias de exploración para descubrir nuevas
áreas del espacio de búsqueda y estrategias de explotación para afinar y mejorar las
soluciones existentes hacia óptimos locales o globales. Estas estrategias son vitales
en ambos contextos de optimización; en el mono-objetivo, se enfocan en encontrar la
mejor solución posible para un único criterio, mientras que en el multi-objetivo, buscan
un conjunto de soluciones que representen un equilibrio óptimo entre varios criterios
contradictorios.

2.1. Optimización
La optimización es el proceso de encontrar la mejor solución o resultado posible para un
problema dado. Enfocándonos en la optimización multi-objetivo, esta aborda el desafío
de tomar decisiones en contextos donde múltiples criterios conflictivos deben ser con-
siderados simultáneamente. Los problemas multi-objetivos requieren un enfoque más
complejo debido a la naturaleza intrínsecamente conflictiva de los objetivos involucra-
dos. Este sección revisa los fundamentos de la optimización multi-objetivo, destacando
los conceptos de dominancia de Pareto y el Frente de Pareto, así como la importancia
de la diversidad de soluciones en la toma de decisiones. Se discuten también métodos
de solución y las implicaciones de la diversidad de soluciones en la práctica.
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2.1.1. Fundamentos de la optimización multi-Objetivo
Un problema de optimización multi-objetivo, también denominado problema de opti-
mización multi-criterio o de múltiples objetivos, se refiere a una categoría de problemas
de optimización que requieren la optimización simultánea de más de un objetivo [6].

Estas se definen como:

encontrar el vector x⃗∗ = [x∗
1, x∗

2, . . . , x∗
n]T ∈ F que satisfaga las m restricciones de

desigualdad:
gi(x⃗) ⪯ 0 i = 1, 2, . . . , m, (2.1)

las p restricciones de igualdad:

hj(x⃗) = 0 j = 1, 2, . . . , p, (2.2)
y optimiza la función vectorial:

f⃗(x⃗) = [f1(x⃗), f2(x⃗), . . . , fk(x⃗)]T . (2.3)

donde x⃗ = [x1, x2, . . . , xn]T es el vector de variables de decisión y F es la región factible
definida por las restricciones p y m.

Estos problemas son prevalentes en una amplia gama de campos, incluidos la ingeniería,
la economía y la logística, en los cuales es necesario tomar decisiones que incorporen
varios criterios, los cuales frecuentemente presentan conflictos entre sí. Cabe destacar
que, en el caso de que el problema involucre un único objetivo, este se clasifica como
un problema de optimización mono-objetivo.

2.1.2. Dominancia de Pareto
La dominancia de Pareto es un concepto central en el análisis de decisiones multi-
objetivo y en la teoría de juegos, nombrado así por el economista italiano Vilfredo
Pareto. Se utiliza para comparar diferentes soluciones en problemas donde hay múl-
tiples objetivos a considerar, y estos objetivos a menudo entran en conflicto entre sí [10].

A lo cual decimos que un vector x⃗ = [x1, . . . , xk]T se dice que domina a otro vector
y⃗ = [y1; . . . ; yk]T (denotado por x⃗ ⪯ y⃗) si y sólo si x es parcialmente menor que y:

∀i ∈ {1, . . . , k}, xi ⪯ yi y ∃i ∈ {1, . . . , k} : xi ≺ yi. (2.4)
De tal manera, para dos vectores de decisión en un problema multi-objetivo, se dice
que:

x⃗ domina fuertemente a y⃗ (denotado por x⃗ ≺ y⃗) si ∀i ∈ {1, . . . , k} : fi(x⃗) ≺ fi(y⃗).

x⃗ domina débilmente a y⃗ (denotado por x⃗ ⪯ y⃗) si ∀i ∈ {1, . . . , k} : fi(x⃗) ⪯ fi(y⃗).
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La dominancia de Pareto ayuda a identificar un conjunto de soluciones óptimas en el
sentido de que ninguna otra solución en consideración es mejor en todos los objetivos
simultáneamente, como se puede apreciar en la Figura 2.1.
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Figura 2.1: Ilustración de la representación de la dominancia de Pareto del punto x8.

No dominado

Un punto (o solución) se considera no dominado si no existe otro punto que mejore
en todos los criterios o dimensiones evaluados vistos en la Ecuación 2.4. Esto significa
que, para ser "no dominado", un punto debe ser al menos tan bueno como cualquier
otro en todos los criterios y mejor en al menos uno. En el contexto de la optimización
multi-objetivo, identificar soluciones no dominadas es crucial para entender el trade-off
entre diferentes objetivos, ya que mejorar en un objetivo puede significar empeorar en
otro.

∀i ∈ {i, . . . , k} : (fi(x⃗) ⪯̸ fi(y⃗)) ∧ ∀i ∈ {i, . . . , k} : (fi(y⃗) ⪯̸ fi(x⃗)). (2.5)

Conjunto de óptimos de Pareto

El conjunto de óptimos de Pareto, es un concepto que extiende la idea de soluciones
no dominadas al definir un estado de asignaciones de recursos en el cual no es posible
mejorar la situación de un individuo sin empeorar la situación de otro. En términos
de soluciones a problemas, un punto es un Óptimo de Pareto si no es posible moverse
a otro punto que mejore al menos un objetivo sin empeorar al menos otro objetivo.
Por lo mismo el conjunto de óptimos de Pareto consiste en el conjunto de todas las
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soluciones óptimas de Pareto, es decir, aquellas soluciones que no son dominadas por
ninguna otra solución en el espacio de las variables de decisión [43].

SP ∗ = {x⃗ ∈ F | ∄y ∈ F, f⃗(y⃗) ⪯̸ f⃗(x⃗)}. (2.6)

donde SP ∗ es el conjunto de Óptimos de Pareto y x⃗ y y⃗ son vectores de decisión que
pertenecen al conjunto de soluciones factibles F .

Frente de Pareto

El conjunto de óptimos de Pareto está definido en el espacio de las variables de deci-
sión. La evaluación de dicho conjunto en el espacio de las funciones objetivo es conocido
como frente de Pareto (FP ) [17]. Estas soluciones se visualizan como en la Figura 2.2.

0 2 4 6 8 10
f1(x)

0

2

4

6

8

10

f2(x)

Puntos
Frente de Pareto

Figura 2.2: Ilustración de un problema bi-objetivo con el frente de Pareto destacado
mediante una línea en negrita.

El frente de Pareto es una herramienta crucial para los tomadores de decisiones en
campos como la economía, la ingeniería, la gestión de proyectos y la planificación
ambiental. Al proporcionar un conjunto de soluciones óptimas desde el punto de vista
de la eficiencia de Pareto, facilita la identificación de las mejores opciones posibles bajo
criterios múltiples y conflictivos. La selección final de una solución dentro del Frente
de Pareto suele requerir consideraciones adicionales, como las preferencias personales
o institucionales, valores éticos o criterios de mantenibilidad.
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2.1.3. Diversidad de soluciones
La diversidad de soluciones en el contexto de problemas de optimización multi-objetivo
y, específicamente, al referirse al frente de Pareto, destaca la existencia de múltiples
soluciones óptimas que ofrecen distintas compensaciones entre los objetivos en conflicto
[6]. En problemas donde se deben considerar varios criterios simultáneamente, es raro
encontrar una solución única que sea la mejor en todos los aspectos. En cambio, lo que
se encuentra es un conjunto de soluciones óptimas en el sentido de Pareto, cada una
de las cuales es inmejorable sin empeorar en algún otro objetivo.

2.2. El balance entre exploración y explotación
En diversas situaciones, nos encontramos ante la necesidad de tomar decisiones que
implican encontrar un equilibrio delicado entre dos estrategias fundamentales. Por un
lado, está la exploración de opciones desconocidas, que busca adquirir información
adicional y descubrir nuevas soluciones. Como señala Holland [24], esta exploración
es fundamental en la adaptación y evolución, permitiendo la identificación de posibles
soluciones innovadoras y eficaces. Por otro lado, se encuentra la explotación de opciones
conocidas, que busca obtener recompensas inmediatas mediante la mejora de soluciones
ya existentes. Goldberg [19] enfatiza la importancia de un equilibrio adecuado entre
exploración y explotación en algoritmos evolutivos, argumentando que una inclinación
excesiva hacia la explotación puede llevar a la convergencia prematura y limitar el
alcance de la búsqueda.

2.2.1. El impacto en MOEAs
La dualidad entre la exploración y la explotación adquiere una relevancia particular
en el contexto de los problemas multi-objetivo, que son inherentemente de naturaleza
matemática. Estos problemas se caracterizan por la necesidad de optimizar simultá-
neamente múltiples funciones objetivo (véase en la Ecuación 2.4). En este marco, las
técnicas del cómputo evolutivo emergen como herramientas esenciales para abordar y
resolver dichos problemas, que plantean un desafío significativo debido a la complejidad
que surge de sus múltiples criterios de optimización y las restricciones asociadas.

Kalyanmoy Deb [10] explora este balance en el contexto de MOEAs, demostrando cómo
diferentes estrategias de selección pueden influir significativamente en el rendimiento
del algoritmo. La elección entre métodos de selección más elitistas o aquellos que pro-
mueven la diversidad puede tener un impacto directo en la capacidad del algoritmo
para explorar eficientemente el espacio de búsqueda.

En los Algoritmos Evolutivos Multiobjetivo (MOEAs) existentes, se ha asumido tradi-
cionalmente que la selección basada en el rendimiento en el espacio objetivo es suficiente
para mantener la diversidad en el espacio de búsqueda. Sin embargo, esta perspectiva
ha evolucionado con el reconocimiento de que un equilibrio entre exploración y ex-
plotación es esencial para el éxito de estos algoritmos. A la fecha, se han incorporado
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múltiples mecanismos explícitos en los MOEAs para controlar este equilibrio de manera
efectiva. Estos mecanismos incluyen, entre otros, técnicas de nicho, métodos de selec-
ción basados en diversidad, operadores de mutación y cruce diversificados, así como
estrategias adaptativas y dinámicas. Estas innovaciones están diseñadas para asegurar
que, además de optimizar en el espacio objetivo, los algoritmos mantengan una diversi-
dad adecuada en el espacio de búsqueda. Esto es crucial para prevenir la convergencia
prematura hacia soluciones subóptimas y para facilitar la exploración exhaustiva del
espacio de soluciones disponibles. Por lo tanto, es más preciso afirmar que los MOEAs
modernos están equipados con una variedad de herramientas que les permiten gestio-
nar activamente la diversidad de la población, asegurando un equilibrio óptimo entre
la exploración de nuevas áreas del espacio de búsqueda y la explotación de soluciones
prometedoras ya descubiertas. En la práctica, Jianyong y Hu Zhang [57] han encontra-
do que la colaboración de múltiples operadores de recombinación puede adaptarse a la
forma y las propiedades locales del paisaje de aptitud, lo que contribuye a equilibrar
la exploración y la explotación de manera efectiva.

Dentro del campo del cómputo evolutivo, el tratamiento del dilema entre exploración y
explotación se realiza mediante la implementación de dos estrategias evolutivas funda-
mentales, que son (µ + λ) y (µ, λ). La estrategia (µ + λ), donde µ representa el número
de padres en la población actual y λ denota el número de descendientes generados, se
orienta hacia una exploración intensiva del espacio de búsqueda. En esta estrategia, se
seleccionan los mejores individuos de la unión de padres y descendientes para la próxi-
ma generación, lo cual promueve una búsqueda informada y una convergencia gradual
hacia soluciones óptimas al mantener una mezcla de generaciones.

Por el contrario, la estrategia (µ, λ) introduce un componente de aleatorización más
significativo, ya que únicamente los λ descendientes compiten para convertirse en los
próximos µ padres, sin que los padres actuales tengan la oportunidad de pasar directa-
mente a la siguiente generación. Esto favorece la diversidad genética y evita la conver-
gencia prematura, permitiendo una mayor adaptabilidad y flexibilidad en la búsqueda
de soluciones. La ausencia de los padres actuales en la selección para la próxima gene-
ración subraya la importancia de la variabilidad y la capacidad de la población para
adaptarse a cambios o descubrir nuevas regiones del espacio de búsqueda.

El desafío de encontrar el equilibrio óptimo entre exploración y explotación represen-
ta un aspecto crucial en la optimización de problemas multi-objetivo. Aunque se ha
realizado una investigación exhaustiva sobre las estrategias (µ, λ) y (µ + λ), persis-
ten avances significativos en este campo, con el objetivo de explorar nuevas ideas y
capitalizar el conocimiento ya existente.

2.2.2. Descripción de selección de siguiente población
La selección en los algoritmos evolutivos [2] presenta dos variantes fundamentales,
cada una influyendo en el proceso evolutivo de manera distinta. Dependiendo de si la
población de padres en la generación actual se incluye en el proceso de selección, se
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distinguen dos estrategias: la selección de más, denotada por (µ + λ), y la selección de
coma, representada como (µ, λ).

Estrategia (µ, λ)

En la selección (µ, λ), solo los λ individuos recién generados, es decir, la población
actual, contribuyen al grupo de selección. En este enfoque, los padres de la generación
actual son olvidados, incluso si superan a toda la descendencia. Es evidente que una
condición necesaria para el algoritmo es que µ < λ. La igualdad µ = λ resulta en
que toda la descendencia se selecciona como padres, lo que conduce a una pérdida de
información relevante para la búsqueda y, como resultado, la población realiza un paseo
aleatorio en el espacio de búsqueda.

Estrategia (µ + λ)

Por otro lado, la selección de mas, representada por (µ + λ), incorpora a los padres en
el proceso de selección. La notación indica que tanto los padres como la descendencia
se copian en el grupo de selección, que tiene un tamaño γ = µ + λ. A diferencia de la
selección de coma, no hay restricción teórica sobre el número de descendientes λ. Casos
con µ = λ o µ > λ son posibles. El caso especial (µ + 1), conocido como algoritmos
evolutivos de estado uniforme, se emplea comúnmente en implementaciones asíncro-
nas en sistemas multiprocesador[37]. La selección de más asegura la supervivencia del
mejor individuo encontrado hasta el momento, y debido a esta preservación, estas téc-
nicas de selección son denominadas elitistas. El elitismo se erige como una condición
necesaria que un operador de selección debe cumplir para demostrar la propiedad de
convergencia global en los algoritmos evolutivos. Gracias al elitismo en las estrategias
de más, los padres pueden perdurar indefinidamente y mantener a la solución óptima
en caso de ser encontrada.

Ambas variantes de selección encuentran aplicaciones específicas. La selección (µ, λ) se
recomienda para espacios de búsqueda no acotados [7], especialmente cuando Y = RN ,
mientras que la selección (µ+λ) se utiliza en espacios de búsqueda discretos de tamaño
finito [39], como en problemas de optimización combinatoria [18].

2.3. Descripción de los algoritmos
En los algoritmos evolutivos, la diversidad de la población en el espacio de búsqueda
se utiliza comúnmente para medir y controlar el equilibrio entre exploración y explota-
ción. La exploración es posible si la población es diversa, y se espera que esta diversidad
disminuya a medida que se realiza la explotación.

En esta sección, se proporciona una visión detallada de los algoritmos evolutivos y
su aplicación en la resolución de problemas de optimización. Se abordará la mecánica
fundamental de estos algoritmos, destacando las diferencias en su enfoque dependiendo
de si el problema es de naturaleza mono-objetivo o multi-objetivo. Se explorará la
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importancia de las operaciones clave como la recombinación y la selección ambiental,
y cómo éstas contribuyen al equilibrio entre la exploración del espacio de búsqueda y
la explotación de las soluciones encontradas.

2.3.1. Mono-objetivo
Los algoritmos evolutivos (EAs) son una familia de métodos de optimización inspirados
en el proceso natural de la evolución, y utilizan una serie de operaciones bioinspiradas
para explorar el espacio de soluciones de un problema. La recombinación, o cruce, es
una de estas operaciones esenciales y consiste en combinar partes de dos o más solu-
ciones parentales para producir una nueva solución, con la esperanza de heredar las
características deseables de cada uno de los padres.

Además de la recombinación, otros operadores importantes en los EAs incluyen la
mutación y la selección. La mutación introduce variabilidad al azar en las soluciones,
permitiendo que el algoritmo explore nuevas regiones del espacio de búsqueda que no se
generarían a través de la recombinación sola. Esta operación es crucial para mantener
la diversidad genética de la población y evitar que el algoritmo se estanque en óptimos
locales.

La selección, por su parte, es el proceso por el cual se decide qué soluciones se manten-
drán para la siguiente generación. La selección ambiental es una forma de selección que
se realiza después de que la recombinación y la mutación hayan tenido lugar, evaluando
las soluciones recién creadas y determinando su idoneidad para sobrevivir en base a
su aptitud o fitness. Esta aptitud suele medirse en función de cuán bien la solución
satisface los objetivos del problema de optimización.

Otro operador involucrado en los EAs es la selección de padres, que determina qué in-
dividuos de la población actual se utilizarán para la creación de descendientes a través
de recombinación y mutación. La selección de padres a menudo se realiza de tal manera
que las soluciones con mejor aptitud tengan una mayor probabilidad de ser elegidas,
aunque también se pueden emplear estrategias que promuevan la diversidad.

Finalmente, los EAs pueden incluir mecanismos de reemplazo para decidir cómo las
soluciones descendientes reemplazarán a las soluciones parentales en la población. El
objetivo de estos mecanismos es encontrar un equilibrio adecuado entre preservar las
soluciones de alta calidad y permitir la introducción de nuevas soluciones potencial-
mente prometedoras.

La combinación de estos operadores —recombinación, mutación, selección de padres,
selección ambiental y mecanismos de reemplazo— permite que los algoritmos evoluti-
vos simulen el proceso de evolución natural y se adapten continuamente a medida que
buscan soluciones óptimas o satisfactorias para problemas complejos de optimización.

En esta sección veremos un panorama conciso de los algoritmos implementados en
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este estudio, enfocándose en sus atributos distintivos, metodologías y sus campos de
aplicación.

Algoritmo genético

El algoritmo genético (GA) [25] es un algoritmo de optimización inspirado en la teo-
ría de la evolución de Darwin. Es un algoritmo de búsqueda basado en población que
utiliza el concepto de supervivencia de los más aptos. Las nuevas poblaciones se pro-
ducen mediante el uso iterativo de operadores genéticos en los individuos presentes en
la población. La representación del cromosoma, la selección, el cruce, la mutación y el
cálculo de la función de aptitud son elementos clave del GA.

El procedimiento del GA es el siguiente:

1. Inicialización: Se genera una población inicial de N individuos de manera alea-
toria, representados por:

Ci = {g1, g2, ..., gm}. (2.7)
Donde m es el número de genes en el cromosoma y Ci es el i-ésimo cromosoma.

2. Evaluación: Cada individuo Ci es evaluado mediante una función de aptitud
f(Ci), que mide la calidad de la solución representada por el cromosoma.

3. Selección: Los individuos son seleccionados para la reproducción con una pro-
babilidad proporcional a su aptitud, dada por:

P (Ci) = f(Ci)∑N
j=1 f(Cj)

. (2.8)

4. Cruzamiento (Crossover): Pares de individuos son seleccionados para producir
descendencia con una probabilidad de cruzamiento pc. Los genes son intercam-
biados entre los padres para formar descendientes.

5. Mutación: Con una probabilidad de mutación pm, se realizan cambios aleatorios
en los genes de los individuos descendientes:

g′
i = gi + δ. (2.9)

Donde g′
i es el gen mutado, gi es el gen original, y δ es una alteración aleatoria.

6. Reemplazo: La nueva generación de individuos reemplaza a la generación ante-
rior, según la estrategia de reemplazo elegida.

7. Terminación: El algoritmo repite los pasos 2 a 6 hasta que se cumple uno o
más criterios de terminación, como alcanzar un número máximo de generaciones
Gmax, lograr una aptitud por encima de un umbral fthreshold, o una mejora mínima
entre generaciones.
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Los algoritmos genéticos cambian dinámicamente el proceso de búsqueda a través de
las probabilidades de cruce y mutación y alcanzan la solución óptima. Los GA pueden
modificar los genes codificados. Los GA pueden evaluar múltiples individuos y producir
múltiples soluciones óptimas. Por lo tanto, los GA tienen una mejor capacidad de bús-
queda global. La descendencia producida a partir del cruce de cromosomas parentales
tiene la probabilidad de eliminar los esquemas genéticos presentes en los cromosomas
de los padres. Un esquema genético, en el contexto de los algoritmos evolutivos, se
refiere a un patrón o conjunto de genes que se mantiene en varias generaciones y que
contribuye de manera significativa al rendimiento del individuo. La fórmula utilizada
para el cruce se define como:

β =


(2u)

1
ηc+1 , si u ≤ 0,5,(

1
2(1−u)

) 1
ηc+1 , si u > 0,5.

(2.10)

Tal que:

y1 = 0,5 ((1 + β)x1 + (1− β)x2) , (2.11)

y2 = 0,5 ((1− β)x1 + (1 + β)x2) . (2.12)
Donde:

u es un número aleatorio entre 0 y 1.

ηc es el parámetro de distribución, que controla la forma de la distribución SBX.

β es el factor de distribución, calculado a partir de u y ηc.

x1 y x2 son los valores de los padres.

y1 y y2 son los valores calculados para los descendientes.

Según el teorema del esquema, el esquema original debe ser reemplazado por un es-
quema modificado. Para mantener la diversidad en la población, el nuevo esquema
conserva la población inicial durante las primeras etapas de la evolución. Al final de
la evolución, se producirá el esquema apropiado para evitar cualquier distorsión de los
excelentes esquemas genéticos.

Evolución diferencial

El algoritmo de evolución diferencial (DE) [13] se considera como uno de los optimiza-
dores más destacados y populares para abordar problemas de optimización continua.
Este algoritmo pertenece a la familia de los Algoritmos Evolutivos y se destaca por su
capacidad para resolver una amplia gama de problemas de optimización. La DE tra-
baja con poblaciones de soluciones y utiliza un enfoque de recombinación para generar
nuevas descendencias bajo ciertas condiciones.
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A diferencia de algunos otros EAs que generan descendencia al perturbar las soluciones
con vectores de diferencia escalados, la DE se enfoca en la recombinación de soluciones
existentes. En este proceso, la solución individual actual puede ser reemplazada si es
superada por la nueva solución descendiente. Esto le otorga a la DE su característica
de robustez y simplicidad, ya que su proceso de búsqueda se rige por un número redu-
cido de parámetros específicos del algoritmo, como el factor de escala y la tasa de cruce.

Al igual que otros EA, DE opera a través de tres mecanismos clave: mutación, cruce
y selección. Entre estos mecanismos, la mutación y el cruce desempeñan un papel
fundamental en el rendimiento de búsqueda del algoritmo.

DE/rand/1:
vi,G = xr1,G + F · (xr2,G − xr3,G). (2.13)

DE/best/1:
vi,G = xbest,G + F · (xr1,G − xr2,G). (2.14)

DE/rand-to-best/1:

vi,G = xr1,G + F · (xbest,G − xr1,G) + F · (xr2,G − xr3,G). (2.15)

DE/current/1:
vi,G = xi,G + F · (xr1,G − xr2,G). (2.16)

DE/current-to-best/1:

vi,G = xi,G + F · (xbest,G − xi,G) + F · (xr1,G − xr2,G). (2.17)

En estas fórmulas, xbest,G representa el mejor individuo de la población en la generación
G, y xi,G es el individuo actual siendo mutado. Los índices r1, r2, r3, e i son selec-
cionados del conjunto {1, 2, 3, ..., NP}, donde NP es el tamaño total de la población,
asegurando que r1 ̸= r2 ̸= r3 ̸= i. Estos índices representan diferentes individuos selec-
cionados aleatoriamente de la población para participar en la mutación, promoviendo
la diversidad genética.

El factor de escala F es un parámetro crucial que influye en la magnitud de la mutación
aplicada a las soluciones. F es un número real positivo, generalmente entre 0 y 2, que
ajusta el efecto de perturbación de la operación de mutación. Un F bajo favorece una
explotación más fina de las soluciones existentes, mientras que un F alto promueve la
exploración de nuevas áreas del espacio de búsqueda.

El cruce, por su parte, fusiona las soluciones de manera que se puedan combinar ca-
racterísticas deseables de múltiples individuos para formar nuevas soluciones. El vector
objetivo ui,G = ui,1,G, ui,2,G, ..., ui,D,G se genera mediante la operación de cruce, esto
dado por la operación:
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ui,j,G =
vi,j,G, si rand(0, 1) ⪯ CR o j = jrand,

xi,j,G, en caso contrario.
(2.18)

En esta operación, i representa el índice de un individuo dentro de la población,
con i ∈ {1, 2, . . . , NP}. El índice j representa la dimensión de un individuo, con
j ∈ {1, 2, . . . , D}, donde D es la dimensión del problema, es decir, el número de varia-
bles de decisión que define el espacio de soluciones del problema.

El término jrand es un entero aleatorio seleccionado en el rango de 1 a D, asegurando
que al menos una dimensión del vector mutado vi,j,G sea transferida al vector objetivo
ui,j,G.

La tasa de cruce, CR, es un parámetro que determina la probabilidad con la que se
escogen elementos del vector mutado vi,j,G en lugar de elementos del vector original
xi,j,G durante la generación del vector objetivo. CR es un número real en el rango de 0
a 1, donde un valor cercano a 0 significa que la mayoría de los componentes del vector
objetivo provendrán del vector original, mientras que un valor cercano a 1 aumenta la
probabilidad de que los componentes provengan del vector mutado, fomentando una
mayor diversidad en las soluciones generadas.

Estrategias evolutivas

Las Estrategias Evolutivas (ES) [2] se presentan como un enfoque innovador en el ám-
bito de la optimización y búsqueda heurística, tomando inspiración de los principios
evolutivos que observamos en la naturaleza. Este algoritmo ha adquirido una relevan-
cia significativa al abordar problemas complejos y de alta dimensionalidad en diversas
disciplinas, como la ingeniería, la inteligencia artificial y la investigación operativa. Su
estructura modular, compuesta por elementos clave, define su funcionamiento eficiente
y versátil.

Entre estos elementos, destacan la representación de las soluciones, los operadores ge-
néticos de mutación y recombinación, la función de evaluación objetiva y la estrategia
de selección, que desempeña un papel crucial en la diversidad de estrategias (µ/ρ+, λ)
incorporadas en su diseño.

La notación (µ/ρ+, λ)-ES encapsula la esencia de la estrategia evolutiva, donde:

µ: Tamaño de la población actual.

ρ: Número de padres seleccionados para la recombinación.

λ: Tamaño de la población de descendencia generada por recombinación.

+: El operador más indica que la población de descendencia se combina con la
población actual.
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,: El operador coma indica que la población de descendencia remplaza la población
actual.

El objetivo habitual de una estrategia evolutiva es optimizar alguna función objetivo(s)
o de calidad (F) dada con respecto a un conjunto de variables de decisión o parámetros
de control y := (y1, y2, ...) – en el contexto de ES – a menudo denominados parámetros
de objeto.

2.3.2. Multi-objetivo
En el caso de los MOEAs, es esencial mantener la diversidad de las soluciones tanto
en el espacio objetivo como en el espacio de búsqueda. Además, a diferencia de los
algoritmos de objetivo único, la diversidad de la población no debe disminuir durante
la búsqueda, ya que se requiere para asegurar la diversidad de las soluciones finales en
el espacio objetivo.

NSGA-II

Propuesto por Kalyanmoy Deb y sus colaboradores en 2002 [12], (Non-dominated Sor-
ting Genetic Algorithm II), es un algoritmo evolutivo desarrollado para la optimización
multi-objetivo. Su diseño se basa en la idea de clasificar las soluciones en frentes no
dominados descritos en la Ecuación 2.5, lo que permite identificar las soluciones que
son mejores en todos los objetivos en comparación con otras soluciones.

Este criterio de dominancia constituye el cimiento del potencial del algoritmo, des-
tacándose en su capacidad para clasificar la población a través de la evaluación. El
proceso de clasificación comprende los siguientes pasos:

Asignación de rangos: Inicialmente, se identifica el conjunto de soluciones que
no son dominadas por ninguna otra en la población. Estas forman el primer frente.
Este proceso se realiza mediante la comparación de cada solución con las demás,
evaluando si alguna domina a otra en función de todos los objetivos. Luego,
estas soluciones se eliminan temporalmente de la consideración y se identifica un
nuevo conjunto de soluciones no dominadas, formando el segundo frente. Este
proceso se repite, creando sucesivos frentes de soluciones, hasta que todas han
sido clasificadas.

Crowding Distance: Además del rango, se calcula la crowding distance para
cada solución. Para cada solución, se calcula su crowding distance como la suma
de las diferencias normalizadas en los valores de la función objetivo entre sus dos
vecinos más cercanos en cada objetivo. Las soluciones en los extremos del frente
tienen un crowding distance infinito, lo que garantiza su selección. El calculo del
crowding distance desempeña un papel crucial al mantener la diversidad en la
población y al favorecer soluciones bien distribuidas en el frente de Pareto.

22



Con estas fases claves, NSGA-II se destaca como una herramienta versátil y eficaz para
abordar problemas complejos de optimización multi-objetivo, brindando una perspecti-
va innovadora para la toma de decisiones en situaciones donde varios objetivos compiten
por ser optimizados.

NSGA-III

Desarrollado por Kalyanmoy Deb y sus colaboradores [11] como una respuesta a la
necesidad de un algoritmo más eficiente en el manejo de la diversidad y la distribución
de las soluciones en el espacio objetivo. NSGA-III (Non-dominated Sorting Genetic
Algorithm III) es una extensión significativa del algoritmo NSGA-II, diseñado para
manejar problemas de optimización con múltiples objetivos, especialmente en escena-
rios con más de tres objetivos.

El NSGA-III introduce una serie de mejoras sobre su predecesor, como el uso de puntos
de referencia para guiar el proceso de selección en lugar del cálculo de crowding dis-
tance y mantener la diversidad en el espacio de objetivos. Esto lo hace particularmente
efectivo para problemas con cuatro o más objetivos.

Con esto el desarrollo del algoritmo en su proceso de selección estaría dado de la
siguiente manera:

Selección Basada en Referencia: Cada solución se asocia con el punto de
referencia más cercano. La generación de estos puntos de referencia se basa en
una partición del espacio de objetivos utilizando el hipervolumen, con el fin de
cubrir uniformemente todas las direcciones posibles en el frente de Pareto.

Asignación de Nichos: Se asignan nichos a las soluciones en función de su
proximidad a los puntos de referencia. Un nicho se refiere a una región del espacios
de los objetivos dado por los puntos de referencia.

Llenado de Frentes: Los frentes no dominados se llenan en orden hasta que la
capacidad de la población se agota, teniendo en cuenta la asignación de nichos.

Selección de Últimas Soluciones: Si es necesario, las últimas soluciones se
eligen basándose en la distancia mínima perpendicular a cada punto de referencia.

Estos procesos aseguran que la población mantenga una diversidad razonable y que las
soluciones bien distribuidas en el frente de Pareto sean favorecidas, consolidando así el
impacto y la efectividad del NSGA-III en la resolución de problemas de optimización
multi-objetivo avanzados.

2.4. Software
La optimización se ha convertido en una herramienta esencial para resolver una amplia
gama de problemas complejos en diversos campos, como la ingeniería, la economía, la
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ciencia de datos y la investigación operativa. Para abordar estos desafíos, se han de-
sarrollado y perfeccionado una serie de técnicas y algoritmos de optimización. En esta
sección, nos enfocamos en dos herramientas de software que han sido fundamentales en
el avance de la investigación y la aplicación práctica en el ámbito de la optimización:
Pymoo y COCO-Framework. Ambas plataformas ofrecen características únicas y com-
plementarias que facilitan la experimentación, el benchmarking y la implementación
de algoritmos de optimización de manera eficiente y efectiva. Al ofrecer una amplia
gama de algoritmos y herramientas para el análisis de rendimiento, estas bibliotecas
de software permiten a investigadores y practicantes explorar soluciones óptimas para
problemas de complejidad creciente, promoviendo así la innovación y el progreso en sus
respectivos campos.

2.4.1. Pymoo
Pymoo [3] es una biblioteca de Python de código abierto especializada en la optimiza-
ción multiobjetivo. Ofrece una amplia gama de algoritmos de optimización, adecuados
tanto para problemas de objetivo único como múltiple. Las características clave de
Pymoo incluyen:

Diversidad de algoritmos: Pymoo proporciona algoritmos conocidos y am-
pliamente utilizados como NSGA-II [12], NSGA-III [11], MOEAD [58], así como
algoritmos genéticos (GA) [25], evolución diferencial (DE) [13], estrategias evo-
lutivas (ES) [2] y optimización por enjambre de partículas (PSO) [32]. También
integra variantes de estos algoritmos y otros métodos más especializados.

Problemas de optimización soportados: La biblioteca maneja una variedad
de problemas de optimización, incluyendo aquellos con objetivo único, multi-
objetivo, muchos objetivos y dinámicos como son las funciones ZDT [59], DTLZ
[1] y WFG [27]. Ofrece soporte para problemas con restricciones y para diferentes
tipos de datos, como binarios, discretos y permutaciones.

Personalización y flexibilidad: Pymoo permite a los usuarios personalizar y
ampliar su funcionalidad. Esto incluye la definición de problemas personaliza-
dos, la implementación de operadores de evolución propios, y la adaptación de
algoritmos existentes para satisfacer necesidades específicas.

Indicadores de rendimiento y análisis: La biblioteca incluye indicadores de
rendimiento comunes, como el hipervolumen y la distancia generacional, facili-
tando la evaluación y comparación de las soluciones generadas por los algoritmos
de optimización.

Estas características hacen de Pymoo una herramienta valiosa en el campo de la opti-
mización multi-objetivo, proporcionando a los investigadores y practicantes una plata-
forma versátil para experimentación y desarrollo.
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2.4.2. COCO-Framework
COCO (COmparing Continuous Optimisers) [22] es un framework de código abierto, di-
señado para la evaluación exhaustiva y el benchmarking de algoritmos de optimización,
facilitando la comparación efectiva mediante un conjunto estandarizado de herramien-
tas y procedimientos, siendo sus caracteristicas clave:

Benchmarking riguroso: COCO proporciona un conjunto de funciones de
prueba y escenarios de benchmarking bien definidos. Esto permite evaluar la
eficacia y eficiencia de los algoritmos de optimización en una amplia gama de
problemas.

Plataforma agnóstica: Es compatible con múltiples lenguajes de programación,
incluidos Python, Java, MATLAB, y C, lo que facilita su uso en diversos entornos
de investigación y desarrollo.

Análisis de datos: Ofrece herramientas para el análisis detallado de los resulta-
dos del benchmarking, incluyendo la generación de gráficos y tablas que resumen
el rendimiento de los algoritmos evaluados.

Reproducibilidad: Al proporcionar un marco estandarizado para el benchmar-
king, COCO ayuda a garantizar que los resultados sean reproducibles, lo que es
esencial para la validación científica.

Flexibilidad: Aunque COCO viene con un conjunto predeterminado de funcio-
nes de prueba, también ofrece la flexibilidad para agregar nuevas funciones de
prueba, lo que permite a los usuarios adaptar el framework a sus necesidades
específicas.

Comunidad y documentación: Cuenta con una comunidad activa de usuarios
y desarrolladores, así como documentación detallada que facilita su adopción y
uso efectivo.

El uso de COCO facilita la comparación directa de nuestros resultados con trabajos
previos, contribuyendo así a un cuerpo coherente y comparativo de conocimiento sobre
algoritmos de optimización continua. Además, la adopción de este framework apoya
la transparencia y la reproducibilidad en la investigación de optimización, principios
fundamentales para el avance científico en este campo.

2.5. Problemas de prueba
En el campo de la optimización numérica, el uso de funciones de prueba desempeña
un papel crucial al proporcionar un medio estandarizado para evaluar y comparar el
rendimiento de diversos algoritmos. Estas funciones, también conocidas como funciones
de referencia o funciones objetivo sintéticas, son esenciales en la investigación operativa
y la ciencia computacional para simular una amplia gama de problemas de optimiza-
ción en un entorno controlado. Su principal objetivo es ofrecer escenarios que imiten
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las características y desafíos de problemas reales, permitiendo así evaluar la eficiencia,
precisión, robustez y otras propiedades críticas de los algoritmos de optimización.

Las funciones de prueba se categorizan típicamente según la naturaleza de los pro-
blemas que modelan y pueden ser clasificadas en varias dimensiones: unimodales o
multimodales, con ruido o sin ruido, y con restricciones o sin restricciones. Las funcio-
nes unimodales, que poseen un único óptimo global, son útiles para evaluar la rapidez
de convergencia de un algoritmo. Por otro lado, las funciones multimodales, con múl-
tiples óptimos locales, son esenciales para probar la capacidad de los algoritmos de
escapar de óptimos locales subóptimos y encontrar el óptimo global.

Además, las funciones con ruido incorporado simulan la incertidumbre o variabilidad
que a menudo se encuentra en las mediciones de datos reales, desafiando la capacidad
del algoritmo para manejar perturbaciones y ofrecer soluciones estables. Las funciones
con restricciones, por otro lado, reflejan las condiciones limitantes frecuentemente pre-
sentes en problemas prácticos, donde las soluciones deben cumplir con ciertos límites
o requerimientos.

En este contexto, los problemas de Black-Box Optimization Benchmarking (BBOB)
[21] y las funciones Walker-Fournier-Guerin (WFG) [28] se destacan como herramientas
útiles en la evaluación de la heurística de optimización en los algoritmos con el nuevo
parámetro.

2.5.1. BBOB
Los problemas de Black-Box Optimization Benchmarking (BBOB) [23] son parte de
una serie de talleres y una herramienta de evaluación para algoritmos de optimización
en dominios continuos y mixtos enteros.

Los problemas BBOB se presentan en varias suites de prueba, cada una enfocada en
diferentes aspectos de la optimización:

Suite bbob: Contiene 24 funciones sin ruido en un dominio continuo.

Suite bbob-noisy: Compuesta por 30 funciones con ruido.

Suite bbob-biobj: Incluye 55 funciones bi-objetivo sin ruido, generadas a partir
de la suite bbob.

Suite bbob-largescale: Abarca 24 funciones sin ruido en dimensiones de 20 a
640.

Suite bbob-mixint: Contiene 24 funciones sin ruido de tipo mixto entero.

Suite bbob-biobj-mixint: Consta de 92 funciones bi-objetivo sin ruido y de
tipo mixto entero.

26



Suite bbob-constrained: Incluye 10 funciones sin ruido con un número variable
de restricciones.

Siendo de nuestro interés en esta sección la suite bbob, las cuales están categorizadas en
cinco grupos distintos. Cada grupo está diseñado para evaluar diferentes capacidades
de los algoritmos de optimización:

Funciones Separables: Este grupo incluye funciones como la esférica, la elip-
soidal separable y Rastrigin, poniendo a prueba la habilidad de los algoritmos
para lidiar con la separabilidad de variables.

Funciones con Bajo o Moderado Acondicionamiento: Se centran en eva-
luar el desempeño de los algoritmos con funciones que presentan condiciones
menos exigentes.

Funciones con Alto Acondicionamiento y Unimodales: Dirigidas a evaluar
la eficacia de los algoritmos en el manejo de funciones unimodales bajo condiciones
de alta dificultad.

Funciones Multimodales con Estructura Global Adecuada: Contemplan
funciones con múltiples óptimos locales y una estructura global bien definida.

Funciones Multimodales con Estructura Global Débil: Representan un
desafío mayor debido a su estructura global difusa y la presencia de numerosos
óptimos locales.

Características comunes:

Límites de la Función: La mayoría de las funciones tienen límites definidos en
el intervalo de [−5, 5].

Dimensiones: Todas las funciones son capaces de operar en un rango de dimen-
siones que va desde 2 hasta 40.

Instancia: Para la consistencia en los experimentos, todas las funciones se eva-
luaron en su primera instancia.

Excepciones en límites y características únicas: Algunas funciones presentan
límites distintos, tales como:

Rosenbrock (original y rotada) con límites de [−5, 10].

Schaffer’s F7 y su variante con ruido en [−100, 100].

Schwefel con un rango de [−500, 500].

Weierstrass en el intervalo de [−0,5, 0,5].

Además, estas funciones se distinguen por propiedades únicas, incluyendo:
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Buche-Rastrigin como asimétrica.

Attractive Sector con atractores.

Paso de Esfera caracterizada por su discontinuidad.

Rosenbrock (original) por su naturaleza no convexa.

Sharp Ridge con una cresta afilada.

Weierstrass con una estructura fractal.

Schaffer’s F7 por su ruido inherente.

Función Compuesta con múltiples componentes.

Gallagher’s Gaussian 21-hi Peaks y 101-hi Peaks con numerosas cimas.

Katsuura como no separable.

Lunacek bi-Rastrigin destacando por su bi-modalidad.

Estas suites proporcionan una gama diversa de desafíos de optimización y son fun-
damentales para comparar diferentes algoritmos de optimización. Además, el entorno
BBOB se centra en la medición del rendimiento de los algoritmos basándose en el tiem-
po de ejecución, definido como el número de evaluaciones realizadas en un problema
dado, y en la capacidad del algoritmo para alcanzar o superar un valor objetivo espe-
cífico.

El enfoque de BBOB en la optimización de caja negra es especialmente relevante para
situaciones en las que la forma analítica de las funciones objetivo no está disponible o
es demasiado compleja, haciendo que la información sobre derivadas sea inaccesible o
costosa de obtener. Estos problemas son representativos de muchos desafíos de optimi-
zación en el mundo real y proporcionan un marco de referencia valioso para evaluar la
eficacia de los algoritmos de optimización.

Esta suite está provista en el paquete IOHexperimenter [14], que es una herramienta
de benchmarking diseñada para la experimentación con Heurísticas de Optimización
Iterativas (IOHs).

Construido en C++ e implementado en Python, ofrece una interfaz eficiente entre los
problemas de optimización y sus solucionadores. Su enfoque permite un registro granu-
lar del proceso de optimización, facilitando el análisis interactivo de datos y acelerando
la implementación de un pipeline de benchmarking. IOHexperimenter es parte del pro-
yecto IOHprofiler y es adecuado para comparar y evaluar heurísticas como la búsqueda
local, algoritmos evolutivos y genéticos, y técnicas de optimización bayesiana.
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2.5.2. BiBBOB
La suite bbob-biobj, conocida también como BiBBOB [5], se especializa en la gene-
ración de problemas bi-objetivos. Esta suite combina funciones de la suite BBOB,
seleccionando dos funciones representativas de cada grupo para formar pares de ob-
jetivos en una tarea de minimización sin restricciones. La formulación matemática de
estos problemas bi-objetivos es la siguiente:

mı́n
x∈Rn

F (x) = (fa(x), fb(x)) . (2.19)

Esta selección evita sesgos hacia cualquier grupo específico y garantiza una represen-
tación equilibrada. Algunos ejemplos de pares de funciones seleccionadas son:

En funciones separables: la función esfera f1 y elipsoide separable f2.

Con acondicionamiento bajo o moderado: sector atractivo f6 y Rosenbrock origi-
nal f8.

Unimodales con alto acondicionamiento: cresta aguda f13 y sumas de diferentes
potencias f14.

Multimodales con estructura global adecuada: Rastrigin f15 y la función F7 de
Schaffer con número de condición 10 f17.

Multimodales con estructura global débil: Schwefel f20 y 101 picos de Gallagher
f21.

Estas funciones no están normalizadas, lo que desafía a los algoritmos de optimización
a trabajar eficazmente con objetivos de magnitudes variables. Para la evaluación del
rendimiento, se normalizan las funciones usando los puntos ideal y nadir antes de
calcular el indicador de hipervolumen.

Las funciones son no acotadas, pero las soluciones extremas del conjunto de
Pareto se encuentran generalmente dentro de un hipercubo definido en el rango
de [−5, 5] en cada dimensión del espacio de búsqueda. Aunque el conjunto de
Pareto puede extenderse parcialmente fuera de este hipercubo, se espera que se
encuentre mayoritariamente dentro de él.

Cada instancia de función bi-objetivo tiene un ID entero asociado a cada ins-
tancia de la función. La relación entre el ID de la instancia KID

F de una función
bi-objetivo F = (fa, fb) y los IDs de instancia KID

fa
y KID

fb
de sus respectivas

funciones de objetivo único subyacentes, sigue dos condiciones:

1. Para la primera función objetivo fa, su ID de instancia es KID
fa

= 2×KID
F +1.

2. Para la segunda función objetivo fb, su ID de instancia es KID
fb

= KID
F + 1.
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Estas dos condiciones deben cumplirse para todas las dimensiones y funciones en
el conjunto b-bob → biobj. Si estas condiciones no se cumplen, se incrementa el
ID de la instancia de la segunda función objetivo sucesivamente hasta que ambas
propiedades se satisfagan.

Además, las instancias de las funciones de prueba se parametrizan, presentando condi-
ciones específicas como la distancia euclidiana mínima entre las soluciones óptimas y
entre los puntos ideal y nadir en el espacio objetivo normalizado. Esto asegura una con-
sistencia en la dificultad a través de diferentes instancias y contribuye a la evaluación
comparativa robusta de los algoritmos.

2.5.3. WFG
Las funciones WFG son un conjunto de nueve funciones de referencia diseñadas para
evaluar algoritmos de optimización multi-objetivo. Desarrolladas por Simon Huband,
Phil Hingston, Luigi Barone, y Lyndon While [27], estas funciones son una mejora
sobre las funciones de prueba anteriores y se utilizan ampliamente en la investigación
de optimización evolutiva y multi-objetivo.

Estas se dividen en varios tipos, cada uno con características únicas. Algunos ejemplos
incluyen:

WFG1: Convexa/mixta, multimodal, con transiciones no lineales.

WFG2: No convexa en algunas regiones, no separable, con regiones insensibles.

WFG3: Similar a WFG2, frente de Pareto degenerado.

WFG4: Completamente multimodal, muchos óptimos locales.

WFG5: Multimodal, patrón de búsqueda engañoso por discontinuidad.

WFG6: No separable, con dependencia entre variables.

WFG7: Separable, con fuerte sesgo.

WFG8: No separable, fuerte sesgo y dependencia entre variables.

WFG9: No separable, óptimos locales, frente de Pareto discontinuo.

Las funciones WFG están disponibles en varias bibliotecas y paquetes de software de
optimización como lo es Pymoo [3], y su implementación estándar se puede encontrar
en diversos lenguajes de programación utilizados en la investigación de optimización.
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2.6. Indicadores de desempeño
La evaluación del desempeño de algoritmos de optimización multi-objetivo juega un
papel crítico en el desarrollo y la mejora de métodos capaces de encontrar soluciones
eficientes y diversificadas para problemas complejos. Una parte integral de este proceso
de evaluación involucra el uso de indicadores de desempeño que proporcionan medidas
cuantitativas de la calidad de las soluciones generadas. Estos indicadores no solo ayudan
a entender el comportamiento de los algoritmos bajo diferentes escenarios, sino que
también facilitan la comparación objetiva entre distintas técnicas de optimización. En
esta sección, profundizaremos en dos indicadores de desempeño fundamentales en el
campo de la optimización multi-objetivo: el hipervolumen y el Indicador de Generación
de Diversidad Invertida (IGD), junto con su variante mejorada, el IGD+. Cada uno de
estos indicadores ofrece perspectivas únicas sobre la efectividad de los algoritmos de
optimización, considerando aspectos cruciales como la convergencia hacia el frente de
Pareto y la distribución de las soluciones en el espacio de objetivos. A través de una
exploración detallada de estos indicadores, se revelará cómo pueden ser aplicados para
evaluar y guiar el desarrollo de estrategias de optimización más efectivas y eficientes.

2.6.1. Hipervolumen
En la investigación y aplicación de la optimización multi-objetivo, la capacidad para
cuantificar y comparar la efectividad de distintas soluciones es fundamental. Una herra-
mienta destacada en este ámbito es el indicador de hipervolumen (HV) [20], que mide
el volumen en el espacio de objetivos dominado por un conjunto de soluciones respecto
a un punto de referencia específico. Este indicador no solo ofrece una métrica para la
calidad y diversidad de las soluciones encontradas sino también facilita la comparación
objetiva entre diferentes conjuntos de soluciones, proporcionando una base sólida para
la evaluación de algoritmos de optimización multi-objetivo.

El proceso para calcular el hipervolumen implica varios pasos metodológicos. A conti-
nuación, se detallan estos pasos:

1. Definición del Conjunto de Soluciones y el Punto de Referencia:

Identifique el conjunto de soluciones S cuyo hipervolumen desea calcular.
Este conjunto suele ser el frente de Pareto obtenido de un proceso de opti-
mización multi-objetivo.
Elija un punto de referencia yref, que debe ser dominado por todas las solu-
ciones. Este punto suele establecerse basándose en el punto de nadir ajustado
o un punto ligeramente más allá de las peores soluciones conocidas.

HV (S, yref) := V

 ⋃
y∈S

{y′ | y ≤ yref}

 , S ⊆ FP. (2.20)

Donde FP representa el conjunto de soluciones en el Frente de Pareto.
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2. Normalización de los Datos (Opcional): Para facilitar el cálculo y permitir
la comparación entre diferentes conjuntos de soluciones, se normalizan los valo-
res de los objetivos utilizando los puntos de nadir e ideal como referencia. La
normalización se realiza de la siguiente manera:

S ′ = S − Nadir
Ideal− Nadir . (2.21)

Donde:

Punto Ideal: Vector que contiene los mejores valores alcanzables de forma
independiente para cada función objetivo:

zideal = (zideal
1 , zideal

2 , . . . , zideal
k ).

Donde cada zideal
i = mı́nx∈F fi(x), y F denota el conjunto de soluciones no

dominadas.
Punto Nadir: Vector que agrupa los peores valores de cada objetivo obte-
nidos por una solución dentro del conjunto Pareto-óptimo:

znadir = (znadir
1 , znadir

2 , . . . , znadir
k ).

Donde cada znadir
i = máxx∈F fi(x), y F denota el conjunto de soluciones no

dominadas.

Este proceso asegura que el espacio de objetivos se normalice con respecto a los
rangos definidos por estos puntos críticos como se puede observar en la Figura 2.3.
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Punto de Nadir

Figura 2.3: Ilustración de la definición del campo de normalización usando el punto
Ideal y de Nadir
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3. Cálculo del Hipervolumen: El hipervolumen se calcula como el volumen del
espacio cubierto por el conjunto de soluciones y limitado por el punto de referencia
[50]. Para un conjunto de soluciones en un espacio de 2 o 3 objetivos, este cálculo
puede ser directo. Para más de 3 objetivos, se utilizan algoritmos especializados:

Para 2 objetivos, el hipervolumen HV puede calcularse sumando el área de
los rectángulos formados por cada solución si ∈ S ′ y el punto de referencia
R′:

HV (S ′) =
n−1∑
i=1

(xi+1 − xi) · (yref − yi). (2.22)

Donde n es el número de soluciones, ordenadas por su valor en el primer
objetivo x, y yref es la coordenada y del punto de referencia R′.
Para más de 3 objetivos, el cálculo se vuelve computacionalmente más com-
plejo y se recomienda utilizar algoritmos para descomponer el problema y
calcular el hipervolumen de manera eficiente como el propuesto en [16].

4. Interpretación: El valor del hipervolumen indica el tamaño del espacio domi-
nado por el conjunto de soluciones evaluado. Un mayor hipervolumen indica un
mejor conjunto de soluciones en términos de acercamiento al frente de Pareto
ideal y diversidad entre las soluciones.

2.6.2. IGD/+
El indicador de Generación de Diversidad Invertida (IGD) [51] se basa en la distancia
euclidiana para medir cuán cerca y uniformemente distribuidas están las soluciones
generadas por un algoritmo respecto al frente de Pareto óptimo. Por otro lado, el
IGD+ mejora este enfoque al considerar distancias en el espacio objetivo que reflejan
mejor la dirección de mejora hacia el frente de Pareto, proporcionando así una medi-
da más precisa de la calidad de las soluciones en términos de convergencia y diversidad.

Para calcular el indicador IGD, se sigue el procedimiento detallado a continuación:

1. Conjunto de Referencia: Seleccionar o generar un conjunto de referencia P
que represente adecuadamente el frente de Pareto óptimo. Este conjunto debe
estar compuesto por puntos distribuidos de manera uniforme a lo largo del frente
de Pareto.

2. Evaluación del Conjunto de Soluciones: Tomar el conjunto de soluciones S
generadas por el algoritmo de optimización bajo evaluación.

3. Cálculo de Distancias: Para cada punto p ∈ P , encontrar el punto más cercano
s ∈ S y calcular la distancia euclidiana entre ellos. Esto se puede expresar como:

d(p, s) =
√√√√ n∑

i=1
(pi − si)2. (2.23)

Donde n es la dimensión del espacio objetivo.
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4. Promedio de Distancias: Calcular el promedio de todas las distancias mínimas
encontradas para obtener el IGD. La fórmula para el IGD es:

IGD(P, S) = 1
|P |

∑
p∈P

mı́n
s∈S

d(p, s). (2.24)

Donde |P | indica el número total de puntos en el conjunto de referencia.

Mientras que el procedimiento para calcular el IGD+ [29] es similar al del IGD, con
algunas modificaciones en el cálculo de las distancias:

1. Conjunto de Referencia: Igual que para el IGD, seleccionar o generar un
conjunto de referencia P que represente el frente de Pareto óptimo.

2. Cálculo de Distancias Modificadas: Para cada punto p ∈ P , identificar el
punto en el conjunto de soluciones S que minimiza una distancia modificada,
la cual considera la dirección de mejora hacia el frente de Pareto. La distancia
modificada se calcula como:

d+(p, s) =
√√√√ n∑

i=1
(máx{pi − si, 0})2. (2.25)

3. Promedio de Distancias Modificadas: El IGD+ se obtiene como el promedio
de todas las distancias modificadas, utilizando la fórmula:

IGD+(P, S) = 1
|P |

∑
p∈P

mı́n
s∈S

d+(p, s). (2.26)

2.7. Ciencias de la complejidad
Las ciencias de la complejidad ofrecen un marco conceptual para entender cómo sis-
temas compuestos por numerosos componentes interconectados pueden exhibir pro-
piedades emergentes y comportamientos no triviales. En la optimización, propiedades
emergentes como la diversidad y la adaptación son fundamentales y se alinean estre-
chamente con los principios de los sistemas complejos.

2.7.1. Diversidad y adaptación en sistemas complejos
El elitismo en los algoritmos evolutivos, que se enfoca en mantener una variedad de
soluciones no dominadas en el frente de Pareto, refleja la diversidad emergente ob-
servada en sistemas complejos. Esta diversidad es clave para una exploración efectiva
del espacio de búsqueda, mientras que la convergencia hacia soluciones de alta calidad
ilustra la formación de patrones y estructuras en sistemas complejos adaptativos.
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2.7.2. Técnicas de adaptación y auto-organización
Las técnicas de adaptación y auto-organización, fundamentales en las ciencias de la
complejidad, son igualmente pertinentes en la optimización multi-objetivo. Los algo-
ritmos que se adaptan a cambios en el paisaje de objetivos y restricciones abordan de
manera efectiva el desafío de equilibrar exploración y explotación. Estas técnicas imitan
la capacidad de los sistemas complejos para adaptarse y reorganizarse en respuesta a
cambios en su entorno [26].

2.7.3. Heterogeneidad temporal
La heterogeneidad en sistemas complejos puede extender la criticidad, un estado que
equilibra el orden y el caos, y es crucial para la complejidad, la vida y la computación.
Al analizar modelos clásicos homogéneos y sus versiones heterogéneas, se demuestra
que la heterogeneidad puede ampliar la criticidad sin necesidad de un ajuste fino de
parámetros. Esto sugiere que la selección natural podría explotar la heterogeneidad
para evolucionar complejidad de manera más económica y que este principio se podría
aplicar en sistemas artificiales y diseño biológico.

La heterogeneidad temporal añade una dimensión adicional a la optimización multi-
objetivo, proporcionando robustez y adaptabilidad. En este contexto, la adaptación se
convierte en un componente esencial, permitiendo que los individuos más importantes
de la población cambien a un ritmo más lento que los menos importantes, generando
así diversidad. Esta diversidad fomenta una exploración efectiva del espacio de bús-
queda y facilita la identificación rápida de soluciones de alta calidad con una eficiencia
computacional optimizada [48].

Además, investigaciones como la de Martínez Arévalo Yoshio [41] abordan la aplicación
de la heterogeneidad temporal en algoritmos genéticos para problemas de optimización.
Dicho trabajo propone variar las probabilidades de cruce en función de la aptitud de los
individuos y aplica este enfoque a problemas como el de las N-reinas y el del vendedor
viajero. La investigación revela que la heterogeneidad temporal mejora la eficiencia
y precisión de estos algoritmos, ofreciendo una estrategia efectiva para optimizar su
rendimiento en problemas complejos. Este enfoque representa un avance significativo
en la personalización y adaptabilidad de los algoritmos genéticos para resolver desafíos
complejos en optimización.

2.8. Modelos de estudio
Dentro del ámbito de la investigación científica, la estadística juega un papel crucial al
permitir el análisis y la interpretación de datos empíricos. Entre los modelos estadís-
ticos frecuentemente empleados en estudios científicos, destacan el Test de Wilcoxon
Rank Sum, el Test de Kruskal-Wallis y el Test de los Conteos de Borda. Estos métodos
estadísticos son fundamentales para evaluar diferencias significativas entre grupos o
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poblaciones de datos. Dichas diferencias se investigan a través de dos hipótesis funda-
mentales:

Hipótesis Nula (H0): Postula que las medianas de todos los grupos son iguales.
Esta hipótesis asume que no hay diferencias significativas entre los grupos.

Hipótesis Alternativa (H1): Sostiene que al menos una de las medianas difiere
de las demás. Esta hipótesis se adopta cuando los datos sugieren variaciones
estadísticamente significativas entre los grupos.

La elección de estos modelos estadísticos depende de la naturaleza de los datos y del
objetivo del análisis. Cada uno de estos tests tiene particularidades que los hacen más
adecuados para ciertos tipos de datos y situaciones de estudio. Por ejemplo, el Test
de Wilcoxon es útil para comparar dos grupos independientes, mientras que el Test
de Kruskal-Wallis se aplica para comparar más de dos grupos (estas son pruebas no
paramétricas dado que no se garantiza que los evolutivos cumplan las condiciones de
normalidad). El Test de los Conteos de Borda se utiliza para rankear múltiples alter-
nativas con base a las preferencias. La correcta aplicación de estos tests garantiza una
interpretación rigurosa y fiable de los resultados empíricos obtenidos en la investigación.

2.8.1. Kruskal-Wallis
El test de Kruskal-Wallis [42] es un método no paramétrico, se utiliza para determinar
diferencias estadísticas significativas entre dos o más grupos de una variable indepen-
diente, ya sea en una escala ordinal o continua. Este test es una generalización del
test de Mann-Whitney para múltiples grupos y resulta particularmente útil cuando los
datos no cumplen con la suposición de normalidad, lo que haría inapropiado el uso del
ANOVA unidireccional.

El procedimiento del test de Kruskal-Wallis se desarrolla de la siguiente manera:

1. Rangos: Se asignan rangos a todas las observaciones, independientemente del
grupo al que pertenecen, desde el valor más pequeño al más grande. Los rangos
comienzan en 1 para el valor más bajo. En caso de empates, se asigna a cada
observación el promedio de los rangos que corresponderían en ausencia de empate.

2. Suma de Rangos: Se calcula la suma total de rangos para cada grupo.

3. Estadístico de Prueba: El estadístico de prueba H se determina utilizando
las sumas de rangos de cada grupo, el tamaño de cada grupo, y el total de
observaciones. La fórmula es:

H = 12
N(N + 1)

k∑
i=1

R2
i

ni

− 3(N + 1). (2.27)

Donde N es el total de observaciones, k es el número de grupos, Ri es la suma de
rangos del i-ésimo grupo, y ni es el número de observaciones en el i-ésimo grupo.
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4. Distribución de Chi-cuadrado: Bajo la hipótesis nula, y asumiendo un ta-
maño de muestra adecuado, el estadístico H sigue una distribución chi-cuadrado
aproximada con k − 1 grados de libertad.

5. Decisión: Se compara el valor calculado de H con el valor crítico de la distri-
bución chi-cuadrado para k − 1 grados de libertad y un nivel de significancia α
(usualmente 0.05). Si H es mayor que el valor crítico, se rechaza la hipótesis nula.

2.8.2. Wilcoxon ranksum
El test de suma de rangos de Wilcoxon, también conocido como test de Wilcoxon-Mann-
Whitney [31], es un método no paramétrico ampliamente utilizado para comparar dos
grupos independientes de muestras. Este test es una alternativa al test t de Student
para muestras independientes, aplicable cuando los supuestos de normalidad no se cum-
plen. Es adecuado tanto para datos ordinales como para datos de intervalo/ratio no
distribuidos normalmente.

El procedimiento del test de Wilcoxon ranksum se desarrolla de la siguiente manera:

1. Combinar y Ordenar los Datos: Se unen las muestras de ambos grupos y se
ordenan todas las observaciones del menor al mayor valor.

2. Asignar Rangos: Se otorgan rangos a todas las observaciones ordenadas. En
caso de empates, se asigna el promedio de los rangos correspondientes a cada
observación empatada.

3. Calcular Sumas de Rangos por Grupo: Se determinan las sumas de rangos
para cada grupo, denotadas como R1 y R2.

4. Estadístico de Prueba U : Se calculan los estadísticos de prueba U1 y U2 para
cada grupo mediante las fórmulas:

U1 = R1 −
n1(n1 + 1)

2 ,

U2 = R2 −
n2(n2 + 1)

2 .

(2.28)

Donde R1 y R2 son las sumas de rangos, y n1 y n2 son los tamaños de muestra
de los grupos 1 y 2 respectivamente. El estadístico U corresponde al menor entre
U1 y U2.

5. Normalización del Estadístico de Prueba: Para muestras grandes, U puede
normalizarse a una distribución aproximadamente normal con la fórmula:

Z = U − µU

σU

. (2.29)

Donde µU = n1n2
2 es la media y σU =

√
n1n2(n1+n2+1)

12 es la desviación estándar de
U bajo la hipótesis nula.
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6. Decisión: Se compara el valor de Z con los valores críticos de la distribución
normal estándar para un nivel de significancia elegido (comúnmente 0.05). Si el
valor absoluto de Z supera el valor crítico, se rechaza la hipótesis nula.

2.8.3. Conteo de Borda
El conteo de Borda [45], un método de votación por orden de preferencia, fue desa-
rrollado por el matemático francés Jean-Charles de Borda en 1770. Este sistema de
votación preferencial se utiliza en decisiones de elección única o múltiple, donde los
votantes clasifican las opciones según su preferencia personal.

El procedimiento del recuento de Borda se desarrolla de la siguiente manera:

1. Clasificación de Opciones: Cada votante ordena todas las opciones de acuerdo
con sus preferencias, desde la más preferida hasta la menos preferida.

2. Asignación de Puntos: Se asignan puntos a cada opción basados en su posición
en cada votación. Si hay n opciones, la opción más preferida recibe n puntos, la
segunda n− 1 puntos, y así sucesivamente, hasta que la opción menos preferida
recibe 1 punto.

3. Suma de Puntos: Los puntos asignados a cada opción se suman a través de
todas las votaciones.

4. Determinación de Ganadores: La opción con la mayor cantidad total de
puntos acumulados se considera la ganadora.

El método de Borda es valorado por su simplicidad y por su capacidad de reflejar
de manera más integral el espectro completo de preferencias de los votantes. A pesar
de ciertas limitaciones, se destaca por proporcionar una visión más holística de las
preferencias en comparación con otros métodos que solo consideran la opción más
preferida de cada votante.

2.9. Explicabilidad de modelos de aprendizaje
La explicabilidad en los modelos de aprendizaje representa un aspecto crucial que ha
ido ganando relevancia en el campo de la inteligencia artificial y la optimización. La
creciente complejidad de los problemas abordados y la proliferación de algoritmos cada
vez más sofisticados han impulsado la necesidad de desarrollar y emplear herramientas
que permitan una mejor comprensión y selección de algoritmos adecuados. Entre estas
herramientas, dos de ellas destacan por su relevancia y aplicabilidad: Shapley Additive
Explanations (SHAP) [56, 9] y Python Feature-Based Landscape Analysis of Conti-
nuous and Constrained Optimization Problems (P-Flacco) [34, 55].

Shapley Additive Explanations (SHAP) es una técnica que se basa en la teoría de juegos
para explicar la salida de cualquier modelo de machine learning. SHAP asigna a cada
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característica un valor que indica su importancia en la decisión tomada por el modelo,
permitiendo así una interpretación más detallada y justificada de sus resultados.

Por otro lado, Python Feature-Based Landscape Analysis of Continuous and Constrai-
ned Optimization Problems (P-Flacco) es una herramienta que proporciona un análisis
detallado del espacio de búsqueda de problemas de optimización. P-Flacco permite
identificar características clave del paisaje de optimización, lo que ayuda en la selec-
ción y adaptación de estrategias de búsqueda más eficientes.

La integración de estas herramientas en la evaluación y selección de algoritmos evoluti-
vos multi-objetivo no solo mejora la comprensión de los espacios de búsqueda complejos,
sino que también contribuye a la eficacia y eficiencia de los procesos de optimización.

2.9.1. SHAP
SHAP (SHapley Additive exPlanations) [38] es una biblioteca de Python diseñada pa-
ra interpretar las predicciones de modelos de machine learning. Basada en la teoría
de juegos, SHAP utiliza los valores de Shapley para asignar a cada característica su
importancia en la predicción de un modelo de manera justa y coherente.

Dentro del marco de SHAP, cada característica en un modelo de machine learning
es considerada como un jugador en el juego de hacer una predicción. Esto se debe a
la naturaleza aditiva de las explicaciones que SHAP proporciona, descomponiendo la
predicción en una suma de efectos atribuibles a cada característica individual. Esto
permite una comprensión detallada de cómo cada característica influye en el resultado
final de una predicción.

g(z′) = ϕ0 +
M∑

i=1
ϕiz

′
i. (2.30)

Donde z′ ∈ {0, 1}M representa una instancia simplificada de entrada, M es el número
de características de entrada, y ϕi son los valores SHAP para cada característica.

Las principales funciones de SHAP incluyen:

Explainers: Modelos en SHAP que pueden explicar las predicciones de diversos
algoritmos de machine learning. Existen diferentes explicadores adecuados pa-
ra varios tipos de modelos, como árboles de decisión, modelos lineales y redes
neuronales.

SHAP Values: Para una predicción específica, SHAP calcula valores que deter-
minan la importancia de cada característica. Un valor SHAP alto, ya sea positivo
o negativo, indica una influencia significativa en la predicción.

Visualizaciones: SHAP ofrece varias visualizaciones para interpretar los valores
SHAP, incluyendo:
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• Force Plots: Muestran la contribución de cada característica a una predicción
específica.

• Summary Plots: Ofrecen una visión general de la importancia de las carac-
terísticas y su impacto en el modelo.

• Dependence Plots: Ilustran cómo el efecto de una característica varía con
respecto a otra.

Los modelos basados en árboles de SHAP son particularmente apreciados en el machine
learning debido a su capacidad para aprender relaciones complejas en los datos. Son
especialmente efectivos en el análisis de conjuntos de datos tabulares y se prefieren en
muchas situaciones por su rendimiento, eficiencia computacional y facilidad de uso.

SHAP se ha establecido como una herramienta indispensable en el ámbito de la in-
terpretación de modelos de machine learning, proporcionando explicaciones matemá-
ticamente justificadas y accesibles para las predicciones de una amplia variedad de
modelos.

2.9.2. P-Flacco
P-Flacco es un paquete de Python desarrollado para el análisis de paisajes de caracterís-
ticas en problemas de optimización continua y restringida. Esta herramienta representa
una implementación en Python del paquete R Flacco, originalmente desarrollado por
Pascal Kerschke [33]. Ofreciendo una interfaz de Python para Flacco, P-Flacco inte-
gra características adicionales y mejoras. Entre sus características más destacadas se
encuentran:

Análisis de paisajes de características: Utilizado para caracterizar numérica-
mente problemas de optimización de objetivo único, tanto en contextos continuos
como restringidos, mediante el análisis detallado de paisajes de características.

Soporte para diversos tipos de problemas de optimización: P-Flacco es
capaz de analizar tanto problemas de optimización sin restricciones como restrin-
gidos, lo que lo hace versátil para una variedad de aplicaciones prácticas.

Eficiencia en la extracción de características: Ofrece un método eficiente
para extraer características relevantes del paisaje de optimización, facilitando la
comprensión y el análisis de problemas complejos de optimización.

Selección de optimizadores: Ayuda en la elección del optimizador más adecua-
do de un conjunto de algoritmos, siendo particularmente útil cuando las funciones
objetivo son desconocidas o de naturaleza caja negra.

Análisis basado en robustez, embudos y gradientes: Realiza un análisis so-
bre la robustez que busca medir la estabilidad de las soluciones frente a pequeñas
perturbaciones en el espacio de búsqueda, los embudos que es la identificación de
regiones en el espacio de búsqueda donde las soluciones tienden a converger hacia
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un único óptimo global o local y los gradientes que examinan las pendientes o
inclinaciones del espacio de búsqueda, evaluando su impacto en el rendimiento
de algoritmos como la Optimización de Enjambres de Partículas (PSO).

P-Flacco se ha consolidado como una herramienta esencial para profesionales y acadé-
micos en el ámbito de la optimización, ofreciendo un enfoque basado en Python para
el análisis exhaustivo y detallado del paisaje de optimización.

2.10. Ajuste de parámetros
La optimización de parámetros, también conocida como ajuste de hiperparámetros, es
un componente esencial en el aprendizaje automático para maximizar el rendimiento
de los modelos. Este proceso es especialmente relevante en la investigación y desarrollo
de algoritmos evolutivos multi-objetivo.

En el contexto del aprendizaje automático aplicado a algoritmos evolutivos, es funda-
mental comprender cómo diversas técnicas pueden influir en la adaptabilidad y eficacia
de estos algoritmos a lo largo del tiempo. Una técnica que ha cobrado notable popula-
ridad es Random Forest Regressor, que se basa en una extensión del método de árboles
de decisión.

2.10.1. Random Forest Regression
El Random Forest es un método de ensamble que utiliza la combinación de múltiples
árboles de decisión para lograr predicciones más precisas y estables que las que se ob-
tendrían de un único árbol de decisión. Este enfoque reduce notablemente el riesgo de
sobreajuste, un problema común en los árboles de decisión individuales. Específicamen-
te, el Random Forest Regressor se aplica a problemas de regresión, donde el objetivo es
predecir un valor continuo, a diferencia de los problemas de clasificación, que buscan
predecir etiquetas de clases discretas.

Las principales ventajas del Random Forest Regressor incluyen:

Robustez: Su uso de múltiples árboles lo hace menos susceptible al sobreajuste
en comparación con un único árbol de decisión.

Manejo de Datos No Lineales: Capacidad para capturar relaciones no lineales
entre las características y la variable objetivo.

Flexibilidad: Eficacia en una amplia variedad de tipos de datos, funcionando
bien en problemas con múltiples características y estructuras de datos complejas.

Importancia de Características: Ofrece una evaluación útil sobre la impor-
tancia de las características, facilitando la interpretación del modelo.
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En la biblioteca Scikit-learn [46], el Random Forest Regressor se implementa mediante
la clase RandomForestRegressor. Esta implementación permite una fácil configuración
y ajuste del modelo, ofreciendo parámetros como el número de árboles (n_estimators),
la profundidad máxima de los árboles (max_depth), entre otros. Estos parámetros pue-
den ser óptimamente ajustados utilizando técnicas como GridSearchCV, que realiza
una búsqueda exhaustiva sobre un grid de valores de hiperparámetros especificados.
Este proceso evalúa y compara el rendimiento del modelo para cada combinación de
hiperparámetros, facilitando la identificación de la configuración más efectiva.

El uso de técnicas avanzadas de aprendizaje automático, como el Random Forest,
en el ajuste de hiperparámetros es un área de prometedora que ofrece oportunidades
significativas para la mejora continua de los algoritmos, especialmente en contextos
dinámicos y cambiantes.

2.11. Estado del arte
Dentro del estado del arte, encontramos múltiples trabajos relevantes para la optimiza-
ción multi-objetivo evolutiva. Uno de los estudios destacados es el de Guissepe [8]. Esta
investigación introduce una técnica innovadora para superar la convergencia en ópti-
mos locales mediante reinicios. El enfoque propuesto se centra en reiniciar la búsqueda
en áreas menos exploradas del espacio de búsqueda, seleccionando individuos según su
novedad. Este método ha demostrado ser eficaz en problemas de prueba multi-modales,
resaltando su utilidad en la búsqueda de soluciones óptimas y la exploración efectiva
en contextos complejos. Este estudio aporta una perspectiva valiosa sobre el equilibrio
entre exploración y explotación, y cómo la incorporación de la novedad puede enrique-
cer los métodos de optimización multi-objetivo.

Otro desarrollo significativo es el de Tanabe [52], que se enfoca en el uso de un archi-
vo externo para almacenar soluciones no dominadas. Este estudio compara algoritmos
evolutivos multi-objetivo elitistas y no elitistas en términos de selecciones ambientales,
evaluando su rendimiento en el conjunto de problemas BiBBOB. Los resultados indican
que los algoritmos no elitistas, combinados con ciertos métodos de cruce, son efectivos
en problemas con muchas variables de decisión, especialmente cuando se utiliza un ar-
chivo externo.

Recientemente, un enfoque intrigante en la investigación de algoritmos genéticos ha
surgido: la exploración de la heterogeneidad temporal en la asignación de probabilida-
des de cruce. A diferencia de los valores uniformes tradicionales, se propone asignar
probabilidades de cruce heterogéneas, variando según la aptitud de los individuos. El
trabajo reciente de Arévalo [40] aplica estos conceptos al problema de las N reinas y
al Problema del Viajante. Los resultados preliminares sugieren que la heterogeneidad
temporal puede mejorar significativamente la eficiencia y la calidad de las soluciones en
algoritmos genéticos, abriendo una nueva dirección de investigación prometedora para
la resolución de problemas complejos en ingeniería y disciplinas relacionadas.
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Por último, en el campo de la selección y configuración automatizada de algoritmos,
la predicción del rendimiento es un aspecto crucial. Los modelos de aprendizaje auto-
mático supervisado, a menudo considerados como cajas negras, plantean desafíos en
términos de explicabilidad. El trabajo de Trajanov [54], titulado ’Explainable Lands-
cape Analysis in Automated Algorithm Performance Prediction’, aborda este desafío.
Utiliza el Análisis Exploratorio del Paisaje (ELA) para calcular características del es-
pacio de búsqueda, agrupándolas en diferentes categorías y dividiéndolas en grupos
de características baratas y costosas. Su investigación emplea un pipeline de machine
learning para explorar la explicabilidad de las características ELA en la predicción del
rendimiento, resaltando la importancia de la explicabilidad en esta área.

43



Capítulo 3

Metodología

En esta investigación, nos centramos en la heterogeneidad temporal, un fenómeno que
se manifiesta cuando diferentes elementos de un sistema experimentan cambios a distin-
tas velocidades. Identificamos que, en nuestro estudio, los componentes críticos varían
a una velocidad menor. Este aspecto subraya que la tasa de cambio en el sistema es un
parámetro crucial que necesita ser ajustado. En el ámbito de los algoritmos evolutivos,
esto implica evaluar en qué medida se conservan las mejores soluciones.

En el presente capítulo, abordaremos en profundidad la metodología adoptada para
nuestra investigación.

3.1. Diseño global con parámetro de heterogenei-
dad temporal

Para abordar la heterogeneidad temporal en algoritmos evolutivos, hemos introduci-
do un parámetro adicional, denotado como H. Este parámetro representa el grado de
heterogeneidad en la composición de la población. Específicamente, H define el por-
centaje de la población que está compuesto por soluciones elitistas, mientras que el
restante 1−H se compone de soluciones aleatorias. Este enfoque presenta similitudes
con los algoritmos evolutivos de estado estable, como se describe en [44]. Ambos com-
parten características fundamentales, como la actualización gradual de la población,
el mantenimiento de la diversidad y una adaptabilidad dinámica ante las variaciones
del entorno. Sin embargo, una distinción importante radica en que, mientras la hete-
rogeneidad temporal se enfoca en la variabilidad de las condiciones ambientales, los
algoritmos de estado estable centran su mecanismo en las estrategias de reemplazo de
individuos dentro de la población, lo que subraya diferencias en la forma en que se
gestionan las adaptaciones y la evolución.

El algoritmo propuesto, se ilustra en el Algoritmo 1, sigue la estructura de un algoritmo
evolutivo tradicional, pero introduce modificaciones significativas en las etapas de se-
lección de individuos para incorporar el parámetro H. En las líneas 6 y 7 del algoritmo,
donde se lleva a cabo la selección de individuos óptimos y aleatorios, respectivamente,
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de acuerdo con el valor de H.

Utilizando H = 1, el algoritmo se comporta de manera idéntica a la implementación
clásica de un algoritmo evolutivo, donde solo se seleccionan individuos elitistas. Por
otro lado, un valor de H = 0 resulta en una selección completamente aleatoria, promo-
viendo una exploración exhaustiva del espacio de búsqueda sin priorizar a los individuos
elitistas. Este enfoque permite ajustar dinámicamente el balance entre explotación y
exploración.

La integración del nuevo parámetro H indica el porcentaje de la población compuesto
por soluciones elitistas. El restante 1−H se compone de soluciones aleatorias restantes.
Al permitir seleccionar la proporción de mejores genes que influyen en la población en
cada iteración, buscamos mantener la exploración efectiva sin sacrificar la calidad de
la población elitista.

Algorithm 1 Algoritmo evolutivo con heterogeneidad temporal
Require: f : Rn → Rk: función objetivo, H ∈ [0, 1]: heterogeneidad, npop: tamaño de

la población
Ensure: population: población final

1: population← initPopulation(npop)
2: fpopulation← evaluatePopulation(f, population)
3: for i = 1 . . . maxIter do
4: parents← selectParents(population, fpopulation)
5: children← geneticOperators(parents)
6: best← selectBest(population ∪ children, ceil(H ∗ npop))
7: random← selectRandom(population ∪ children, floor((1−H) ∗ npop))
8: population← best ∪ random
9: end for

3.2. Marco experimental
Los experimentos diseñados para esta investigación se llevaron a cabo en contextos
tanto de problemas de objetivo único como de problemas de objetivo múltiple, con
el fin de evaluar la eficacia de los algoritmos evolutivos bajo diferentes escenarios. A
continuación se explicará el marco experimental para cada caso.

3.2.1. Experimentos mono-objetivo
Los experimentos en el contexto de problemas mono-objetivo involucraron el uso de
Algoritmos Genéticos (GA), Evolución Diferencial (DE) y Estrategias Evolutivas (ES),
aplicados al conjunto de pruebas BBOB, que incluye veinticuatro funciones distintas. Se
realizaron pruebas en varias dimensiones: 2, 3, 5, 10, 20 y 40, siendo cada combinación
de dichos parámetros una instancia de pruebas. Para cada instancia, se llevó a cabo un
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total de veinte experimentos, lo que resulta en cincuenta mil cuatrocientas ejecuciones.
Cada instancia se ejecutó por mil generaciones, y se realizaron muestreos en cada
generación. Esto nos llevó a acumular un total de cincuenta millones cuatrocientos mil
resultados, que fueron registrados para su posterior análisis.

Implementación del conjunto de pruebas

Los experimentos se llevaron a cabo utilizando las 24 funciones sin ruido del conjun-
to BBOB, cada una con características únicas que las hacen adecuadas para probar
distintos aspectos de los algoritmos de optimización. A pesar de compartir ciertas si-
militudes, estas funciones presentan una variedad de características y limitaciones que
influyen en su comportamiento en el contexto de optimización. Estas características y
limitaciones específicas de las funciones del conjunto BBOB fueron consideradas en la
implementación de los experimentos para evaluar el efecto de la heterogeneidad en los
algoritmos de optimización mono-objetivo bajo diferentes condiciones y desafíos.

Implementación de algoritmos

Implementamos los algoritmos evolutivos con un enfoque en la heterogeneidad tem-
poral, adaptando los parámetros de cada algoritmo para integrar este concepto. A
continuación, se describen los ajustes específicos realizados en cada algoritmo:

Algoritmo genético (GA):

Codificación Real: Representación de individuos mediante vectores de números
reales, adecuados para problemas de optimización continua [19].

Cruza BLX-α: Método de cruce que genera hijos con genes extendidos más allá
de los valores parentales [15].

Mutación Uniforme: Mutación aleatoria de genes individuales con probabili-
dad r_mut [19].

Selección Greedy: Elección de los mejores individuos basada en rendimiento,
integrando un componente aleatorio según el parámetro de heterogeneidad como
se propone en el Algoritmo 1.

Evolución diferencial (DE):

Codificación Real: Uso de vectores de números reales para representar las so-
luciones [13].

Mutación Diferencial: Generación de vectores mutados combinando tres indi-
viduos distintos[13].

Cruce Uniforme: Mezcla de vectores mutados y objetivos para formar nuevos
individuos[13].

46



Selección Greedy: Elección de los mejores individuos basada en rendimiento,
integrando un componente aleatorio según el parámetro de heterogeneidad como
se propone en el Algoritmo 1.

Estrategia evolutiva (ES):

Codificación Real: Uso de vectores de números reales para representar las so-
luciones [49].

Mutación Gaussiana: Aplicación de ruido gaussiano a los genes para generar
hijos [49].

Selección Greedy: Elección de los mejores individuos basada en rendimiento,
integrando un componente aleatorio según el parámetro de heterogeneidad como
se propone en el Algoritmo 1.

Configuración de parámetros

Cada algoritmo se configuró con parámetros específicos para adecuarse al contexto de
optimización mono-objetivo y para incorporar la heterogeneidad temporal y se confi-
guraron de la siguiente forma:

Parámetros comunes en cada algoritmo

n_iter: 1,000 Número de iteraciones del algoritmo. Es el número de veces que
el algoritmo se ejecutará en su ciclo principal, intentando mejorar la solución
actual.

n_pop: 200 Tamaño de la población. Es el número de soluciones individuales
que se mantendrán en la población en cada iteración del algoritmo.

r_mut: 0.1 Tasa de mutación. Es un parámetro que influye en la operación de
mutación del algoritmo, controlando cuánto cambian las soluciones durante la
mutación.

r_cross: 0.8 Tasa de cruce (crossover). Determina la probabilidad de que cada
elemento de una solución se cambie por el correspondiente en la solución mutada
durante la operación de cruce.

heterogeneity Especifica el porcentaje de la población que se seleccionará de
las mejores soluciones actuales frente a una selección aleatoria.

alpha: 0.25 Factor utilizado en la operación de cruce.

Estrategia evolutiva:

step_size: 0.15 Tamaño del paso utilizado en la generación de hijos.
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Indicadores de desempeño y ejecuciones

Los resultados se registran como el valor óptimo encontrado por la población hasta
la generación actual, actualizándose solo cuando un individuo encuentra una mejor
solución. Configuramos los algoritmos, problemas y dimensiones para evaluar el efecto
de la heterogeneidad. A partir de veinte semillas por instancia, se realizaron múltiples
ejecuciones, almacenando los resultados en un DataFrame de Pandas. Cada algoritmo
se inicializó con un valor específico de heterogeneidad y se ejecutó desde la generación
cero, pasando por procesos de evaluación, selección, cruza y mutación.

3.2.2. Experimentos multi-objetivo
En el ámbito de los experimentos multi-objetivo, optamos por emplear los algoritmos
NSGA-II y NSGA-III para evaluar su rendimiento en problemas de optimización con
múltiples objetivos. Estos experimentos involucraron el uso de un archivo externo, el
cual contiene la información de todos los individuos de la población por cada genera-
ción que se probaron en los dos conjuntos de pruebas bien establecidos: Bi-BBOB y
WFG.

Con estos experimentos, se buscó obtener una comprensión integral del impacto de
la heterogeneidad temporal en distintos escenarios de optimización, evaluando su efi-
cacia en los algoritmos NSGA-II y NSGA-III en una amplia gama de problemas y
configuraciones.

Implementación del conjunto de pruebas

En nuestro enfoque experimental multi-objetivo, abordamos una diversidad de funcio-
nes y configuraciones, con un enfoque particular en los efectos en múltiples objetivos,
variando desde dos hasta diez objetivos. Profundicemos en las características de los
conjuntos de pruebas BiBBOB y WFG.

BiBBOB Para el contexto bi-objetivo, se utilizaron las cincuenta y cinco funcio-
nes del conjunto Bi-BBOB. Mediante el paquete IOHexperimenter [14], accedimos a
las funciones BBOB y las adaptamos para ser compatibles con Pymoo, siguiendo la
estructura e instancia mencionada en [5]. Las pruebas se realizaron manteniendo las
mismas dimensiones que en los experimentos mono-objetivo. En total, se efectuaron
veinte experimentos por instancia, similar a los experimentos mono-objetivo, lo que
llevó a un total de sesenta y seis mil instancias. En cada generación de estas instan-
cias, se realizó un muestreo, acumulando sesenta y seis millones de resultados que se
registraron en una tabla final.

WFG Para más de dos objetivos, nos centramos en las nueve funciones de WFG, las
cuales fueron provistas por el paquete Pymoo, modificando el parámetro de dimensio-
nes por el total de objetivos, con valores de k = 3, 5, 7 y 10. Al igual que con BiBBOB,
se evaluó cada valor de heterogeneidad realizando veinte experimentos por instancia.
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Esto resultó en un total de siete mil doscientas instancias, y al igual que en los otros
experimentos, se tomaron muestras en cada generación, sumando un total de siete mi-
llones doscientos mil resultados, que también se registraron para su análisis posterior.

Los parámetros utilizados para estas funciones son:

Dimensiones: Se trabajó con 24 variables de decisión.

Límites de la Función: Cada dimensión i tiene límites definidos en el intervalo
[0, 2i].

Estas configuraciones de los conjuntos de pruebas BiBBOB y WFG permitieron evaluar
de manera exhaustiva la efectividad de los algoritmos NSGA-II y NSGA-III en un
amplio espectro de escenarios de optimización multi-objetivo.

Implementación de algoritmos

Siguiendo un enfoque similar al utilizado en los experimentos mono-objetivo, modi-
ficamos los algoritmos NSGA-II y NSGA-III del paquete Pymoo para incorporar la
heterogeneidad temporal. Este ajuste influye significativamente en el mecanismo de
selección de ambos algoritmos.

Modificaciones en NSGA-II y NSGA-III: En NSGA-II, el nuevo parámetro de
heterogeneidad interviene después de calcular los frentes de Pareto y la crowding dis-
tance. La población se divide en dos grupos: los elitistas, seleccionados en su totalidad
como supervivientes por el algoritmo, y los pluralistas, generalmente descartados por
este. La heterogeneidad determina la proporción de individuos seleccionados de ambos
grupos, equilibrando entre los mejores de los elitistas y una selección aleatoria de la
población restante.

En NSGA-III, esta lógica se adapta al reemplazar la distancia de hacinamiento con el
cálculo relativo a los puntos de referencia. La heterogeneidad modula la selección de
individuos en relación con estos puntos de referencia, manteniendo la diversidad en el
frente de Pareto.

Parámetros comunes en cada algoritmo:

n_iter: 1,000 - Define el número de iteraciones del algoritmo, determinando la
duración del proceso de optimización.

n_pop: 200 - Establece el tamaño de la población, es decir, el número de solu-
ciones individuales en cada iteración.

heterogeneity - Controla el porcentaje de la población seleccionada como las
mejores soluciones frente a una selección aleatoria.
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Configuración específica de NSGA-III:

ref_dirs: (metodo = Riesz s-Energy [4], muestras = n_pop) - Las di-
recciones de referencia son clave en NSGA-III para mantener la diversidad en el
frente de Pareto.

Estas adaptaciones permiten evaluar de manera efectiva el impacto de la heterogeneidad
temporal en el rendimiento de los algoritmos en escenarios de optimización multi-
objetivo, proporcionando una visión más clara de su comportamiento en condiciones
variables.

Datos y ejecuciones

Para una evaluación exhaustiva del rendimiento de los algoritmos de optimización
multi-objetivo, se emplearon dos indicadores clave: IGD+ [29] y HV [20]. Estas métricas
son fundamentales para entender la efectividad de los algoritmos, particularmente en
términos de calidad y diversidad de las soluciones generadas.

Inverted Generational Distance Plus (IGD+) El cálculo de IGD+ en cada
generación permite monitorear la evolución y aproximación de las soluciones al
óptimo teórico aplicado a cada (n_objectives) propuestos en el problema.

Hypervolume (HV) Debido a consideraciones computacionales, el cálculo del
HV se realiza solo cuando el número de objetivos (n_objectives) es cinco o menos,
ya que su complejidad aumenta significativamente con el número de objetivos.

En el proceso de recopilación de datos, almacenamos tres tablas de información. La pri-
mera tabla contiene información sobre toda la población por generación, que se guarda
como un archivo externo y será útil en la fase de análisis. La segunda tabla almacena
el valor del indicador obtenido por el Frente de Pareto. Por último, se registran los va-
lores en el espacio de los objetivos de cada individuo perteneciente al Frente de Pareto.
Todos estos datos se capturan en diferentes DataFrames.

Esta metodología de registro asegura que dispongamos de un conjunto de datos com-
pleto para el análisis posterior del rendimiento de los algoritmos bajo diferentes confi-
guraciones y condiciones.

3.3. Análisis
Esta sección expone la metodología empleada para analizar los datos obtenidos de
los experimentos realizados, con el objetivo de explorar el impacto de la heterogenei-
dad temporal en algoritmos evolutivos multi-objetivo. El análisis se orienta hacia la
resolución de las siguientes interrogantes fundamentales:

¿Existe algún impacto estadísticamente significativo al variar los valores de he-
terogeneidad temporal?
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En caso de identificar diferencias estadísticas, ¿cuál sería el valor óptimo de hete-
rogeneidad para maximizar la eficacia en la resolución de un problema específico
de optimización?

Para abordar estas preguntas, se seleccionaron técnicas de estadística no paramétri-
cas, dado que no se asume una distribución específica de los datos. A continuación se
describe el procedimiento utilizado.

3.3.1. Esquema general
El enfoque experimental se centró en evaluar la influencia de la heterogeneidad tem-
poral en los algoritmos evolutivos. Se partió con dos estrategias evolutivas extremas,
representadas por los valores de heterogeneidad de 0 para la estrategia (µ, λ) y 1 para
(µ+λ). Luego, se analizaron tres valores intermedios (0.25, 0.50, y 0.75) para investigar
de manera más detallada el efecto de la heterogeneidad en los algoritmos, los tipos de
problemas y las dimensiones evaluadas.

Los experimentos se ejecutaron en una computadora equipada con un procesador Th-
readripper de tercera generación modelo 3970X de 32 núcleos a 4 GHz y 32 GB de RAM
en configuración de canal cuádruple. Se utilizó un enfoque de multi-procesamiento para
realizar las veinte pruebas de forma paralela, como se muestra en el Algoritmo 2.

Algorithm 2 Proceso de Optimización Multi-Objetivo
Require: algorithm, problem, n_objectives, h, n_test, n_population, maintenance =

False
1: process← Lista vacía de procesos
2: multi← Verdadero
3: for id, n en enumerate(n_test) do
4: if n_objectives ≥ 10 o maintenance then
5: test(algorithm, problem, n_objectives, h, id, n, n_population)
6: multi← Falso
7: else
8: process[id]← Nuevo proceso con target test y args
9: start(process[id])

10: end if
11: end for
12: if multi then
13: for proces en process do
14: join(proces)
15: end for
16: end if

Además, se utilizaron las siguientes versiones de bibliotecas relevantes para garantizar
la reproducibilidad y precisión de los resultados:

Python: 3.10
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IOHexperimenter: 0.3.10

Pymoo: 0.6.0

Pandas: 1.4.4

P-Flacco: 1.1.0

SHAP: 0.41.0

ScikitLearn: 1.2.2

Matplotlib: 3.6.3

Esta configuración experimental y de software nos proporciona una base sólida para el
análisis de los datos recopilados y la evaluación del impacto de la heterogeneidad en
los algoritmos de optimización multi-objetivo.

3.3.2. Base de datos
Para el análisis de los indicadores de desempeño, empleamos un enfoque detallado que
involucra el examen de los datos recopilados para cada algoritmo, problema, dimensión
y nivel de heterogeneidad.

Mono-objetivo En el contexto mono-objetivo, utilizamos los datos del archivo CSV
de nombre Data, cargándolos en un DataFrame. Seleccionamos y analizamos los datos
correspondientes a cada combinación específica de algoritmo, problema, dimensión y
nivel de heterogeneidad. Este proceso resulta en veinte tablas distintas, cada una re-
presentando los resultados de una prueba particular.

Para cada conjunto de datos, realizamos un análisis estadístico detallado por genera-
ción, calculando la media, mediana y desviación estándar de los resultados obtenidos.
Esto nos permite generar una tabla de análisis para cada instancia de problema, y
al consolidar todas estas instancias, obtenemos una visión completa de los resultados
empíricos del laboratorio mono-objetivo.

Multi-objetivo En el caso multi-objetivo, seguimos un procedimiento similar, utili-
zando los datos del archivo mencionado anteriormente. Este archivo contiene informa-
ción detallada sobre el alcance potencial de la población en comparación con el frente
de Pareto. Para analizar estos datos, normalizamos la información de los individuos
para cada problema y dimensión, ajustándola a una escala de cero a uno.

Con los datos de los individuos normalizados, calculamos el hipervolumen para cada
instancia de problema, utilizando la población completa. Esta nueva tabla de datos se
somete al mismo análisis estadístico aplicado en el contexto mono-objetivo, generando
así una tabla de análisis específica para el bi-objetivo.
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Evaluación estadística

Estos análisis se complementan con pruebas estadísticas para evaluar la significancia
de los resultados. Aplicamos pruebas como Kruskal-Wallis, Wilcoxon Rank Sum y
Borda para examinar la significancia estadística de las diferencias observadas, lo que
nos permite obtener una comprensión más profunda de las variaciones en los resultados
y su relevancia en el contexto de la optimización multi-objetivo.

3.3.3. Gráficas de convergencia
Para visualizar la evolución de las métricas de rendimiento en nuestros experimentos de
optimización, diseñamos una función específica para generar gráficos de convergencia.
Estos gráficos representan cómo métricas clave el promedio de las veinte pruebas del
valor de HV e IGD+ en Multi-Objetivo y Mejor Resultado en Mono-Objetivo, mos-
trando como cambian a lo largo de las generaciones para diferentes configuraciones de
algoritmos, problemas, y parámetros de objetivos y heterogeneidad.

Procedimiento de generación de gráficos

Inicialmente, configuramos los parámetros de visualización y leemos los datos de ren-
dimiento desde un archivo CSV denominado Data. Este archivo contiene métricas cal-
culadas previamente para varias combinaciones de algoritmos, problemas y niveles de
heterogeneidad.

Realizamos una iteración exhaustiva sobre diversas combinaciones, incluyendo
algoritmos, problemas y números de objetivos/dimensiones.

Para cada combinación, iteramos sobre distintos valores de heterogeneidad (0.25,
0.5, 0.75, 1.0).

Creación y personalización de gráficos

Durante la ejecución, generamos gráficos que muestran la evolución de las métricas
seleccionadas a lo largo de las generaciones. Dependiendo del número de objetivos, se
crean diferentes tipos de gráficos en el caso de multi-objetivo:

Para 5 objetivos o menos, generamos dos figuras, una para HV y otra para IGD+.

Para más de 5 objetivos, generamos una sola figura para IGD+.

Utilizamos subplots de Matplotlib para estos gráficos, personalizándolos con títulos,
etiquetas y leyendas. Cada gráfico refleja claramente la combinación de algoritmo,
problema y número de objetivos, además de diferenciar las líneas en función de los
valores de heterogeneidad.
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Almacenamiento y Gestión de Recursos

Tras la creación, los gráficos se guardan en formato PDF. Cerramos cada figura después
de guardarla para optimizar la gestión de memoria. Esta metodología nos permite ob-
tener una representación visual clara del rendimiento de los algoritmos bajo diferentes
configuraciones, facilitando la interpretación y el análisis de los resultados experimen-
tales.

3.3.4. Modelos
En nuestro análisis, aplicamos modelos estadísticos para abordar tres aspectos clave de
los resultados obtenidos en los experimentos de optimización:

Significancia estadística de los datos

Para determinar la significancia estadística de los datos, utilizamos la prueba de Kruskal-
Wallis. La cual recibe el banco de datos generados en el archivo CSV denominado Data.

Evaluación de la significancia entre Valores de heterogeneidad

Para analizar la significancia entre distintos niveles de heterogeneidad, empleamos la
prueba de Wilcoxon Rank Sum. Esta prueba compara los resultados obtenidos para
diferentes valores de heterogeneidad en cada instancia específica de algoritmo, proble-
ma y dimensión. En contextos multi-objetivo, donde buscamos maximizar el valor del
hipervolumen, la prueba evalúa el impacto de la heterogeneidad en la búsqueda de
valores más grandes. En contextos mono-objetivo, donde el objetivo es minimizar los
valores de los objetivos, examina el impacto en la búsqueda de valores más pequeños.
Los resultados de esta prueba se documentan en una tabla dedicada.

Identificación del Valor de heterogeneidad más efectivo

Utilizando los resultados de las pruebas de Wilcoxon, generamos una tabla de conteo de
Borda. En esta tabla, cada valor de heterogeneidad que demuestra un nivel de signifi-
cancia menor a 0.05 recibe un punto. Este método nos permite identificar la frecuencia
con la que cada nivel de heterogeneidad resulta ser el más efectivo para una instancia
particular. La tabla se nombra de acuerdo con la prueba.

Estos modelos y análisis se realizaron utilizando el paquete de análisis de datos de
Scipy, proporcionando una visión integral y detallada de la significancia y el impacto
de la heterogeneidad en nuestros experimentos.

3.3.5. Análisis de los espacios de búsqueda
Tras los análisis iniciales, emprendemos un nuevo estudio centrado en la exploración
de los espacios de búsqueda asociados a los problemas de optimización. El objetivo es
adquirir una comprensión detallada de las características inherentes de cada problema
y cómo estas interactúan con los valores de heterogeneidad y los algoritmos aplicados.
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Exploración de características de los problemas

Utilizamos el paquete P-Flacco para generar funciones del conjunto BBOB y llevar a
cabo un análisis de Exploratory Landscape Analysis (ELA) en profundidad. Esto nos
permite recopilar datos valiosos sobre las peculiaridades de cada problema y entender
mejor su naturaleza y complejidad.

Establecimiento de correlaciones

Nuestro enfoque se orienta a descubrir correlaciones significativas entre las caracterís-
ticas de los problemas y los valores de heterogeneidad. Buscamos predecir los valores
óptimos de heterogeneidad para algoritmos específicos basándonos en estas caracte-
rísticas. Para esto, analizamos los resultados de ELA y generamos mapas de calor,
facilitando la visualización de las relaciones entre distintas características del proble-
ma.

Aplicación de machine learning

Empleamos el modelo RandomForestRegressor de ScikitLearn para predecir el valor
óptimo de heterogeneidad siendo esta nuestro valor de salida del modelo y utilizando
las características obtenidas de los problemas de búsqueda identificadas como entradas.
Para optimizar los parámetros del modelo, aplicamos GridSearchCV. Este enfoque nos
ayuda a determinar la configuración más eficaz del modelo, incluyendo la profundidad
óptima del modelo.

Identificación de características clave

Tras la optimización de hiperparámetros, usamos el paquete SHAP para identificar las
características que ejercen un mayor impacto en el modelo RandomForestRegressor
empleado. Esto nos permite comprender mejor qué factores son los más influyentes en
la eficacia de la heterogeneidad en los espacios de búsqueda y cómo estos se relacionan
con los resultados obtenidos en nuestras pruebas.
Este análisis detallado de los espacios de búsqueda es crucial para comprender la in-
fluencia de las características de los problemas en la efectividad de los algoritmos.
Además, ofrece una base sólida para decisiones informadas sobre la selección de algo-
ritmos y valores de heterogeneidad en futuras investigaciones y aplicaciones prácticas.
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Capítulo 4

Resultados

Este capítulo se dedica a ofrecer un análisis detallado de estos resultados, subrayando
la importancia de la heterogeneidad en la selección de algoritmos y en la configuración
de problemas para alcanzar resultados óptimos. Examinaremos los datos recopilados
desde varias perspectivas, incluyendo el desempeño de los algoritmos en diferentes
niveles de heterogeneidad, la influencia de la heterogeneidad en las características de
los problemas de optimización y las implicaciones de estos hallazgos para la práctica
de la optimización en entornos complejos para contestar las preguntas planteadas en
la investigación.

4.1. Mono-objetivo
Esta sección se dedica a desglosar y analizar los resultados obtenidos en problemas
mono-objetivo, una faceta esencial de la optimización evolutiva. Se destacarán pa-
trones emergentes y lecciones aprendidas para comprender mejor la influencia de la
heterogeneidad en este tipo de problemas.

4.1.1. Análisis empírico
El análisis empírico de los datos recogidos en los experimentos mono-objetivo nos per-
mite corroborar y reforzar las observaciones preliminares sobre la influencia de la he-
terogeneidad. Los resultados obtenidos y resumidos en la Tabla 4.1 de métricas Mono
Objetivo indican una tendencia clara de la heterogeneidad, tanto en problemas de baja
como de alta dimensionalidad.
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Algoritmo Problema Dimensiones h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
GA Sphere 2 7.9484E+01(3.7492E-03) 7.9480E+01(1.4254E-04) 7.9480E+01(4.9077E-05) 7.9480E+01(1.7433E-05) 7.9480E+01(7.5652E-06)
GA Sphere 10 1.0429E+02(7.9521E+00) 7.9510E+01(1.4726E-02) 7.9495E+01(6.9573E-03) 7.9490E+01(5.0258E-03) 7.9489E+01(4.4419E-03)
GA Sphere 40 3.6321E+02(2.5305E+01) 1.0540E+02(4.5501E+00) 1.0468E+02(2.9068E+00) 1.0354E+02(3.5920E+00) 1.0165E+02(2.1120E+00)
GA Weierstrass 2 7.1399E+01(5.3488E-02) 7.1353E+01(2.7189E-03) 7.1354E+01(2.8201E-03) 7.1352E+01(1.9857E-03) 7.1351E+01(1.4899E-03)
GA Weierstrass 10 9.1821E+01(4.7914E+00) 7.7086E+01(2.8347E+00) 7.5554E+01(1.5945E+00) 7.5316E+01(1.6731E+00) 7.5542E+01(1.9201E+00)
GA Weierstrass 40 1.1414E+02(3.7013E+00) 9.8668E+01(2.6435E+00) 9.6950E+01(2.0189E+00) 9.5475E+01(2.6083E+00) 9.5487E+01(2.5075E+00)
GA Gallagher21 2 -1.0000E+03(1.4708E-04) -1.0000E+03(4.9135E-05) -1.0000E+03(1.4645E-06) -1.0000E+03(1.3635E-05) -1.0000E+03(2.5357E-03)
GA Gallagher21 10 -9.4362E+02(1.1383E+01) -9.9657E+02(4.2071E+00) -9.9806E+02(1.4543E+00) -9.9847E+02(7.1157E-01) -9.9867E+02(7.2902E-01)
GA Gallagher21 40 -9.1588E+02(7.4863E-01) -9.7967E+02(9.6686E+00) -9.8345E+02(6.3943E+00) -9.8453E+02(5.7575E+00) -9.8601E+02(4.3706E+00)
DE Sphere 2 7.9481E+01(2.2766E-03) 7.9480E+01(0.0000E+00) 7.9480E+01(0.0000E+00) 7.9480E+01(0.0000E+00) 7.9480E+01(0.0000E+00)
DE Sphere 10 9.3710E+01(4.8424E+00) 7.9480E+01(0.0000E+00) 7.9480E+01(7.4964E-05) 7.9480E+01(3.8316E-05) 7.9480E+01(2.0214E-05)
DE Sphere 40 2.9783E+02(2.2498E+01) 7.9712E+01(2.7139E-01) 7.9532E+01(8.4440E-02) 7.9534E+01(7.8243E-02) 7.9507E+01(7.8327E-02)
DE Weierstrass 2 7.1370E+01(2.1977E-02) 7.1350E+01(1.4580E-14) 7.1350E+01(1.4580E-14) 7.1350E+01(1.4580E-14) 7.1350E+01(1.8318E-08)
DE Weierstrass 10 7.9492E+01(1.4912E+00) 7.1525E+01(1.7680E-01) 7.1467E+01(9.7423E-02) 7.1477E+01(1.5281E-01) 7.1548E+01(2.2504E-01)
DE Weierstrass 40 1.0094E+02(1.9037E+00) 9.3671E+01(9.5860E+00) 9.2507E+01(9.9780E+00) 8.6584E+01(1.2072E+01) 8.2399E+01(1.2101E+01)
DE Gallagher21 2 -1.0000E+03(3.1635E-03) -1.0000E+03(4.6054E-06) -1.0000E+03(8.0655E-07) -1.0000E+03(3.8874E-06) -1.0000E+03(1.9084E-06)
DE Gallagher21 10 -9.7427E+02(1.0155E+01) -9.9821E+02(6.3563E-01) -9.9811E+02(2.8273E-01) -9.9812E+02(3.2623E-01) -9.9814E+02(4.2861E-01)
DE Gallagher21 40 -9.1880E+02(1.7186E+00) -9.9031E+02(8.2209E+00) -9.8895E+02(8.3852E+00) -9.9229E+02(8.0253E+00) -9.8987E+02(8.3824E+00)
ES Sphere 2 7.9529E+01(1.0159E-01) 7.9480E+01(1.2267E-06) 7.9480E+01(3.8719E-07) 7.9480E+01(6.7425E-07) 7.9480E+01(4.0837E-07)
ES Sphere 10 1.0193E+02(7.2278E+00) 7.9498E+01(3.9784E-03) 7.9498E+01(2.7493E-03) 7.9492E+01(3.5457E-03) 7.9493E+01(3.6095E-03)
ES Sphere 40 3.6581E+02(1.9291E+01) 8.0312E+01(7.9824E-02) 8.0209E+01(8.0415E-02) 8.0244E+01(4.7132E-02) 8.0184E+01(3.6097E-02)
ES Weierstrass 2 7.1363E+01(1.1574E-02) 7.1350E+01(1.1207E-04) 7.1350E+01(7.9706E-05) 7.1350E+01(1.0136E-04) 7.1350E+01(7.7261E-05)
ES Weierstrass 10 7.9895E+01(1.5052E+00) 7.1973E+01(3.1153E-01) 7.1998E+01(5.5310E-01) 7.1831E+01(2.4484E-01) 7.1972E+01(2.7065E-01)
ES Weierstrass 40 1.0260E+02(2.3803E+00) 7.8507E+01(1.4572E+00) 7.7809E+01(7.8254E-01) 7.7212E+01(4.9859E-01) 7.7208E+01(7.9584E-01)
ES Gallagher21 2 -1.0000E+03(1.7170E-03) -1.0000E+03(2.0020E-11) -1.0000E+03(8.3777E-12) -1.0000E+03(5.1342E-12) -1.0000E+03(2.6860E-12)
ES Gallagher21 10 -9.6047E+02(1.9401E+01) -9.9514E+02(6.4983E+00) -9.9607E+02(5.1229E+00) -9.9609E+02(5.4220E+00) -9.9587E+02(5.7568E+00)
ES Gallagher21 40 -9.1650E+02(1.1241E+00) -9.8991E+02(8.5294E+00) -9.9159E+02(8.3005E+00) -9.9159E+02(8.2984E+00) -9.9160E+02(8.3058E+00)

Tabla 4.1: Resumen del análisis empírico mono-objetivo para algunos problemas en
particular

Esta tabla proporciona una visión general de los datos recopilados de cada prueba rea-
lizada, permitiendo evaluar cómo la heterogeneidad afecta la búsqueda de soluciones
óptimas.

Los hallazgos sugieren que en ciertos casos, la heterogeneidad tiene un impacto signi-
ficativo en la identificación de soluciones óptimas. Es notable que, particularmente en
valores de heterogeneidad mayores o iguales a 0.5, se observa una mayor eficacia en la
obtención de resultados óptimos por parte de los individuos en los problemas propues-
tos. Además, con el incremento en la dimensionalidad de los problemas, los mejores
resultados tienden a agruparse en un rango de heterogeneidad que varía entre el 1 % y
el 0.5 %.

Esta tendencia nos ofrece perspectivas valiosas sobre la calibración de la heterogenei-
dad en algoritmos evolutivos aplicados a problemas mono-objetivo. Los datos indican
que ajustes adecuados en los niveles de heterogeneidad pueden conducir a mejoras
significativas en la eficacia de estos algoritmos.

4.1.2. Gráficos de convergencia
Para complementar y clarificar estos hallazgos, hemos generado gráficos de conver-
gencia para cada algoritmo y problema. Estos gráficos visualizan cómo los valores de
heterogeneidad afectan la convergencia de las soluciones en diferentes contextos.
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Figura 4.1: Gráfico de convergencia para el algoritmo genético en problemas de baja
dimensionalidad.
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Figura 4.2: Gráfico de convergencia para el algoritmo genético en problemas de alta
dimensionalidad.

En la Figura 4.1, correspondiente a un problema de baja dimensionalidad, se observa
que los valores de heterogeneidad convergen y obtienen resultados en regiones simila-
res. Por otro lado, la Figura 4.2, que representa un problema de alta dimensionalidad,
muestra que para valores bajos de heterogeneidad la convergencia es menos rápida en
comparación con valores altos. Patrones similares se observan en las Figuras 4.3, 4.4,
4.5 y 4.6 para otros algoritmos.
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Figura 4.3: Evolución Diferencial - Dos dimensiones
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Figura 4.4: Evolución Diferencial - Cuarenta dimensiones
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Figura 4.5: Estrategias Evolutivas - Dos dimensiones
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Figura 4.6: Estrategias Evolutivas - Cuarenta dimensiones

Estas representaciones visuales refuerzan los resultados obtenidos y proporcionan una
comprensión más profunda de la influencia de la heterogeneidad en el proceso de op-
timización, dependiendo de la dimensionalidad del problema y el tipo de algoritmo
utilizado.

4.1.3. Pruebas estadísticas
En esta subsección, abordamos el análisis estadístico exhaustivo realizado para res-
paldar y validar los hallazgos obtenidos en los experimentos de optimización mono-
objetivo.
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Análisis de Kruskal-Wallis

La prueba de Kruskal-Wallis se aplicó para evaluar la significancia estadística de la
heterogeneidad en los resultados. Los resultados de esta prueba vistos en la Tabla 4.2,
muestran que se rechaza la hipótesis nula de que los datos han sido generados de la
misma distribución.

Algoritmo Problema Dimensiones Valor - P

DE Sphere 2 3,546009× 10−20

DE Sphere 10 4,036662× 10−13

DE Sphere 40 1,172101× 10−12

DE Weierstrass 2 1,970363× 10−19

DE Weierstrass 10 7,260672× 10−10

DE Weierstrass 40 1,443381× 10−7

DE Gallagher21 2 3,922149× 10−13

DE Gallagher21 10 3,075205× 10−11

DE Gallagher21 40 3,906155× 10−11

ES Sphere 2 2,747200× 10−11

ES Sphere 10 5,291616× 10−14

ES Sphere 40 8,528497× 10−14

ES Weierstrass 2 2,075988× 10−11

ES Weierstrass 10 4,230093× 10−10

ES Weierstrass 40 1,239032× 10−11

ES Gallagher21 2 1,030112× 10−10

ES Gallagher21 10 1,106032× 10−8

ES Gallagher21 40 6,883057× 10−10

GA Sphere 2 5,427408× 10−14

GA Sphere 10 1,991402× 10−14

GA Sphere 40 1,002805× 10−11

GA Weierstrass 2 1,676884× 10−10

GA Weierstrass 10 3,367596× 10−10

GA Weierstrass 40 6,195023× 10−12

GA Gallagher21 2 8,651438× 10−8

GA Gallagher21 10 5,409370× 10−13

GA Gallagher21 40 2,851189× 10−11

Tabla 4.2: Resumen de la prueba de Kruskal Wallis para algunos problemas

Los valores de p-valor obtenidos en la prueba de Kruskal-Wallis están dentro del umbral
crítico de 0.05, lo que indica que las diferencias observadas son significativas y no
atribuibles al azar.
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Prueba de Wilcoxon ranksum

Al aplicar la prueba de Wilcoxon ranksum, se muestran resultados consistentes en con-
diciones de heterogeneidad baja (h=0.0) con p-valores cercanos o iguales a 1.000000,
indicando un rendimiento estable en entornos homogéneos para todos los problemas
y dimensiones, mientras que en niveles de heterogeneidad más altos, los p-valores va-
rían considerablemente, reflejando cómo los ajustes en la heterogeneidad afectan el
desempeño del algoritmo.
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
DE Gallagher21 2 0.00 - 0.999999 1.000000 1.000000 1.000000
DE Gallagher21 2 0.25 0.000001 - 0.616977 0.500000 0.424909
DE Gallagher21 2 0.50 0.000000 0.383023 - 0.393387 0.298931
DE Gallagher21 2 0.75 0.000000 0.500000 0.606613 - 0.414338
DE Gallagher21 2 1.00 0.000000 0.575091 0.701069 0.585662 -
DE Gallagher21 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Gallagher21 10 0.25 0.000000 - 0.019901 0.111754 0.032928
DE Gallagher21 10 0.50 0.000000 0.980099 - 0.841551 0.543082
DE Gallagher21 10 0.75 0.000000 0.888246 0.158449 - 0.208539
DE Gallagher21 10 1.00 0.000000 0.967072 0.456918 0.791461 -
DE Gallagher21 40 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Gallagher21 40 0.25 0.000000 - 0.510790 0.991353 0.982567
DE Gallagher21 40 0.50 0.000000 0.489210 - 0.995295 0.987621
DE Gallagher21 40 0.75 0.000000 0.008647 0.004705 - 0.500000
DE Gallagher21 40 1.00 0.000000 0.017433 0.012379 0.500000 -
DE Sphere 2 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 2 0.25 0.000000 - 0.500000 0.500000 0.500000
DE Sphere 2 0.50 0.000000 0.500000 - 0.500000 0.500000
DE Sphere 2 0.75 0.000000 0.500000 0.500000 - 0.500000
DE Sphere 2 1.00 0.000000 0.500000 0.500000 0.500000 -
DE Sphere 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 10 0.25 0.000000 - 0.007456 0.000219 0.001463
DE Sphere 10 0.50 0.000000 0.992544 - 0.066642 0.271386
DE Sphere 10 0.75 0.000000 0.999781 0.933358 - 0.810334
DE Sphere 10 1.00 0.000000 0.998537 0.728614 0.189666 -
DE Sphere 40 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Sphere 40 0.25 0.000000 - 0.990698 0.996853 0.999975
DE Sphere 40 0.50 0.000000 0.009302 - 0.759066 0.999468
DE Sphere 40 0.75 0.000000 0.003147 0.240934 - 0.981368
DE Sphere 40 1.00 0.000000 0.000025 0.000532 0.018632 -
DE Weierstrass 2 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Weierstrass 2 0.25 0.000000 - 0.500000 0.500000 0.393387
DE Weierstrass 2 0.50 0.000000 0.500000 - 0.500000 0.393387
DE Weierstrass 2 0.75 0.000000 0.500000 0.500000 - 0.393387
DE Weierstrass 2 1.00 0.000000 0.606613 0.606613 0.606613 -
DE Weierstrass 10 0.00 - 1.000000 1.000000 1.000000 1.000000
DE Weierstrass 10 0.25 0.000000 - 0.767413 0.821136 0.467661
DE Weierstrass 10 0.50 0.000000 0.232587 - 0.616977 0.178864
DE Weierstrass 10 0.75 0.000000 0.178864 0.383023 - 0.178864
DE Weierstrass 10 1.00 0.000000 0.532339 0.821136 0.821136 -
DE Weierstrass 40 0.00 - 0.999870 0.999992 0.999995 0.999999
DE Weierstrass 40 0.25 0.000130 - 0.775596 0.965034 0.997102
DE Weierstrass 40 0.50 0.000008 0.224404 - 0.834923 0.987621
DE Weierstrass 40 0.75 0.000005 0.034966 0.165077 - 0.938446
DE Weierstrass 40 1.00 0.000001 0.002898 0.012379 0.061554 -

Tabla 4.3: Resumen de la prueba de Willcoxon ranksum en evolución diferencial para
algunos problemas
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
ES Gallagher21 2 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 2 0.25 0.000000 - 0.933358 0.988048 0.990354
ES Gallagher21 2 0.5 0.000000 0.066642 - 0.719574 0.737507
ES Gallagher21 2 0.75 0.000000 0.011952 0.280426 - 0.467661
ES Gallagher21 2 1.0 0.000000 0.009646 0.262493 0.532339 -
ES Gallagher21 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 10 0.25 0.000000 - 0.724112 0.696357 0.877616
ES Gallagher21 10 0.5 0.000000 0.275888 - 0.446207 0.696357
ES Gallagher21 10 0.75 0.000000 0.303643 0.553793 - 0.715000
ES Gallagher21 10 1.0 0.000000 0.122384 0.303643 0.285000 -
ES Gallagher21 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Gallagher21 40 0.25 0.000000 - 0.813978 0.813978 0.898199
ES Gallagher21 40 0.5 0.000000 0.186022 - 0.616977 0.677189
ES Gallagher21 40 0.75 0.000000 0.186022 0.383023 - 0.543082
ES Gallagher21 40 1.0 0.000000 0.101801 0.322811 0.456918 -
ES Sphere 2 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 2 0.25 0.000000 - 0.995295 0.989999 0.999468
ES Sphere 2 0.5 0.000000 0.004705 - 0.532339 0.834923
ES Sphere 2 0.75 0.000000 0.010001 0.467661 - 0.877616
ES Sphere 2 1.0 0.000000 0.000532 0.165077 0.122384 -
ES Sphere 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 10 0.25 0.000000 - 0.616977 0.999969 0.999870
ES Sphere 10 0.5 0.000000 0.383023 - 0.999994 0.999945
ES Sphere 10 0.75 0.000000 0.000031 0.000006 - 0.258104
ES Sphere 10 1.0 0.000000 0.000130 0.000055 0.741896 -
ES Sphere 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Sphere 40 0.25 0.000000 - 0.999639 0.995295 0.999999
ES Sphere 40 0.5 0.000000 0.000361 - 0.127957 0.982567
ES Sphere 40 0.75 0.000000 0.004705 0.872043 - 0.999961
ES Sphere 40 1.0 0.000000 0.000001 0.017433 0.000039 -
ES Weierstrass 2 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Weierstrass 2 0.25 0.000000 - 0.985776 0.958292 0.999704
ES Weierstrass 2 0.5 0.000000 0.014224 - 0.332580 0.916138
ES Weierstrass 2 0.75 0.000000 0.041708 0.667420 - 0.980099
ES Weierstrass 2 1.0 0.000000 0.000296 0.083862 0.019901 -
ES Weierstrass 10 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Weierstrass 10 0.25 0.000000 - 0.715000 0.935089 0.478428
ES Weierstrass 10 0.5 0.000000 0.285000 - 0.759066 0.186022
ES Weierstrass 10 0.75 0.000000 0.064911 0.240934 - 0.049466
ES Weierstrass 10 1.0 0.000000 0.521572 0.813978 0.950534 -
ES Weierstrass 40 0.0 - 1.000000 1.000000 1.000000 1.000000
ES Weierstrass 40 0.25 0.000000 - 0.944751 0.998403 0.997333
ES Weierstrass 40 0.5 0.000000 0.055249 - 0.994500 0.981368
ES Weierstrass 40 0.75 0.000000 0.001597 0.005500 - 0.564465
ES Weierstrass 40 1.0 0.000000 0.002667 0.018632 0.435535 -

Tabla 4.4: Resumen de la prueba de Wilcoxon ranksum en estrategias evolutivas para
algunos problemas
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
GA Gallagher21 2 0.0 - 0.999998 1.000000 0.999961 0.715000
GA Gallagher21 2 0.25 0.000002 - 0.696357 0.313164 0.000643
GA Gallagher21 2 0.5 0.000000 0.303643 - 0.083862 0.000130
GA Gallagher21 2 0.75 0.000039 0.686836 0.916138 - 0.002667
GA Gallagher21 2 1.0 0.285000 0.999357 0.999870 0.997333 -
GA Gallagher21 10 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Gallagher21 10 0.25 0.000000 - 0.995295 0.999945 0.999990
GA Gallagher21 10 0.5 0.000000 0.004705 - 0.938446 0.990698
GA Gallagher21 10 0.75 0.000000 0.000055 0.061554 - 0.893306
GA Gallagher21 10 1.0 0.000000 0.000010 0.009302 0.106694 -
GA Gallagher21 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Gallagher21 40 0.25 0.000000 - 0.927952 0.989255 0.999149
GA Gallagher21 40 0.5 0.000000 0.072048 - 0.854277 0.986726
GA Gallagher21 40 0.75 0.000000 0.010745 0.145723 - 0.791461
GA Gallagher21 40 1.0 0.000000 0.000851 0.013274 0.208539 -
GA Sphere 2 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 2 0.25 0.000000 - 0.958292 0.998403 1.000000
GA Sphere 2 0.5 0.000000 0.041708 - 0.834923 0.999956
GA Sphere 2 0.75 0.000000 0.001597 0.165077 - 0.999758
GA Sphere 2 1.0 0.000000 0.000000 0.000044 0.000242 -
GA Sphere 10 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 10 0.25 0.000000 - 0.999673 0.999998 1.000000
GA Sphere 10 0.5 0.000000 0.000327 - 0.983699 0.998403
GA Sphere 10 0.75 0.000000 0.000002 0.016301 - 0.828118
GA Sphere 10 1.0 0.000000 0.000000 0.001597 0.171882 -
GA Sphere 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Sphere 40 0.25 0.000000 - 0.828118 0.965034 0.999673
GA Sphere 40 0.5 0.000000 0.171882 - 0.821136 0.999561
GA Sphere 40 0.75 0.000000 0.034966 0.178864 - 0.960648
GA Sphere 40 1.0 0.000000 0.000327 0.000439 0.039352 -
GA Weierstrass 2 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Weierstrass 2 0.25 0.000000 - 0.313164 0.975846 0.982567
GA Weierstrass 2 0.5 0.000000 0.686836 - 0.993083 0.998537
GA Weierstrass 2 0.75 0.000000 0.024154 0.006917 - 0.342463
GA Weierstrass 2 1.0 0.000000 0.017433 0.001463 0.657537 -
GA Weierstrass 10 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Weierstrass 10 0.25 0.000000 - 0.902926 0.962894 0.950534
GA Weierstrass 10 0.5 0.000000 0.097074 - 0.791461 0.446207
GA Weierstrass 10 0.75 0.000000 0.037106 0.208539 - 0.435535
GA Weierstrass 10 1.0 0.000000 0.049466 0.553793 0.564465 -
GA Weierstrass 40 0.0 - 1.000000 1.000000 1.000000 1.000000
GA Weierstrass 40 0.25 0.000000 - 0.989999 0.999415 0.999673
GA Weierstrass 40 0.5 0.000000 0.010001 - 0.960648 0.962894
GA Weierstrass 40 0.75 0.000000 0.000585 0.039352 - 0.575091
GA Weierstrass 40 1.0 0.000000 0.000327 0.037106 0.424909 -

Tabla 4.5: Resumen de la prueba de Willcoxon ranksum en el algoritmo genético para
algunos problemas

Los resultados de esta prueba vistos en las Tablas 4.3, 4.4 y 4.5 sugieren que el elitismo
no es necesariamente la mejor estrategia en todos los casos, evidenciando la importan-
cia de ajustar el nivel de heterogeneidad en función del problema específico.
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Figura 4.7: Gráfica de diferencias criticas mono-objetivo

Para ilustrar de manera más clara los resultados obtenidos, en la Figura 4.7 se presen-
ta la gráfica de distancias críticas. Esta gráfica proporciona un ranking de los valores
de heterogeneidad basados en su rendimiento medio en las pruebas, donde el valor 1
corresponde al mejor rendimiento, mientras que el valor 5 representa el peor.

Las líneas horizontales conectan aquellos valores de heterogeneidad cuyos rendimientos
no presentan diferencias estadísticamente significativas. A partir de la gráfica, se pueden
destacar los siguientes puntos:

Los niveles de heterogeneidad 0.75 y 1.0 muestran un rendimiento similar, ya
que están conectados por una línea, lo que indica que no existe una diferencia
estadísticamente significativa entre ellos.

El valor de heterogeneidad 0.5, a pesar de mostrar un rendimiento intermedio,
no evidencia diferencias significativas con respecto a los valores 0.25 y 0.0, los
cuales obtuvieron los peores resultados en el ranking.

En términos generales, los resultados sugieren que los niveles más altos de heteroge-
neidad (0.75 y 1.0 ) están asociados a un rendimiento superior en comparación con
los niveles más bajos. Sin embargo, no se observa una diferencia significativa entre los
niveles altos de heterogeneidad.

Conteo de Borda

Para reforzar aún más nuestros hallazgos, analizamos la Tabla 4.6 de conteo de Borda,
que destaca la frecuencia con la que diferentes valores de heterogeneidad resultaron ser
los más efectivos.
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Algoritmo Dimensiones h=0.0 h=0.25 h=0.5 h=0.75 h=1.0

DE 2 25 63 65 60 48
DE 3 24 68 64 55 48
DE 5 24 63 53 48 49
DE 10 24 65 53 53 55
DE 20 24 56 56 60 61
DE 40 24 50 57 71 88
ES 2 24 49 58 64 62
ES 3 24 52 58 59 65
ES 5 24 56 60 61 62
ES 10 24 52 56 63 62
ES 20 24 52 56 59 69
ES 40 24 51 60 69 75
GA 2 24 50 54 61 58
GA 3 24 48 63 66 66
GA 5 24 47 54 66 74
GA 10 24 48 63 74 89
GA 20 24 48 63 78 92
GA 40 24 48 61 79 90

Total - 433 966 1054 1146 1213

Tabla 4.6: Resumen de conteos de Borda

Se observó que, con el incremento de las dimensiones, existe una tendencia generalizada
entre los algoritmos para mejorar su rendimiento relativo o su clasificación en compa-
ración con otros bajo condiciones de alta heterogeneidad. Este fenómeno sugiere que
las estrategias implementadas por dichos algoritmos se benefician de un mayor grado
de elitismo en espacios de búsqueda más complejos. Esta tendencia es particularmente
notable en el algoritmo genético (GA), el cual exhibe una alta predisposición hacia el
elitismo. Sin embargo, se ha identificado que algoritmos como la Evolución Diferencial
(DE) obtienen mayores beneficios en entornos de baja heterogeneidad.

4.1.4. Explicabilidad
Mediante el uso de P-Flacco, exploramos las características ELA de las funciones ob-
jetivo, las cuales proyectamos utilizando un mapa de calor presente en la Figura 4.8
para visualizar la correlación entre estas características. Identificamos que, a medida
que aumenta la dimensionalidad de los problemas, ciertas características, como la dis-
tancia media y el ángulo medio, exhiben un impacto significativo en la necesidad de
heterogeneidad. Específicamente, observamos que el ángulo medio alcanza valores ab-
solutos de 1 en dimensiones de 40, lo que sugiere que estos factores son cruciales en la
optimización de los algoritmos evolutivos.
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Dimensions

cm_angle.dist_ctr2best_mean

cm_angle.dist_ctr2worst_mean

cm_angle.angle_mean

cm_angle.costs_runtime

disp.ratio_mean_02

disp.ratio_mean_05

disp.ratio_mean_10

disp.ratio_mean_25

disp.ratio_median_02

disp.ratio_median_05

disp.ratio_median_10

disp.ratio_median_25

disp.diff_mean_02

disp.diff_mean_05

disp.diff_mean_10

disp.diff_mean_25

disp.diff_median_02

disp.diff_median_05

disp.diff_median_10

disp.diff_median_25

disp.costs_runtime

ela_conv.conv_prob

ela_conv.lin_prob

ela_conv.lin_dev_orig

ela_conv.lin_dev_abs

ela_conv.additional_function_eval

ela_conv.costs_runtime

ela_distr.skewness

ela_distr.kurtosis

ela_distr.number_of_peaks

ela_distr.costs_runtime

ela_level.mmce_lda_10

ela_level.mmce_qda_10

ela_level.lda_qda_10

ela_level.mmce_lda_25

ela_level.mmce_qda_25

ela_level.lda_qda_25

ela_level.mmce_lda_50

ela_level.mmce_qda_50

ela_level.lda_qda_50

ela_level.costs_runtime

ela_local.n_loc_opt.abs

ela_local.n_loc_opt.rel

ela_local.best2mean_contr.orig

ela_local.best2mean_contr.ratio

ela_local.basin_sizes.avg_best

ela_local.basin_sizes.avg_non_best

ela_local.basin_sizes.avg_worst

ela_local.fun_evals.min

ela_local.fun_evals.lq

ela_local.fun_evals.mean

ela_local.fun_evals.median

ela_local.fun_evals.uq

ela_local.fun_evals.max

ela_local.fun_evals.sd

ela_local.additional_function_eval

ela_local.costs_runtime

ela_meta.lin_simple.adj_r2

ela_meta.lin_simple.intercept

ela_meta.lin_simple.coef.min

ela_meta.lin_simple.coef.max

ela_meta.lin_simple.coef.max_by_min

ela_meta.lin_w_interact.adj_r2

ela_meta.quad_simple.adj_r2

ela_meta.quad_simple.cond

ela_meta.quad_w_interact.adj_r2

ela_meta.costs_runtime

ic.h_max

ic.eps_s

ic_eps.max

ic.eps_ration

ic.m0

ic.costs_runtime

nbc.nn_nb.sd_ratio

nbc.nn_nb.mean_ratio

nbc.nn_nb.cor

nbc.dist_ratio.coeff_var

nbc.nb_fitness.cor

nbc.costs_runtime

pca.expl_var.cov_x

pca.expl_var.cor_x

pca.expl_var.cov_init

pca.expl_var.cor_init

pca.expl_var_PC1.cov_x

pca.expl_var_PC1.cor_x

pca.expl_var_PC1.cov_init

pca.expl_var_PC1.cor_init

pca.costs_runtime

fitness_distance.fd_correlation

fitness_distance.fd_cov

fitness_distance.distance_mean

fitness_distance.distance_std

fitness_distance.fitness_mean

fitness_distance.fitness_std

fitness_distance.costs_runtime

gradient.g_avg

gradient.g_std

gradient.additional_function_eval

gradient.costs_runtime

hill_climbing.avg_dist_between_opt

hill_climbing.std_dist_between_opt

hill_climbing.avg_dist_local_to_global

hill_climbing.std_dist_local_to_global

hill_climbing.additional_function_eval

hill_climbing.costs_runtime

fla_metrics.sobol_indices.degree_of_variable_interaction

fla_metrics.sobol_indices.coeff_var_x_sensitivy

fla_metrics.fitness_variance

fla_metrics.state_variance

fla_metrics.fitness_skewness

fla_metrics.state_skewness

fla_metrics.additional_function_eval

fla_metrics.costs_runtime

lon.n_optima

lon.neutral_nodes_proportion

lon.n_funnels

H
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Figura 4.8: Mapa de correlación de características de los espacios mono-objetivo

Para validar nuestra hipótesis sobre la influencia de estas características en los re-
sultados de optimización, recurrimos al análisis proporcionado por el paquete SHAP,
enfocado en el modelo RandomForestRegressor aplicado a nuestros datos experimen-
tales. Los resultados del análisis SHAP que se muestran en la Figura 4.9 confirman que
las características más influyentes en los resultados son, efectivamente, los algoritmos
utilizados y las métricas de distancia media y propagación.
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Figura 4.9: Análisis Mono-Objetivo de SHAP destacando las características más influ-
yentes en la elección de heterogeneidad.

Estos hallazgos subrayan la importancia de analizar detenidamente las características
de los espacios de búsqueda para comprender cómo influyen en la selección óptima de la
heterogeneidad, dependiendo del algoritmo utilizado y la dimensionalidad del problema.

Este enfoque de explicabilidad nos permite no solo entender mejor los mecanismos
detrás de los algoritmos de optimización sino también guiar la selección de parámetros
de heterogeneidad de manera más informada y efectiva.
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4.2. Multi-objetivo
En esta sección, desplazamos nuestro enfoque hacia el análisis de problemas multi-
objetivo, con el propósito de explorar cómo la heterogeneidad afecta el comportamiento
en los resultados para los conjuntos de prueba seleccionados.

4.2.1. Análisis empírico
Para proporcionar una visión detallada de los efectos de la heterogeneidad en contex-
tos multi-objetivo, analizamos las Tablas 4.7 y 4.8. Estas tablas resumen los resultados
recopilados de las pruebas realizadas, ilustrando cómo diferentes niveles de heteroge-
neidad impactan el rendimiento de los algoritmos en estos problemas complejos.

Profundizando en el análisis empírico de los resultados obtenidos en los experimentos
de optimización multi-objetivo, examinando las tendencias observadas en las métricas
de rendimiento y su implicación.

Análisis de hipervolumen (HV)

Los resultados obtenidos por NSGA-II, medidos a través del indicador de hipervolu-
men, se resumen en las Tablas 4.7 y 4.8.

Algoritmo Problema Dimensiones h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA-II 1 2 1.7632E-02(3.8790E-17) 1.1990E+00(2.7230E-03) 1.2016E+00(6.6671E-04) 1.2025E+00(1.5522E-05) 1.2025E+00(2.7910E-06)
NSGA-II 1 40 1.9257E-02(1.7656E-03) 1.1221E+00(5.5496E-03) 1.1492E+00(6.0130E-03) 1.1668E+00(4.4089E-03) 1.1992E+00(7.0035E-04)
NSGA-II 2 2 1.3883E-02(2.2272E-16) 1.2078E+00(9.3559E-04) 1.2085E+00(2.4423E-04) 1.2088E+00(3.2634E-06) 1.2088E+00(1.3674E-06)
NSGA-II 2 40 1.1478E-02(1.0120E-03) 1.1957E+00(3.3989E-03) 1.2017E+00(1.4748E-03) 1.2034E+00(1.4063E-03) 1.2094E+00(1.8934E-05)
NSGA-II 3 2 6.6582E-02(1.4238E-17) 1.2098E+00(1.2180E-04) 1.2099E+00(1.0630E-04) 1.2100E+00(6.4450E-06) 1.2100E+00(6.0390E-10)
NSGA-II 3 40 2.9621E-02(4.1218E-03) 1.1591E+00(5.7317E-03) 1.1785E+00(3.3430E-03) 1.1904E+00(3.2868E-03) 1.2059E+00(8.0616E-04)
NSGA-II 4 2 1.0000E-02(1.1368E-16) 1.2090E+00(7.8701E-04) 1.2095E+00(4.2270E-04) 1.2098E+00(1.6722E-06) 1.2098E+00(3.3603E-07)
NSGA-II 4 40 2.5099E-02(5.1962E-03) 1.1726E+00(6.1072E-03) 1.1794E+00(4.1628E-03) 1.1890E+00(4.8146E-03) 1.2076E+00(2.0231E-04)
NSGA-II 5 2 4.2280E-02(4.6819E-17) 1.1763E+00(2.0154E-02) 1.1868E+00(1.4926E-02) 1.2005E+00(1.9442E-03) 1.2039E+00(1.9354E-05)
NSGA-II 5 40 1.8789E-02(1.5293E-03) 1.0152E+00(1.2330E-02) 1.0632E+00(1.3717E-02) 1.0828E+00(1.2615E-02) 1.1710E+00(5.6621E-03)
NSGA-II 6 2 7.6170E-02(2.8689E-16) 1.1987E+00(2.1951E-03) 1.2008E+00(1.3876E-03) 1.2026E+00(1.4024E-05) 1.2027E+00(1.3013E-05)
NSGA-II 6 40 7.8328E-02(6.5815E-03) 1.1795E+00(8.1408E-03) 1.1931E+00(4.4673E-03) 1.1979E+00(2.4535E-03) 1.2092E+00(2.7847E-04)
NSGA-II 7 2 1.0000E-02(4.9252E-17) 1.2077E+00(2.0100E-03) 1.2091E+00(7.6545E-04) 1.2094E+00(4.1021E-04) 1.2100E+00(3.9491E-07)
NSGA-II 7 40 4.2232E-02(1.6620E-02) 1.1937E+00(3.9636E-03) 1.1991E+00(1.9856E-03) 1.2054E+00(1.4237E-03) 1.2096E+00(1.8176E-04)
NSGA-II 8 2 8.0758E-02(4.5757E-05) 1.2095E+00(4.1651E-04) 1.2098E+00(1.7864E-04) 1.2099E+00(6.9521E-05) 1.2100E+00(3.1512E-06)
NSGA-II 8 40 1.1283E-01(1.1402E-02) 1.2087E+00(4.9746E-04) 1.2098E+00(1.0254E-04) 1.2099E+00(4.3878E-05) 1.2100E+00(1.7562E-05)
NSGA-II 9 2 1.0000E-02(4.9239E-17) 1.2096E+00(3.1461E-04) 1.2099E+00(1.4002E-04) 1.2100E+00(1.7740E-06) 1.2100E+00(2.9764E-08)
NSGA-II 9 40 2.0952E-02(2.4162E-03) 1.1782E+00(3.5731E-03) 1.1925E+00(3.3406E-03) 1.2000E+00(1.6453E-03) 1.2086E+00(8.2078E-05)
NSGA-II 10 2 4.9920E-02(9.8986E-03) 1.2085E+00(2.4228E-03) 1.2088E+00(2.0325E-03) 1.2098E+00(5.0397E-06) 1.2098E+00(1.0588E-07)
NSGA-II 10 40 1.4526E-02(5.4919E-03) 7.3265E-01(9.1413E-02) 9.4849E-01(4.8695E-02) 1.0385E+00(3.8375E-02) 1.1469E+00(6.1918E-03)
NSGA-III 1 2 2.1189E-01(4.2572E-02) 1.1987E+00(4.0672E-03) 1.2004E+00(2.1320E-03) 1.2015E+00(1.0672E-03) 1.2025E+00(3.6680E-05)
NSGA-III 1 40 2.4929E-02(1.9641E-03) 1.1309E+00(7.1112E-03) 1.1464E+00(6.7775E-03) 1.1535E+00(5.9832E-03) 1.1771E+00(3.0917E-03)
NSGA-III 2 2 2.5915E-01(5.1953E-02) 1.2084E+00(4.8479E-04) 1.2086E+00(1.9297E-04) 1.2087E+00(6.8345E-05) 1.2087E+00(3.1652E-05)
NSGA-III 2 40 2.3999E-02(4.9295E-03) 1.1903E+00(4.0018E-03) 1.1974E+00(2.1016E-03) 1.1998E+00(1.8181E-03) 1.2080E+00(3.2929E-04)
NSGA-III 3 2 3.8244E-01(8.1350E-02) 1.2099E+00(1.2785E-04) 1.2099E+00(1.2010E-04) 1.2099E+00(1.9936E-04) 1.2100E+00(4.7475E-09)
NSGA-III 3 40 3.7200E-02(6.6329E-03) 1.1605E+00(6.9607E-03) 1.1760E+00(5.5053E-03) 1.1801E+00(6.2836E-03) 1.1917E+00(3.7321E-03)
NSGA-III 4 2 3.8150E-01(9.1889E-02) 1.2089E+00(1.4132E-03) 1.2096E+00(3.3094E-04) 1.2097E+00(8.5522E-05) 1.2098E+00(2.5915E-06)
NSGA-III 4 40 3.8852E-02(9.7052E-03) 1.1617E+00(5.6435E-03) 1.1710E+00(6.3789E-03) 1.1766E+00(2.0207E-03) 1.1963E+00(2.3895E-03)
NSGA-III 5 2 2.5182E-01(5.0982E-02) 1.1915E+00(1.2725E-02) 1.1889E+00(1.2453E-02) 1.1970E+00(6.6614E-03) 1.2038E+00(1.2030E-04)
NSGA-III 5 40 2.4949E-02(2.7451E-03) 1.0117E+00(1.6799E-02) 1.0447E+00(1.6543E-02) 1.0548E+00(9.9534E-03) 1.1120E+00(8.5769E-03)
NSGA-III 6 2 4.0083E-01(5.7904E-02) 1.2000E+00(1.8654E-03) 1.2013E+00(9.2849E-04) 1.2006E+00(1.1969E-03) 1.2026E+00(6.6429E-05)
NSGA-III 6 40 9.6836E-02(5.8516E-03) 1.1821E+00(6.7963E-03) 1.1872E+00(6.0552E-03) 1.1924E+00(3.1341E-03) 1.2021E+00(2.0071E-03)
NSGA-III 7 2 2.2438E-01(5.4920E-02) 1.2083E+00(1.7719E-03) 1.2094E+00(7.0602E-04) 1.2091E+00(8.5949E-04) 1.2100E+00(4.8978E-07)
NSGA-III 7 40 7.4073E-02(1.6934E-02) 1.1798E+00(4.9031E-03) 1.1980E+00(3.4947E-03) 1.2017E+00(2.0035E-03) 1.2044E+00(1.2711E-03)
NSGA-III 8 2 3.9594E-01(4.6685E-02) 1.2098E+00(2.1445E-04) 1.2098E+00(1.3934E-04) 1.2098E+00(1.2994E-04) 1.2100E+00(4.5162E-06)
NSGA-III 8 40 1.4146E-01(1.0887E-02) 1.2032E+00(2.5722E-03) 1.2093E+00(3.0847E-04) 1.2097E+00(1.2447E-04) 1.2096E+00(1.6055E-04)
NSGA-III 9 2 2.4416E-01(6.8229E-02) 1.2098E+00(1.2111E-04) 1.2099E+00(4.0012E-05) 1.2099E+00(2.6158E-05) 1.2100E+00(4.4230E-07)
NSGA-III 9 40 3.1027E-02(2.7627E-03) 1.1773E+00(4.7067E-03) 1.1880E+00(3.5784E-03) 1.1901E+00(3.3627E-03) 1.2043E+00(1.0419E-03)
NSGA-III 10 2 5.1514E-01(5.0906E-02) 1.2091E+00(1.2064E-03) 1.2095E+00(5.9072E-04) 1.2096E+00(4.5283E-04) 1.2098E+00(1.4459E-05)
NSGA-III 10 40 2.6006E-02(5.8383E-03) 7.2076E-01(8.2484E-02) 8.2769E-01(8.0112E-02) 8.8582E-01(6.8925E-02) 1.0681E+00(1.9711E-02)

Tabla 4.7: Resumen de resultados BiBBOB con hipervolumen
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Algoritmo Problema K h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA-II WFG1 3 1.0658E-14(0.0000E+00) 2.3432E+01(1.7814E+00) 2.5693E+01(1.3080E+00) 5.3147E+01(1.0799E+00) 5.7917E+01(1.6687E+00)
NSGA-II WFG1 5 1.7053E-12(0.0000E+00) 2.2859E+03(1.6067E+02) 2.2153E+03(1.0036E+02) 4.4995E+03(7.5586E+01) 4.6695E+03(9.1086E+01)
NSGA-II WFG2 3 5.0284E-01(1.1083E+00) 7.1435E+01(4.7282E+00) 8.4288E+01(4.9502E+00) 9.9183E+01(3.2257E+00) 9.8136E+01(5.4061E+00)
NSGA-II WFG2 5 3.4414E+00(8.8640E+00) 7.2924E+03(8.3749E+02) 8.1449E+03(5.2702E+02) 1.0284E+04(1.1538E+01) 1.0292E+04(1.2327E+01)
NSGA-II WFG3 3 4.6755E+00(3.5768E+00) 4.3496E+01(7.1499E+00) 4.2122E+01(2.4497E+00) 7.5480E+01(1.1179E-01) 7.5826E+01(1.0216E-01)
NSGA-II WFG3 5 1.8182E+02(1.3077E+02) 4.1160E+03(2.4565E+02) 4.3343E+03(2.2694E+02) 7.1865E+03(5.6788E+01) 7.2426E+03(3.5297E+01)
NSGA-II WFG4 3 8.7789E-01(2.3315E-01) 3.7005E+01(4.8181E+00) 4.7756E+01(3.8061E+00) 7.3964E+01(4.0269E-01) 7.4611E+01(2.7216E-01)
NSGA-II WFG4 5 4.0334E+01(8.2917E+00) 2.1238E+03(2.8864E+02) 2.8380E+03(6.0052E+02) 7.2625E+03(3.4983E+02) 7.4471E+03(2.6836E+02)
NSGA-II WFG5 3 1.7430E+00(8.9520E-01) 3.0558E+01(4.7061E+00) 2.9985E+01(5.1547E+00) 7.1675E+01(2.7048E-01) 7.1784E+01(4.2525E-01)
NSGA-II WFG5 5 1.3096E+02(5.3685E+01) 1.4948E+03(2.6938E+02) 3.8280E+03(6.0893E+02) 6.8859E+03(1.5449E+02) 7.2818E+03(1.3192E+02)
NSGA-II WFG6 3 2.0802E+00(1.3617E+00) 3.7578E+01(1.0423E+01) 4.3834E+01(9.8491E+00) 7.2047E+01(4.2122E-01) 7.2617E+01(3.6653E-01)
NSGA-II WFG6 5 4.8432E+01(2.4592E+01) 1.8461E+03(5.1133E+02) 2.6766E+03(5.6379E+02) 7.3009E+03(2.3975E+02) 7.4327E+03(1.6349E+02)
NSGA-II WFG7 3 5.5033E-03(1.2611E-02) 3.5590E+01(4.3197E+00) 4.2380E+01(2.7246E+00) 7.4778E+01(5.7333E-01) 7.5398E+01(4.2521E-01)
NSGA-II WFG7 5 7.5651E+01(5.5494E+01) 2.8051E+03(1.9664E+02) 3.3382E+03(1.9345E+02) 7.2612E+03(2.0541E+02) 7.4388E+03(1.8143E+02)
NSGA-II WFG8 3 1.0553E+00(8.5153E-01) 2.8619E+01(3.8099E+00) 3.4401E+01(3.6869E+00) 6.6635E+01(5.1002E-01) 6.8032E+01(2.8151E-01)
NSGA-II WFG8 5 4.1957E+01(2.2711E+01) 1.6900E+03(2.4758E+02) 2.3718E+03(1.8411E+02) 6.0115E+03(1.8918E+02) 6.1372E+03(1.0655E+02)
NSGA-II WFG9 3 6.6021E-02(4.9340E-03) 4.5999E+01(3.8896E+00) 5.3707E+01(3.1752E+00) 6.7996E+01(1.6031E+00) 6.7908E+01(1.5281E+00)
NSGA-II WFG9 5 9.9691E+00(5.0953E+00) 3.1386E+03(4.3593E+02) 3.8913E+03(4.0748E+02) 6.3100E+03(1.9283E+02) 6.5530E+03(1.1814E+02)
NSGA-III WFG1 3 1.3530E-01(4.4051E-02) 2.4269E+01(1.2415E+00) 3.5767E+01(1.6013E+00) 5.5443E+01(1.7266E+00) 6.3523E+01(1.2975E+00)
NSGA-III WFG1 5 1.2666E+01(3.4929E+00) 2.2122E+03(1.3100E+02) 3.1042E+03(1.1458E+02) 4.4234E+03(1.1443E+02) 4.7417E+03(1.1579E+02)
NSGA-III WFG2 3 1.6700E+01(5.1059E+00) 7.6305E+01(2.8631E+00) 7.8478E+01(4.8778E+00) 9.7611E+01(5.3311E+00) 9.8471E+01(5.4989E+00)
NSGA-III WFG2 5 6.9919E+02(3.5615E+02) 7.7175E+03(4.8185E+02) 7.9954E+03(1.0237E+03) 1.0042E+04(3.7903E+02) 1.0319E+04(1.2694E+01)
NSGA-III WFG3 3 1.0389E+01(3.6995E+00) 4.3638E+01(4.0713E+00) 5.9539E+01(2.6997E+00) 7.3729E+01(2.5634E-01) 7.3995E+01(2.1104E-01)
NSGA-III WFG3 5 7.4726E+02(2.8657E+02) 4.3454E+03(3.2418E+02) 6.8410E+03(8.6320E+01) 6.9922E+03(3.0004E+01) 7.0032E+03(3.4378E+01)
NSGA-III WFG4 3 3.0494E+00(7.2583E-01) 4.1379E+01(5.1188E+00) 6.4367E+01(9.9168E-01) 7.2747E+01(3.6697E-01) 7.7353E+01(6.9158E-02)
NSGA-III WFG4 5 1.7978E+02(3.3397E+01) 2.9421E+03(2.2752E+02) 6.8878E+03(1.4693E+02) 7.9101E+03(8.1412E+01) 8.9753E+03(3.8997E+01)
NSGA-III WFG5 3 5.4455E+00(1.0381E+00) 3.2694E+01(4.1825E+00) 6.7061E+01(5.6137E-01) 7.1448E+01(2.6398E-01) 7.4106E+01(2.6197E-01)
NSGA-III WFG5 5 3.6621E+02(7.7810E+01) 2.4523E+03(4.5823E+02) 7.3802E+03(1.6664E+02) 8.1795E+03(4.4347E+01) 8.7270E+03(1.7067E+01)
NSGA-III WFG6 3 5.2386E+00(8.2209E-01) 4.1836E+01(6.9853E+00) 3.3885E+01(8.1587E+00) 7.1930E+01(3.4415E-01) 7.4726E+01(4.0188E-01)
NSGA-III WFG6 5 3.1508E+02(6.0188E+01) 2.4704E+03(2.9399E+02) 6.8310E+03(1.8621E+02) 7.9604E+03(7.1953E+01) 8.6857E+03(8.9656E+01)
NSGA-III WFG7 3 3.0437E+00(1.4228E+00) 4.2109E+01(2.8706E+00) 6.5899E+01(1.2202E+00) 7.4211E+01(2.0979E-01) 7.7589E+01(3.2094E-02)
NSGA-III WFG7 5 3.6738E+02(1.1086E+02) 3.1897E+03(1.9176E+02) 7.3697E+03(1.1350E+02) 8.3113E+03(6.4070E+01) 9.1296E+03(1.0447E+01)
NSGA-III WFG8 3 2.6648E+00(1.1001E+00) 2.9975E+01(4.5465E+00) 2.7976E+01(4.4372E+00) 6.7076E+01(5.0398E-01) 7.0959E+01(1.8238E-01)
NSGA-III WFG8 5 1.5130E+02(3.9786E+01) 2.2096E+03(2.5941E+02) 5.6445E+03(8.6754E+01) 6.4981E+03(3.9869E+02) 8.5705E+03(2.5747E+02)
NSGA-III WFG9 3 6.4964E-01(8.5365E-01) 4.5294E+01(3.9249E+00) 6.6277E+01(8.9142E-01) 7.0315E+01(1.5077E+00) 7.2209E+01(1.9136E+00)
NSGA-III WFG9 5 6.5621E+01(7.3099E+01) 3.3359E+03(2.4258E+02) 6.8451E+03(8.2306E+01) 7.2766E+03(3.6846E+01) 7.5449E+03(2.6381E+01)

Tabla 4.8: Resumen de resultados WFG con hipervolumen

En estas se revela que, en la mayoría de los casos, un valor de heterogeneidad H = 1
obtuvo los mejores resultados, con ciertas excepciones en múltiples problemas como F1
en BiBBOB para NSGA-III y para WFG2, WFG5, y WFG9 en k = 3 con NSGA-III.

Análisis de IGD+

A continuación, presentamos los resultados utilizando el indicador IGD+ en las Tablas
4.9 y 4.10, que respaldan las observaciones hechas con el hipervolumen.
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Algoritmo Problema K 0.0 0.25 0.5 0.75 1.0
NSGA-II WFG1 3 2.5711E+00(1.9797E-03) 1.7376E+00(5.3006E-02) 1.6912E+00(3.4967E-02) 1.1556E+00(3.0270E-02) 1.0066E+00(4.5573E-02)
NSGA-II WFG1 5 3.0209E+00(2.5336E-03) 2.0788E+00(7.9665E-02) 2.1405E+00(3.3975E-02) 1.6866E+00(2.6430E-02) 1.6361E+00(4.0216E-02)
NSGA-II WFG1 7 3.3319E+00(6.4601E-03) 2.2536E+00(8.4244E-02) 2.4086E+00(4.5030E-02) 2.0549E+00(3.4088E-02) 2.0372E+00(3.6994E-02)
NSGA-II WFG1 10 3.5900E+00(1.3900E-02) 2.2673E+00(8.8005E-02) 2.4601E+00(1.4297E-01) 2.0374E+00(7.2278E-02) 1.8602E+00(1.3415E-01)
NSGA-II WFG2 3 5.4570E+00(2.5688E-01) 7.1601E-01(2.2800E-01) 3.3905E-01(1.0615E-01) 7.8740E-02(5.2292E-02) 9.3808E-02(9.6728E-02)
NSGA-II WFG2 5 1.0591E+01(8.1382E-01) 1.6604E+00(6.6736E-01) 1.1946E+00(2.8881E-01) 4.3194E-01(4.4673E-02) 4.5440E-01(5.6088E-02)
NSGA-II WFG2 7 1.5095E+01(1.3631E+00) 3.0111E+00(9.6862E-01) 1.9325E+00(3.5199E-01) 6.1885E-01(8.8013E-02) 6.1940E-01(7.8406E-02)
NSGA-II WFG2 10 2.2137E+01(2.1841E+00) 4.8418E+00(1.5096E+00) 3.2001E+00(7.9964E-01) 7.1074E-01(6.8347E-02) 7.7418E-01(1.2179E-01)
NSGA-II WFG3 3 3.3061E+00(4.8218E-01) 8.8339E-01(2.4647E-01) 9.3878E-01(1.1505E-01) 4.2239E-02(5.7073E-03) 3.0032E-02(3.3062E-03)
NSGA-II WFG3 5 3.8878E+00(3.1722E-01) 1.5073E+00(2.3186E-01) 1.3647E+00(1.1946E-01) 1.7643E-01(4.5637E-02) 1.5044E-01(3.2992E-02)
NSGA-II WFG3 7 3.7347E+00(3.5185E-01) 2.2462E+00(3.2905E-01) 1.9734E+00(3.0050E-01) 2.6062E-01(5.2532E-02) 2.2788E-01(6.4730E-02)
NSGA-II WFG3 10 3.7005E+00(3.0268E-01) 3.5068E+00(5.4478E-01) 2.8591E+00(5.9588E-01) 4.0515E-01(1.7181E-01) 3.1128E-01(1.2257E-01)
NSGA-II WFG4 3 4.1709E+00(2.5634E-02) 1.0941E+00(3.2375E-01) 6.3661E-01(1.0876E-01) 1.3147E-01(6.6108E-03) 1.1629E-01(5.3263E-03)
NSGA-II WFG4 5 6.9204E+00(1.1157E-01) 2.8612E+00(4.4235E-01) 2.4533E+00(6.0301E-01) 7.1513E-01(8.6957E-02) 6.5064E-01(6.0923E-02)
NSGA-II WFG4 7 9.3485E+00(1.3834E-01) 4.6810E+00(6.2427E-01) 2.6884E+00(2.3983E-01) 1.6811E+00(9.8703E-02) 1.6413E+00(1.1102E-01)
NSGA-II WFG4 10 1.3982E+01(2.5190E-01) 8.6270E+00(7.5325E-01) 4.7654E+00(4.0291E-01) 2.5365E+00(2.0661E-01) 2.4354E+00(1.4324E-01)
NSGA-II WFG5 3 4.0013E+00(3.0123E-01) 1.6555E+00(4.6349E-01) 1.8566E+00(4.1917E-01) 1.4558E-01(3.5866E-03) 1.4064E-01(5.1831E-03)
NSGA-II WFG5 5 7.1411E+00(2.0347E-01) 3.9584E+00(4.6049E-01) 1.6549E+00(4.2519E-01) 7.1619E-01(2.9858E-02) 6.2436E-01(2.9982E-02)
NSGA-II WFG5 7 9.7053E+00(2.3448E-01) 5.8200E+00(8.2717E-01) 2.3022E+00(1.6122E-01) 1.6633E+00(6.3039E-02) 1.5911E+00(9.4298E-02)
NSGA-II WFG5 10 1.2940E+01(3.5983E-01) 6.9064E+00(1.2047E+00) 3.2866E+00(2.5342E-01) 2.5650E+00(9.1577E-02) 2.5866E+00(6.9790E-02)
NSGA-II WFG6 3 3.7049E+00(5.4911E-01) 1.3509E+00(7.6988E-01) 1.0673E+00(5.9792E-01) 1.6503E-01(7.4377E-03) 1.4963E-01(6.2517E-03)
NSGA-II WFG6 5 7.7200E+00(4.3990E-02) 3.6673E+00(6.0460E-01) 3.3535E+00(3.9256E-01) 7.1257E-01(4.8358E-02) 6.7196E-01(3.3843E-02)
NSGA-II WFG6 7 1.1475E+01(9.1237E-02) 7.1138E+00(9.8394E-01) 3.3953E+00(3.2811E-01) 1.9765E+00(2.4928E-01) 1.8630E+00(2.0226E-01)
NSGA-II WFG6 10 1.8180E+01(1.5511E-01) 1.1187E+01(9.7825E-01) 6.0899E+00(6.6231E-01) 3.2042E+00(4.8109E-01) 3.2386E+00(5.9550E-01)
NSGA-II WFG7 3 4.2390E+00(1.1905E-02) 1.2287E+00(2.7270E-01) 1.0359E+00(1.5403E-01) 1.1263E-01(6.6988E-03) 9.9310E-02(5.6760E-03)
NSGA-II WFG7 5 7.5895E+00(1.3727E-01) 2.8074E+00(2.1589E-01) 2.4586E+00(1.9758E-01) 7.2286E-01(4.6944E-02) 6.8184E-01(3.6317E-02)
NSGA-II WFG7 7 1.1388E+01(2.3889E-01) 5.2151E+00(6.2695E-01) 4.7580E+00(2.4821E-01) 1.9498E+00(1.6834E-01) 1.9143E+00(1.4625E-01)
NSGA-II WFG7 10 1.7613E+01(1.9474E-01) 9.9074E+00(1.2108E+00) 9.1549E+00(5.4191E-01) 3.7396E+00(1.4263E-01) 3.7940E+00(1.1934E-01)
NSGA-II WFG8 3 4.1584E+00(1.5656E-01) 1.8773E+00(3.5751E-01) 1.5021E+00(3.0692E-01) 2.7566E-01(1.0130E-02) 2.4758E-01(4.7858E-03)
NSGA-II WFG8 5 7.6838E+00(6.0392E-02) 4.4499E+00(4.5177E-01) 4.1620E+00(4.3615E-01) 1.1572E+00(4.4360E-02) 1.1246E+00(3.3745E-02)
NSGA-II WFG8 7 1.1596E+01(6.0502E-02) 7.5885E+00(7.7176E-01) 3.5480E+00(3.6449E-01) 2.2956E+00(9.2373E-02) 2.2475E+00(7.5685E-02)
NSGA-II WFG8 10 1.7786E+01(1.3683E-01) 9.9649E+00(1.6385E+00) 4.6442E+00(5.1340E-01) 3.5489E+00(1.7904E-01) 3.6473E+00(1.2502E-01)
NSGA-II WFG9 3 4.2723E+00(1.9197E-02) 7.2840E-01(1.0069E-01) 5.3917E-01(8.1846E-02) 2.1080E-01(3.0429E-02) 2.1214E-01(2.9456E-02)
NSGA-II WFG9 5 8.0862E+00(4.5759E-02) 2.7122E+00(2.6982E-01) 2.3203E+00(1.5347E-01) 1.0887E+00(7.8197E-02) 1.0240E+00(4.9375E-02)
NSGA-II WFG9 7 1.2152E+01(6.1741E-02) 5.3377E+00(3.1207E-01) 4.7968E+00(2.2066E-01) 2.7193E+00(2.0743E-01) 2.6372E+00(1.7433E-01)
NSGA-II WFG9 10 1.8281E+01(1.4350E-01) 9.6028E+00(4.2034E-01) 8.5471E+00(5.3825E-01) 4.4317E+00(2.6263E-01) 4.3547E+00(2.1179E-01)

Tabla 4.9: Resumen de resultados WFG con NSGA-II en IGD+

Algoritmo Problema K 0.0 0.25 0.5 0.75 1.0
NSGA-III WFG1 3 2.5651E+00(3.3162E-03) 1.7393E+00(4.1661E-02) 1.4418E+00(5.0657E-02) 9.9824E-01(4.3217E-02) 7.9781E-01(3.4752E-02)
NSGA-III WFG1 5 3.0132E+00(4.4126E-03) 2.1151E+00(4.4773E-02) 1.8376E+00(4.1284E-02) 1.4475E+00(2.4165E-02) 1.3697E+00(1.8544E-02)
NSGA-III WFG1 7 3.3241E+00(7.3818E-03) 2.3655E+00(8.6522E-02) 2.0441E+00(3.2609E-02) 1.0866E+00(9.7425E-02) 9.9030E-01(1.3468E-01)
NSGA-III WFG1 10 3.5785E+00(2.0214E-02) 2.3346E+00(1.3869E-01) 2.1466E+00(6.6710E-02) 3.6119E-01(1.1763E-01) 3.4648E-01(1.3737E-01)
NSGA-III WFG2 3 2.7707E+00(6.6230E-01) 5.3183E-01(9.7474E-02) 5.1804E-01(1.7863E-01) 8.3480E-02(9.7369E-02) 6.7318E-02(1.0512E-01)
NSGA-III WFG2 5 7.3629E+00(1.3511E+00) 1.4999E+00(3.9749E-01) 1.2984E+00(7.2456E-01) 2.2469E-01(1.6432E-01) 1.4850E-01(9.2468E-03)
NSGA-III WFG2 7 1.0230E+01(2.2566E+00) 2.7013E+00(6.1776E-01) 1.0166E+00(9.1554E-01) 5.4664E-01(6.6241E-01) 3.8939E-01(5.0065E-01)
NSGA-III WFG2 10 1.4769E+01(3.0893E+00) 4.8041E+00(9.4512E-01) 1.5191E+00(1.3380E+00) 1.2089E+00(1.3296E+00) 8.1144E-01(1.1171E+00)
NSGA-III WFG3 3 2.6833E+00(4.4791E-01) 9.4427E-01(1.7890E-01) 3.8043E-01(8.3742E-02) 1.0092E-01(1.2085E-02) 8.9849E-02(6.9000E-03)
NSGA-III WFG3 5 2.9222E+00(4.4048E-01) 1.3503E+00(2.0965E-01) 3.3909E-01(4.5098E-02) 2.7276E-01(2.7712E-02) 2.7297E-01(4.1225E-02)
NSGA-III WFG3 7 3.3426E+00(3.2071E-01) 1.5454E+00(3.1901E-01) 8.6914E-01(2.7470E-01) 8.5301E-01(2.1614E-01) 9.1217E-01(1.6500E-01)
NSGA-III WFG3 10 3.3727E+00(5.1651E-01) 1.9557E+00(4.0201E-01) 9.9693E-01(8.5384E-01) 1.4970E+00(8.8789E-01) 1.1974E+00(8.3381E-01)
NSGA-III WFG4 3 3.8805E+00(1.1055E-01) 9.0336E-01(3.1212E-01) 2.7166E-01(1.7835E-02) 1.3132E-01(8.3219E-03) 3.3199E-02(2.5742E-03)
NSGA-III WFG4 5 6.5594E+00(1.1621E-01) 2.3324E+00(2.6834E-01) 7.4675E-01(5.2361E-02) 5.4002E-01(2.9481E-02) 3.3549E-01(1.1949E-02)
NSGA-III WFG4 7 8.8384E+00(1.8590E-01) 3.5507E+00(3.1124E-01) 1.4778E+00(9.4947E-02) 1.1737E+00(7.8060E-02) 7.3384E-01(1.7963E-02)
NSGA-III WFG4 10 1.3438E+01(5.2346E-01) 6.9154E+00(6.4913E-01) 3.1017E+00(3.6351E-01) 1.9967E+00(1.9670E-01) 8.3465E-01(4.4447E-02)
NSGA-III WFG5 3 3.2890E+00(3.4051E-01) 1.5337E+00(3.4715E-01) 2.0880E-01(9.5185E-03) 1.2593E-01(3.1441E-03) 9.8951E-02(7.6800E-03)
NSGA-III WFG5 5 5.9536E+00(5.3304E-01) 2.6776E+00(5.0690E-01) 5.3819E-01(3.1047E-02) 3.8848E-01(1.2437E-02) 2.7019E-01(6.9017E-03)
NSGA-III WFG5 7 8.6570E+00(6.3787E-01) 3.5706E+00(5.2227E-01) 9.8476E-01(5.1659E-02) 7.8174E-01(2.9257E-02) 6.5399E-01(1.7837E-02)
NSGA-III WFG5 10 1.1028E+01(1.3196E+00) 4.0270E+00(8.7077E-01) 1.6720E+00(1.0976E-01) 1.3956E+00(4.8206E-02) 1.2058E+00(2.8050E-02)
NSGA-III WFG6 3 3.1849E+00(3.5244E-01) 1.0324E+00(3.9390E-01) 1.6690E+00(5.6321E-01) 1.4260E-01(6.8752E-03) 7.6298E-02(9.0571E-03)
NSGA-III WFG6 5 6.3635E+00(5.6749E-01) 2.9987E+00(4.5346E-01) 7.2468E-01(4.3458E-02) 4.7470E-01(1.6686E-02) 2.6128E-01(1.7163E-02)
NSGA-III WFG6 7 1.0207E+01(5.6036E-01) 4.9292E+00(4.7477E-01) 1.1098E+00(5.1231E-02) 8.0052E-01(2.8959E-02) 4.9010E-01(2.5988E-02)
NSGA-III WFG6 10 1.6827E+01(1.0924E+00) 9.1831E+00(7.9924E-01) 1.4427E+00(1.1493E-01) 1.1405E+00(8.5842E-02) 6.7957E-01(6.3734E-02)
NSGA-III WFG7 3 3.7578E+00(2.8314E-01) 9.5448E-01(1.3721E-01) 2.5044E-01(2.5753E-02) 9.4691E-02(4.1695E-03) 2.0722E-02(1.2582E-03)
NSGA-III WFG7 5 6.3775E+00(4.1762E-01) 2.5931E+00(2.0811E-01) 5.9523E-01(2.6231E-02) 4.0499E-01(1.6902E-02) 2.0127E-01(6.1812E-03)
NSGA-III WFG7 7 9.8063E+00(6.9371E-01) 5.0710E+00(2.6822E-01) 1.2946E+00(9.7827E-02) 9.2140E-01(5.1178E-02) 4.8722E-01(1.4471E-02)
NSGA-III WFG7 10 1.5924E+01(1.1678E+00) 9.3861E+00(4.8256E-01) 3.0607E+00(2.0020E-01) 1.7724E+00(1.1758E-01) 8.8690E-01(2.0901E-02)
NSGA-III WFG8 3 3.9639E+00(1.7629E-01) 1.7502E+00(4.0881E-01) 2.0611E+00(3.3070E-01) 2.4828E-01(1.1321E-02) 1.8425E-01(3.1886E-03)
NSGA-III WFG8 5 7.4259E+00(1.2091E-01) 3.7711E+00(6.9422E-01) 1.1251E+00(4.5826E-02) 8.5309E-01(1.1315E-01) 3.3884E-01(6.8668E-02)
NSGA-III WFG8 7 1.1078E+01(7.6632E-01) 5.7595E+00(8.8009E-01) 1.5516E+00(7.7562E-02) 1.0150E+00(5.3721E-02) 5.4594E-01(1.4287E-02)
NSGA-III WFG8 10 1.7510E+01(2.9643E-01) 1.0225E+01(1.1303E+00) 1.7301E+00(1.4559E-01) 1.3890E+00(5.6890E-02) 8.7749E-01(1.7255E-02)
NSGA-III WFG9 3 4.1743E+00(1.9044E-01) 7.5797E-01(1.3803E-01) 2.3155E-01(1.6065E-02) 1.5283E-01(3.1253E-02) 1.1733E-01(3.8842E-02)
NSGA-III WFG9 5 7.9385E+00(2.8389E-01) 2.6014E+00(2.0562E-01) 9.5563E-01(4.2611E-02) 7.5523E-01(1.7622E-02) 5.2160E-01(1.4191E-02)
NSGA-III WFG9 7 1.1923E+01(1.3888E-01) 4.9629E+00(3.0276E-01) 1.8717E+00(1.5585E-01) 1.3077E+00(1.6884E-01) 9.1350E-01(1.5195E-01)
NSGA-III WFG9 10 1.7935E+01(3.0478E-01) 9.2131E+00(3.2086E-01) 2.9929E+00(2.2111E-01) 2.0545E+00(1.1753E-01) 1.4839E+00(1.0958E-01)

Tabla 4.10: Resumen de resultados WFG con NSGA-III en IGD+
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Los resultados demuestran una preferencia por H = 1, seguido de cerca por H = 0,75,
reforzando la idea de que una alta heterogeneidad favorece la convergencia hacia solu-
ciones óptimas.

Los datos sugieren que, en general, niveles altos de heterogeneidad tienden a favorecer la
obtención de mejores resultados en contextos multi-objetivo. No obstante, es interesante
observar que, similar a los hallazgos en el análisis mono-objetivo, existen casos donde
niveles más bajos de heterogeneidad también conducen a resultados óptimos. Esta
variabilidad subraya la importancia de considerar el nivel adecuado de heterogeneidad
para cada problema específico, en función de sus características y la dimensionalidad
del espacio de búsqueda.

4.2.2. Gráficos de convergencia
Los gráficos de convergencia mostrados en las Figuras 4.10 y 4.11 ilustran cómo los
niveles de heterogeneidad afectan la convergencia de los algoritmos.
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Figura 4.10: NSGA-III - Hipervolumen - Dos dimensiones
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Figura 4.11: NSGA-III - Hipervolumen - Cuarenta dimensiones

Estos patrones se confirman en los gráficos de cajas de las Figuras 4.12 y 4.13, que
examinan la distribución de los resultados y su variabilidad en función de los niveles
de heterogeneidad.
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Figura 4.12: NSGA-III - Boxplots - Dos dimensiones
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Figura 4.13: NSGA-III - Boxplots - Cuarenta dimensiones

4.2.3. Pruebas estadísticas
A continuación, se presentan los análisis aplicados para evaluar el impacto de la hete-
rogeneidad temporal en los algoritmos estudiados.

Análisis de Kruskal-Wallis

La prueba de Kruskal-Wallis se utilizó para evaluar la significancia estadística de los
datos obtenidos en los resultados para mostrar los efectos de la heterogeneidad. Los
datos obtenidos, presentados en las Tablas 4.11 y 4.12, indican que todos los valores
de p-valor superan el umbral crítico de 0.05, lo que confirma la relevancia estadística
de nuestros resultados en las pruebas BiBBOB.
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Algoritmo Problema Dimensiones Valor - P
NSGA-II 1 2 1.161788E-19
NSGA-II 1 40 1.161788E-19
NSGA-II 2 2 1.161788E-19
NSGA-II 2 40 1.161788E-19
NSGA-II 3 2 1.161788E-19
NSGA-II 3 40 1.161788E-19
NSGA-II 4 2 1.161788E-19
NSGA-II 4 40 1.161788E-19
NSGA-II 5 2 1.161788E-19
NSGA-II 5 40 1.161788E-19
NSGA-II 6 2 1.161788E-19
NSGA-II 6 40 1.161788E-19
NSGA-II 7 2 1.161788E-19
NSGA-II 7 40 1.161788E-19
NSGA-II 8 2 1.161788E-19
NSGA-II 8 40 1.161788E-19
NSGA-II 9 2 1.161788E-19
NSGA-II 9 40 1.161788E-19
NSGA-II 10 2 1.161788E-19
NSGA-II 10 40 1.161788E-19

Tabla 4.11: Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-II en hiper-
volumen
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Algoritmo Problema Dimensiones Valor - P
NSGA-III 1 2 3.524316E-19
NSGA-III 1 40 3.524316E-19
NSGA-III 2 2 3.524316E-19
NSGA-III 2 40 3.524316E-19
NSGA-III 3 2 3.524316E-19
NSGA-III 3 40 3.524316E-19
NSGA-III 4 2 3.524316E-19
NSGA-III 4 40 3.524316E-19
NSGA-III 5 2 3.524316E-19
NSGA-III 5 40 3.524316E-19
NSGA-III 6 2 3.524316E-19
NSGA-III 6 40 3.524316E-19
NSGA-III 7 2 3.524316E-19
NSGA-III 7 40 3.524316E-19
NSGA-III 8 2 3.524316E-19
NSGA-III 8 40 3.524316E-19
NSGA-III 9 2 3.524316E-19
NSGA-III 9 40 3.524316E-19
NSGA-III 10 2 3.524316E-19
NSGA-III 10 40 3.524316E-19

Tabla 4.12: Resumen de la prueba BiBBOB de Kruskal Wallis con NSGA-III en hiper-
volumen

Mostrando de igual forma los mismos resultados en las Tablas 4.13 y 4.14 para los
problemas de WFG tomando en cuenta de la limitante del calculo del hipervolumen
para mas de cinco dimensiones.
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Algoritmo Problema K HV IGD+
NSGA-II WFG1 3 2.868101E-19 6.290090E-19
NSGA-II WFG1 5 1.373986E-18 2.219591E-18
NSGA-II WFG1 7 - 2.421277E-18
NSGA-II WFG1 10 - 6.249993E-19
NSGA-II WFG2 3 1.889840E-18 2.752182E-18
NSGA-II WFG2 5 3.269007E-18 4.998850E-18
NSGA-II WFG2 7 - 2.115462E-18
NSGA-II WFG2 10 - 2.465708E-18
NSGA-II WFG3 3 1.173661E-18 1.255335E-18
NSGA-II WFG3 5 2.804691E-18 6.129765E-18
NSGA-II WFG3 7 - 5.151214E-18
NSGA-II WFG3 10 - 2.519298E-16
NSGA-II WFG4 3 2.445484E-19 1.869243E-19
NSGA-II WFG4 5 2.547132E-18 4.338122E-18
NSGA-II WFG4 7 - 9.551041E-19
NSGA-II WFG4 10 - 9.959799E-19
NSGA-II WFG5 3 1.072532E-17 4.045596E-18
NSGA-II WFG5 5 1.272764E-19 1.429720E-19
NSGA-II WFG5 7 - 7.555988E-19
NSGA-II WFG5 10 - 1.104602E-18
NSGA-II WFG6 3 2.688698E-18 1.835627E-18
NSGA-II WFG6 5 2.795256E-18 5.327367E-18
NSGA-II WFG6 7 - 8.424612E-19
NSGA-II WFG6 10 - 1.107109E-18
NSGA-II WFG7 3 1.025247E-18 1.276894E-18
NSGA-II WFG7 5 9.569499E-19 1.511281E-18
NSGA-II WFG7 7 - 3.592501E-18
NSGA-II WFG7 10 - 5.302982E-18
NSGA-II WFG8 3 4.452856E-19 6.065023E-19
NSGA-II WFG8 5 8.900907E-19 6.015865E-18
NSGA-II WFG8 7 - 9.364689E-19
NSGA-II WFG8 10 - 8.879647E-19
NSGA-II WFG9 3 1.835296E-18 1.891716E-18
NSGA-II WFG9 5 9.141590E-19 1.705343E-18
NSGA-II WFG9 7 - 2.377231E-18
NSGA-II WFG9 10 - 1.828495E-18

Tabla 4.13: Resumen de la prueba WFG de Kruskal Wallis con NSGAII
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Algoritmo Problema K HV IGD+
NSGA-III WFG1 3 1.112309E-19 1.112309E-19
NSGA-III WFG1 5 1.458365E-19 1.112309E-19
NSGA-III WFG1 7 - 7.185443E-19
NSGA-III WFG1 10 - 2.556141E-18
NSGA-III WFG2 3 5.096463E-18 5.450033E-18
NSGA-III WFG2 5 1.424388E-18 1.219169E-18
NSGA-III WFG2 7 - 6.427244E-17
NSGA-III WFG2 10 - 4.158801E-16
NSGA-III WFG3 3 5.420651E-19 5.402717E-19
NSGA-III WFG3 5 4.192228E-18 1.175711E-17
NSGA-III WFG3 7 - 6.836976E-15
NSGA-III WFG3 10 - 2.639723E-11
NSGA-III WFG4 3 1.112309E-19 1.112309E-19
NSGA-III WFG4 5 1.112309E-19 1.112309E-19
NSGA-III WFG4 7 - 1.192118E-19
NSGA-III WFG4 10 - 1.112309E-19
NSGA-III WFG5 3 1.112309E-19 1.112309E-19
NSGA-III WFG5 5 1.112309E-19 1.112309E-19
NSGA-III WFG5 7 - 1.112309E-19
NSGA-III WFG5 10 - 1.138433E-19
NSGA-III WFG6 3 5.707854E-19 4.719595E-19
NSGA-III WFG6 5 1.112309E-19 1.112309E-19
NSGA-III WFG6 7 - 1.112309E-19
NSGA-III WFG6 10 - 1.305375E-19
NSGA-III WFG7 3 1.112309E-19 1.112309E-19
NSGA-III WFG7 5 1.112309E-19 1.112309E-19
NSGA-III WFG7 7 - 1.112309E-19
NSGA-III WFG7 10 - 1.112309E-19
NSGA-III WFG8 3 9.671707E-19 7.036632E-19
NSGA-III WFG8 5 1.112309E-19 1.112309E-19
NSGA-III WFG8 7 - 1.112309E-19
NSGA-III WFG8 10 - 1.165034E-19
NSGA-III WFG9 3 5.325995E-19 6.196537E-19
NSGA-III WFG9 5 1.112309E-19 1.112309E-19
NSGA-III WFG9 7 - 1.566267E-19
NSGA-III WFG9 10 - 1.112309E-19

Tabla 4.14: Resumen de la prueba WFG de Kruskal Wallis NSGAIII

Prueba de Wilcoxon ranksum

Posteriormente, la prueba de Wilcoxon ranksum fue aplicada, cuyos resultados se de-
tallan en la Tabla Wilcoxon BiBBOB. Esta prueba subraya que, aunque el elitismo es
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predominante en varios escenarios, los resultados más significativos se sitúan entre los
valores de 0.75 y 1.00, sugiriendo que el elitismo puro no es siempre la estrategia más
efectiva para abordar problemas bi-objetivo.

Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA2 1 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 1 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 1 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 1 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 1 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 2 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 2 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 2 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 3 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 3 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 3 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 3 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 3 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 4 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 4 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 5 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 5 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 5 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 5 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 5 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 5 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 6 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 6 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 6 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 7 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 7 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 7 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 7 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 7 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 8 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 8 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 8 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 9 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 9 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 9 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 9 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 9 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 10 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 10 2 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 10 2 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 10 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 10 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -

Tabla 4.15: Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 2 dimensiones
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA2 1 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 1 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 1 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 1 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 1 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 2 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 2 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 2 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 2 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 3 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 3 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 3 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 3 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 3 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 4 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 4 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 4 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 4 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 5 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 5 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 5 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 5 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 5 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 6 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 6 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 6 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 6 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 7 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 7 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 7 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 7 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 7 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 8 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 8 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 8 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 8 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 9 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 9 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 9 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 9 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 9 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -
NSGA2 10 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 10 40 0.25 3.150924e-08 - 1.000000e+00 1.000000e+00 1.000000e+00
NSGA2 10 40 0.5 3.150924e-08 4.256164e-08 - 1.000000e+00 1.000000e+00
NSGA2 10 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 1.000000e+00
NSGA2 10 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 3.150924e-08 -

Tabla 4.16: Resumen de la prueba BiBBOB de Wilcoxon NSGAII en 40 dimensiones
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA3 1 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 1 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 1 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 1 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 1 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 2 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 2 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 2 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 2 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 2 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 3 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 3 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 3 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 3 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 3 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 4 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 4 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 4 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 4 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 4 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 5 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 5 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 5 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 5 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 5 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 6 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 6 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 6 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 6 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 6 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 7 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 7 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 7 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 7 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 7 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 8 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 8 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 8 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 8 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 8 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 9 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 9 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 9 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 9 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 9 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 10 2 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 10 2 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 10 2 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 10 2 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 10 2 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -

Tabla 4.17: Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 2 dimensiones
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Algoritmo Problema Dimensiones Heterogeneidad h=0.0 h=0.25 h=0.5 h=0.75 h=1.0
NSGA3 1 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 1 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 1 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 1 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 1 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 2 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 2 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 2 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 2 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 2 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 3 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 3 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 3 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 3 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 3 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 4 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 4 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 4 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 4 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 4 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 5 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 5 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 5 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 5 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 5 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 6 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 6 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 6 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 6 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 6 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 7 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 7 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 7 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 7 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 7 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 8 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 8 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 8 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 8 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 8 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 9 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 9 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 9 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 9 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 9 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -
NSGA3 10 40 0.0 - 1.000000e+00 1.000000e+00 1.000000e+00 1.000000e+00
NSGA3 10 40 0.25 3.150924e-08 - 9.999388e-01 1.000000e+00 1.000000e+00
NSGA3 10 40 0.5 3.150924e-08 6.123895e-05 - 1.000000e+00 1.000000e+00
NSGA3 10 40 0.75 3.150924e-08 3.150924e-08 3.150924e-08 - 3.150924e-08
NSGA3 10 40 1.0 3.150924e-08 3.150924e-08 3.150924e-08 1.000000e+00 -

Tabla 4.18: Resumen de la prueba BiBBOB de Wilcoxon NSGAIII en 40 dimensiones

Figura 4.14: Gráfica de diferencias criticas bi-objetivo
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Figura 4.15: Gráfica de diferencias criticas bi-objetivo con archivo externo

Al igual que en las pruebas mono-objetivo, se generaron las gráficas de diferencias crí-
ticas para las pruebas multi-objetivo, tanto en las pruebas bi-objetivo sin el uso de un
archivo externo, como se muestra en la Figura 4.14, así como con el uso de un archivo
externo, como se presenta en la Figura 4.15.

En ambos escenarios, los niveles de heterogeneidad más altos, 0.75 y 1.0, muestran
un rendimiento superior, con diferencias estadísticamente significativas respecto a los
niveles más bajos. Los resultados sugieren una clara mejora en el rendimiento al in-
crementar la heterogeneidad, tanto en los problemas bi-objetivo que hacen uso de un
archivo de soluciones como en aquellos que no lo utilizan.

Figura 4.16: Gráfica de diferencias críticas multi-objetivo

Por otro lado, los resultados multi-objetivo presentados en la Figura 4.16 confirman que,
al igual que en los análisis previos, un aumento en la heterogeneidad, específicamente
con valores 0.75 y 1.0, conduce a una mejora significativa en el rendimiento de los pro-
blemas multi-objetivo. Los valores bajos de heterogeneidad, como 0.0 y 0.25, exhiben
un rendimiento considerablemente inferior, sin diferencias relevantes entre ellos.

Conteo de Borda

El análisis mediante el conteo de Borda, presentado en la Tabla 4.19, ofrece una pers-
pectiva adicional, destacando casos en los cuales valores de heterogeneidad de 0.75
resultan ser particularmente efectivos, especialmente en el algoritmo NSGA-III y en
problemas de dimensiones reducidas.
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Algoritmo Dimensiones h = 0,0 h = 0,25 h = 0,5 h = 0,75 h = 1,0
NSGA-II 2 55 110 131 218 275
NSGA-II 3 55 110 131 218 275
NSGA-II 5 55 110 131 218 275
NSGA-II 10 55 110 131 218 275
NSGA-II 20 55 110 131 218 275
NSGA-II 40 55 110 131 218 275
NSGA-III 2 55 110 164 199 259
NSGA-III 3 55 110 164 199 259
NSGA-III 5 55 110 164 199 259
NSGA-III 10 55 110 164 199 259
NSGA-III 20 55 110 164 199 259
NSGA-III 40 55 110 164 199 259

Total - 660 1320 1768 2414 3034

Tabla 4.19: Tabla de resultados del conteo de Borda en BiBBOB

Además de ello mostrando notables resultados por la parte de WFG como se muestran
en las Tablas 4.20 y 4.21

Algoritmo K h = 0,0 h = 0,25 h = 0,5 h = 0,75 h = 1,0
NSGA-II 3 9 18 25 36 43
NSGA-II 5 9 18 26 36 44
NSGA-III 3 9 19 25 36 45
NSGA-III 5 8 16 23 32 39

Total - 35 71 99 140 171

Tabla 4.20: Tabla de resultados del conteo de Borda en WFG con hipervolumen

Algoritmo K h = 0,0 h = 0,25 h = 0,5 h = 0,75 h = 1,0
NSGA-II 3 9 18 24 36 44
NSGA-II 5 9 19 26 37 44
NSGA-II 7 9 19 26 36 39
NSGA-II 10 9 18 26 37 38
NSGA-III 3 9 20 24 36 45
NSGA-III 5 9 18 26 36 44
NSGA-III 7 9 18 27 35 42
NSGA-III 10 8 16 25 30 36

Total - 71 146 204 283 332

Tabla 4.21: Tabla de resultados del conteo de Borda en WFG con IGD+
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En conjunto, estos análisis estadísticos refuerzan la noción de que la heterogeneidad
tiene un impacto significativo en la optimización mono-objetivo y multi-objetivo. Ade-
más, revelan que una selección cuidadosa del nivel de heterogeneidad puede optimizar
el rendimiento de los algoritmos en estos complejos espacios de búsqueda, desafiando
la suposición de que una estrategia de elitismo puro es universalmente preferible.

4.2.4. Explicabilidad
Al igual que en los experimentos mono-objetivo, realizamos un análisis exhaustivo de
estas características ELA para todos los problemas evaluados.

Estos resultados se muestran en las Figuras 4.17. En ellas se muestran con relevan-
cia las métricas de dispersión y los ángulos como factores que impactan el rendi-
miento y la eficacia del uso de la heterogeneidad. Mientras que características como
ela_meta.quad_simple.adj_r2 y las métricas asociadas con la escalada de colinas
hill_climbing se presentan con variabilidad significativa, lo que sugiere su impacto
relevante en la salida del modelo.
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Figura 4.17: Mapa de correlación de caracterisitcas de los espacios Bi-Objetivo

El análisis de SHAP en bi-objetivo que se muestra en la Figura 4.18 confirman que las
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características relacionadas con la metaheurística cuadrática ajustada impacta en un
rango amplio en la salida del modelo. Esto sugiere que tales características son cruciales
para el ajuste del modelo, evidenciando una fuerte dependencia del modelo en estas
variables para la generación de resultados precisos.

Figura 4.18: Análisis Bi-Objetivo de SHAP destacando las características más influ-
yentes en la elección de heterogeneidad.

Por otro lado, las métricas asociadas a la escalada de colinas, como la distancia prome-
dio y la desviación estándar de la distancia desde local a global, así como el algoritmo
aplicado, también mostraron impactos considerables. Estos resultados indican que el
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ajuste espacial y la exploración de soluciones locales frente a globales y el su aplicación
respectiva en cada algoritmo juegan roles significativos con el uso de la heterogeneidad.

4.3. Discusión
Esta investigación se centró inicialmente en evaluar si la heterogeneidad temporal pue-
de influir de manera significativa en el balance entre la exploración y la explotación.
Los resultados obtenidos confirman que la heterogeneidad temporal contribuye a este
balance, particularmente se denota más en entornos de baja dimensionalidad y en pro-
blemas con un solo objetivo.

Como se denotó en el análisis, se observó un aumento consistente en la efectividad de los
algoritmos conforme aumentaba la heterogeneidad, lo que indica una mejor adaptación
en escenarios más complejos. Este fenómeno puede interpretarse como un incremento
en la capacidad de explotación sin sacrificar la eficacia en la exploración, especialmente
en configuraciones donde los desafíos del problema se intensifican.

Sin embargo, es relevante destacar que, a pesar de la tendencia general hacia una mejor
adaptabilidad en condiciones heterogéneas, los algoritmos evolutivos como el Algoritmo
Genético (GA) mostraron preferencias hacia estrategias elitistas en situaciones de alta
complejidad y dimensionalidad al igual que en los casos para los algoritmos en múlti-
ples objetivos. Este enfoque elitista puede ser beneficioso para preservar individuos de
alto rendimiento, pero también puede limitar la diversidad genética necesaria para una
exploración efectiva a largo plazo.

Además, se encontraron evidencias de que en ciertos casos, especialmente en problemas
gestionados por el algoritmo de Evolución Diferencial (DE), el elitismo no siempre pro-
duce los mejores resultados. Aportando a la importancia de adaptar la estrategia de
balance entre exploración y explotación según las características específicas del proble-
ma y la heterogeneidad del entorno. Los resultados indican que la heterogeneidad puede
ser un factor determinante para mitigar los efectos limitantes del elitismo, promovien-
do un enfoque más equilibrado que pueda adaptarse eficazmente a la variabilidad del
espacio de búsqueda.

86



Capítulo 5

Conclusiones y trabajo futuro

En este estudio exhaustivo sobre la influencia de la heterogeneidad en algoritmos evo-
lutivos, se han obtenido resultados significativos que arrojan luz sobre su impacto en
problemas mono-objetivo y multi-objetivo. Dentro de este capítulo, resumiremos los
principales hallazgos del mismo.

5.1. Resultados en problemas mono-objetivo
La heterogeneidad juega un papel relevante en la optimización mono-objetivo,
con resultados interesantes en la búsqueda de soluciones con buena calidad.

Se ha observado que, en problemas de baja dimensionalidad, valores moderados
de heterogeneidad, alrededor del 0.5, tienden a ofrecer los mejores resultados. A
medida que la dimensionalidad aumenta, los valores de heterogeneidad entre el
0.75 y 1.0 se vuelven más efectivos.

Las gráficas de convergencia respaldan estos hallazgos al mostrar cómo los valores
de heterogeneidad influyen en la velocidad de convergencia de los algoritmos.

Los análisis estadísticos, incluyendo Kruskal-Wallis y Wilcoxon Ranksum, con-
firman la relevancia de estos resultados, con una clara tendencia hacia la impor-
tancia de la heterogeneidad en la optimización mono-objetivo.

5.2. Resultados en problemas multi-objetivo
En el contexto bi-objetivo, la alta heterogeneidad generalmente conduce a mejores
resultados, pero no se puede descartar la efectividad de la baja heterogeneidad
como lo son en las pruebas con NSGA-III, mientras que en el contexto multi-
objetivo, encontramos resultados favorables para altas dimensiones como se puede
ver en WFG3 para NSGA-III con siete y diez dimensiones.

Las gráficas de convergencia muestran que, en muchos casos, los valores de hete-
rogeneidad más altos resultan en una convergencia más rápida hacia el frente de
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Pareto. Sin embargo, existen excepciones notables como lo es el experimento de
WFG3 con NSGA-III en diez dimensiones.

Los análisis estadísticos, tanto Kruskal-Wallis como Wilcoxon Ranksum, respal-
dan la relevancia estadística de estos hallazgos, subrayando la influencia de la
heterogeneidad en la optimización bi-objetivo.

5.3. Explicabilidad de los resultados
La interpretación de los resultados obtenidos mediante el gráfico SHAP revela patro-
nes distintivos en la influencia de las características sobre las predicciones del modelo.
En particular, la característica denotada como Algorithm_GA muestra una agrupación
densa de valores SHAP cercanos a cero en la parte superior del gráfico, lo que indica
una influencia estable y homogénea en las predicciones. Este hallazgo es notable ya
que, a pesar de ser la característica de mayor importancia, su efecto sobre el modelo es
consistente a través de las observaciones, sugiriendo que el Algoritmo Genético (GA)
ejerce un efecto uniforme en las predicciones.

Por su parte, Algorithm_DE (Algoritmo de Evolución Diferencial) presenta una in-
fluencia predominantemente negativa, como se evidencia por la concentración de pun-
tos hacia el lado izquierdo del eje cero en el gráfico SHAP, indicando que generalmente
disminuye la probabilidad de las predicciones del modelo.

En contraste, características como ela_level.costs_runtime y Algorithm_ES (Algorit-
mo de Estrategia Evolutiva) exhiben una distribución de valores SHAP tanto positivos
como negativos, aunque con una variabilidad menos marcada que las características
anteriormente mencionadas.

Otras características, como fitness_distance.distance_mean y ela_conv.conv_prob, des-
tacan por su notable dispersión de valores SHAP, señalando que el impacto de estas
sobre el modelo varía significativamente entre las observaciones.

Las características situadas en la mitad inferior del gráfico, incluyendo:

ela_level: lda_qda_50,

ela_local: best2mean_contr.orig,

lon_n_optima.

Se caracterizan por valores SHAP mayoritariamente agrupados cerca de cero, sugirien-
do una contribución menor y más uniforme a las predicciones del modelo.

cm_angle: angle_mean se identifica como la característica de menor importancia rela-
tiva, ubicándose al final de la lista de características evaluadas.
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La coloración de los puntos en el gráfico, ilustra cómo algunas características, tales co-
mo Algorithm_DE y fitness_distance: distance_mean, están asociadas con un amplio
rango de valores y cambios significativos en la salida del modelo. En contraposición,
Algorithm_GA muestra un rango más estrecho de valores de características, subrayan-
do su efecto robusto en diversos escenarios.

Este análisis proporciona una jerarquía detallada de la influencia y la variabilidad en
la contribución de cada característica a la salida del modelo. Se reveló que característi-
cas específicas, como ela_meta: quad_simple.adj_r2, Algorithm_NSGA2, y ela_meta:
quad_w_interact.adj_r2, tienen una preponderancia significativa, con una dispersión
de sus valores SHAP que indica una variabilidad considerable en su contribución, su-
giriendo un impacto marcado en las predicciones finales.

Contrastantemente, características situadas en el centro del espectro, como ela_conv:
conv_prob.1 y hill_climbing: std_dist_between_opt.1, ejercieron una influencia mo-
derada, con una menor variabilidad en sus valores SHAP, apuntando a un efecto más
homogéneo en las observaciones.

Las características con una posición más baja en el gráfico, incluidas:

ela_local: best2mean_contr.ratio.1,

nbc: nn_nb.cor.1.

Se caracterizaron por una importancia marginal, con valores SHAP agrupados cerca
de cero que reflejan un impacto reducido en la salida del modelo.

La distribución de los valores SHAP subraya una relación compleja entre el valor de
las características y su influencia en las predicciones del modelo. Este patrón, inferido
a partir del color asignado a cada punto, sugiere cómo ciertas características aumentan
o disminuyen la probabilidad de la predicción del modelo conforme varían sus valores.

En conclusión, este estudio subraya la heterogeneidad como un elemento crítico en la
optimización evolutiva, cuyo efecto fluctúa según el tipo de problema y la dimensio-
nalidad. Los hallazgos, apoyados por análisis estadísticos y exploración de las caracte-
rísticas de los espacios de búsqueda, proporcionan una base sólida para la selección de
estrategias de heterogeneidad óptimas en distintos contextos de optimización.

5.4. Trabajo futuro
Estos hallazgos son valiosos tanto para investigadores como para profesionales que
trabajan en la optimización de problemas, ya que generan un gran precedente en el
estado del arte para investigar más a fondo en dos puntos claves:

Generación de mecanismos de ajuste en línea para el parámetro de heterogeneidad
para generar una mayor adaptabilidad en variaciones de problemas.

89



• Aplicación de técnicas de aprendizaje por refuerzo para el ajuste en línea
[características - valor de heterogeneidad]

• Exploración exhaustiva de las características de la población con el archivo
externo para un ajuste fino

Pruebas en diferentes algoritmos de optimización para multi-objetivo.

• MOEA/D: Descomposición
• SMS-EMOA: Basado en Indicadores

Exploración más exhaustiva para un detallado más profundo en características
de mayor impacto para los valores de heterogeneidad.

Pruebas exhaustivas en problemas que asemejen muestras del mundo real.

Estos aspectos destacan la necesidad de continuar explorando la heterogeneidad dentro
de los algoritmos evolutivos, no solo para mejorar el entendimiento teórico y práctico
de estos sistemas, sino también para desarrollar herramientas más robustas y eficaces
que puedan ser aplicadas a una gama más amplia de problemas de optimización. La
adaptabilidad y la capacidad de realizar pruebas en escenarios que reflejen desafíos del
mundo real serán cruciales para el avance de esta área de investigación.
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