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Abstract: Self-organisation occurs in natural phenomena when a spontaneous increase in
order is produced by the interactions of elements of a complex system. Thermodynamically,
this increase must be offset by production of entropy which, broadly speaking, can be
understood as a decrease in order. Ideally, self-organisation can be used to guide the system
towards a desired regime or state, while “exporting” the entropy to the system’s exterior.
Thus, Guided Self-Organisation (GSO) attempts to harness the order-inducing potential
of self-organisation for specific purposes. Not surprisingly, general methods developed to
study entropy can also be applied to guided self-organisation. This special issue covers a
broad diversity of GSO approaches which can be classified in three categories: information
theory, intelligent agents, and collective behavior. The proposals make another step towards
a unifying theory of GSO which promises to impact numerous research fields.
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1. Introduction

Examples of self-organising systems can be found practically everywhere: a heated fluid forms regular
convection patterns of Bénard cells, neuronal ensembles self-organise into complex spike patterns, a
swarm changes its shape in response to an approaching predator, ecosystems develop spatial structures
in order to deal with diminishing resources, and so on. One may ask whether it is possible to guide the
process of self-organisation towards some desirable patterns and outcomes? Over the last decade, it has
become apparent that this question can be rigorously formalised across multiple domains, leading to the
emergence of a new research field: guided self-organisation (GSO) [1–4].

Guided self-organisation attempts to reconcile two seemingly opposing forces: one is guiding a
self-organising system into a better structured shape and/or functionality, while the other is diversifying
the options in an entropic exploration within the available search space. At first glance, these two
alternatives may even appear irreconcilable in principle, given an apparent contradiction between
the concepts of guidance (implying control) and self-organisation (implying autonomy). However,
the resolution of this paradox capitalises on the distinction between the concepts of “control” and
“constraint”: rather than trying to precisely control a transition towards the desirable outcomes, one
puts in place some constraints on the system dynamics to mediate behaviors and interactions [5].

Intuitively, the imposed constraints guide the dynamics by reducing the bandwidth of relevant
channel(s), so that the system progresses to preserve its information by self-improving and
self-structuring. Here, information is understood in Shannon’s sense [6], as a general reduction in
uncertainty, making it applicable to a wide range of processes. A swarm reacts to a predator; bacteria
search for sugar; a player selects a winning strategy in a dilemma game; an animal optimises an
assortative mating choice: all of these decisions benefit, in the simplest case, from a reduction in
uncertainty, and in a general case, from specific information dynamics [7–12]. This is especially
relevant for systems that constantly generate uncertainty (random, chaotic or open). Therefore, it may be
hypothesised that developing and placing constraints that shape more efficient information processing
within a self-organising system would present an abstract way to guide it, without having to specify
individual interactions and trajectories.

Some of the success on this path was underpinned by novelties in combining information-theoretic,
graph-theoretic and computation-theoretic models, on the one side, with dynamical systems techniques
and methods of statistical mechanics, on the other side. Fundamental connections between
information-theoretic and thermodynamic (or statistical-mechanical) models reflect the rich common
dynamics underlying guided self-organisation in open systems [13]. In general, interactions among
the system’s components (neurons, particles, sensors, actuators, agents, etc.) induce statistical
regularities, structuring information processing within the system. These regularities can be interpreted
thermodynamically [14–16]. For example, a thermodynamic interpretation of transfer entropy shows
that this quantity is proportional to the external entropy production by the system, attributed to a source
of irreversibility [17], and is related to transient limits of computation [18].

The mathematical study of graphs has had several advances in the last fifteen years into what is now
described as “network science” [19,20]. Networks are useful for modelling complex systems, where
interactions are relevant [21], as nodes represent elements of a system, links represent interactions, while
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meso- and macro- measures can be obtained, as well. This opens the possibility of studying phenomena
at multiple scales under the same formalism [22], relating topological and information-theoretic
properties [23].

Thus, it is not surprising that many studies of guided self-organisation turn their attention to the
generic concepts of entropy and information, utilised in various thermodynamic, information-theoretic
and graph-theoretic methods.

2. Special Issue

The 6th International Workshop on guided self-organisation was held in Barcelona on September 18,
2013, as a satellite Workshop at the 2013 European Conference on Complex Systems (ECCS’2013).
Following the Workshop, a call for papers for a special issue on entropy methods in guided
self-organisation was launched. Ten papers were selected after several rounds of comprehensive reviews.

The issue begins with three papers devoted to information-theoretical modelling of complexity and
guided self-organisation.

The paper by Fuentes [24] proposes a new quantitative definition of emergence, using the measure of
effective complexity introduced by Gell-Mann and Lloyd [25]. Attempts to capture the phenomenon
of emergence information theoretically, while relating it to studies of complex systems, have been
continuing vigorously over the last several decades [26–30]. Gell-Mann and Lloyd’s original approach
contrasted (1) the Shannon entropy, which measures the information required to describe the random
aspects of the entity, given an ensemble in which it is embedded, with (2) the effective complexity, i.e.,
the length of a compact description of the identified regularities of an entity, computed as the algorithmic
information content, not of the entity, but of the ensemble in which it is embedded. These two measures
can be combined within the total information. The proposal described by Fuentes suggests that a given
property of an entity is emergent if, for a given set of the control parameters, “the information content of
its regularities” increases abnormally. In other words, the property is emergent, at a particular value of
some control parameter, if its effective complexity shows a jump discontinuity at this critical value. Since
control parameters describe different ways to couple a system with its environment, as well as different
characteristics of the system, the suggested definition of emergence may be argued to capture the relative,
rather than absolute, nature of the phenomenon. This work contributes to the current vigorous debate on
the elusive subject of emergence, employing information theory yet again in order to analyze the intricate
relationship between emergence and complexity.

The study by Griffith et al. [31] is also well-grounded in information theory. In fact, it considers one
of the most challenging information-theoretic topics in guided self-organisation and complex systems,
in general—the formalisation of intersection information—in an attempt to quantify how much of “the
same information” two or more random variables specify about a target random variable. This question
is immediately related to measuring information modification or synergistic mutual information [32–35].
Several information-theoretic measures of synergy, developed over the last two decades, were reviewed
and proposed in a previous work by Griffith and Koch [35], and the work presented in this issue
makes another important step. Specifically, the introduced intersection information measure, based
on the Gács–Körner common information (a stricter variant of Shannon mutual information) [36], is
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the first to satisfy the important property of target monotonicity. This property is underlined by a
partition of the set of all random variables into disjoint “information-equivalence” classes, produced
by a well-defined ordering, and requires that intersection information about an informationally richer
target variable is at least as high as the intersection information about an informationally poorer target
variable. This exemplifies, and extends, an axiomatic framework for information processing which is has
been developed over the last few years, promising to provide a solid foundation for information-theoretic
modelling of self-organising processes.

Ivancevic et al. [37] propose an action-amplitude model for controlled entropic self-organisation
(CESO). The authors provide physical, global functional, local geometric and computational views on
CESO. In organisational decision-making, it is assumed that optimal behavior is given by minimising
perceptual error. The perceptual error of an agent is defined as the difference between the intent
and the consequences of the action. Relating this concept with information theory and Prigogine’s
extended second law of thermodynamics, three phases are described: Intent, where entropy increases,
action, where entropy (and information) is conserved, and control, where entropy is reduced. Proposed
formalisms for modeling and simulation are derived. Applications of this work can be made in collective
decision-making using formal frameworks.

The next three papers are devoted to applying information-theoretic models and tools to the generation
of complex self-organising behaviors in intelligent agents.

As pointed out by Salge et al. [38], “one aspect of intelligence is the ability to restructure your own
environment, so that the world you live in becomes more beneficial to you”. This paper extends the
increasingly maturing empowerment formalism to a methodology providing task-independent, intrinsic
motivations driving an agent to manipulate and restructure a deterministic and discrete external world.
Empowerment was first introduced in [39] and studied over the subsequent years as a mechanism
generating self-organising behaviours in agents [40–43]. Formally, it is the channel capacity of the
exterior part of an agent’s action-perception loop, measured via the maximum quantity of Shannon
information that an agent could potentially inject into the environment and recover via its sensors [13].
The paper exemplifies how different agent embodiments and changing environmental conditions result
in the agents producing discernibly different worlds, even though the agents are controlled by the same
internal motivation. The study opens several important avenues for future research, reaching beyond
deterministic and discrete worlds and including multi-agent cooperation in a joint re-structuring of
their common environment, as well as self-modifying agent behaviors and morphological computation
in general.

The paper by Ristic et al. [44] deals with an unknown structured environment and presents a
framework for the autonomous search for a diffusive source. An environment is modeled as an unknown
discretised map with randomly placed and shaped obstacles. The solution is formulated in the sequential
Bayesian framework and implemented as a Rao–Blackwellised particle filter [45], augmented with an
entropy-reduction motion control. Some robots have been built using chemotaxis, i.e., following a
chemical gradient. However, chemotaxis is not effective when turbulent flows are present. As an
alternative, infotaxis has been proposed with successful applications [46]. The authors combine this
approach with navigation in an unknown environment with encouraging results.
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A novel internal control structure for a robot, considered as a general dynamic embodied system,
is also investigated in the paper by Nurzaman et al. [47]. This study presents a GSO approach
based on a coupling between the mechanical dynamics of the robot and its internal control structure,
known as the attractor selection mechanism [48]. The resulting architecture attains a balance between
deterministic and stochastic dynamics. The crucial assumption is that “the deterministic dynamics can
be represented by a number of attractors, and the tendency to gracefully change the behaviors depends
on internally generated stochastic perturbation and sensory input”. The approach advocated in the paper
not only illustrates the guided self-organisation of a specific embodied system, but also highlights a
methodological perspective on the research field: guidance and self-organisation within a dynamic
system may be combined through a proper coupling of the behavioral primitives with (selectable)
attractors, setting suitable levels of noise and appropriately expressing current goals via the sensory
feedback function. This research perspective is well aligned with the view on GSO developed at the
intersection of the theory of dynamical systems and machine learning [49–56]: in order to guide a
dynamical system, one may restrict its flow to a certain region in phase space, allowing for an otherwise
unrestricted development within this bounded area of phase space [57].

The next four papers apply information-theoretic, game-theoretic and graph-theoretic tools to studies
of multi-agent collective behavior.

In the study carried out by Guckelsberger and Polani [58], the concept of empowerment plays a
central role once more, in deriving skills of multiple agents that compete for a scarce resource. The work
is motivated by the insight that “self-organization and survival are inextricably bound to an agent’s ability
to control and anticipate its environment”. It has been noted in the past that an information exchange
modulates the empowerment mechanism in a way that triggers complex collective behaviour [41]. The
results reported in this issue show that initial assumptions about an agent’s peers and anticipation of
their behavior have a strong effect on the agent’s individual behaviour, producing, via maximisation of
empowerment, diverse survival strategies. Furthermore, different degrees of scarcity are shown to affect
survival strategies. Importantly, multiple homogeneous agents driven by empowerment maximisation,
are capable of surviving in a flat hierarchy without direct communication, but with some level of
anticipation. This again highlights the role of the empowerment maximisation as a universal drive for
GSO in collective agent systems. Another salient outcome of the study is the observation that agents
“develop the most efficient behaviour locally if they assume their peers to act in a way that would
be indeed the most efficient at a global level”. This aspect is immediately related to game-theoretic
modeling of rational agent behavior, studied in the next paper.

Harré and Bossomaier [59] consider, in a game-theoretic setting centered on the quantal response
equilibrium, the issue of how changes in the players’ underlying incentives can move the outcome from
an optimal economy to a sub-optimal economy. This problem is complicated by the ensuing dynamics
that may make it impossible for the players to collectively navigate a way to a better strategy without
passing through a socially undesirable “tipping point” (a discontinuous transition), such as a financial
market crash, economic depression or a catastrophic climate change. An important result produced by the
study is the identification of “strategic islands” created or destroyed in the strategy space in response to
different perturbations to the underlying incentives. These islands are shown to be isolated by disruptive
transitions between strategies, making more optimal strategic regions not smoothly attainable from the
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current strategy. However, under some conditions, there are possibilities of generating alternative smooth
paths to globally better outcomes, guided by both individually incentivised choices and macro-economic
adjustments. As argued by the authors, game theory provides a simplified representation of what is
often a very complex strategic space, providing key insights into the consequences of both actions and
inactions in very dynamic environments.

Gogolev and Marcenaro [60] study the problem of consensus [61], considering faulty nodes with
random and persistent failures. Computer simulations are used to show that, counter-intuitively, different
randomisations can actually increase the robustness of consensus, as the effect of faulty nodes can be
reduced with noise, message loss or topology. They also show that random failures inhibit consensus
less than persistent failures, while in some cases, random failures can even promote consensus. This can
be seen as an example of the “order from noise” principle [62]. Systems that are too rigid can benefit
from variation [63], so that self-organisation can be guided not only by restricting entropy, but also by
promoting it when necessary.

What is the optimal amount of entropy of a system? This question is explored by Zubillaga et al. [64]
in the context of self-organising traffic lights [65,66]. Measures of emergence, self-organisation,
complexity and autopoiesis based on information theory [30] are applied to different traffic scenarios and
controllers. The variations in the measures reflect different dynamical phases and show that each regime
requires different entropy values. Self-organising traffic lights reach an optimal or close to optimal
performance, because they are able to increase their complexity as the complexity of the traffic flows
increases for different densities.

3. Conclusion

The contributions to this special issue show that research on guided self-organisation is advancing
along several theoretical and practical dimensions. The proposed formal theories and measures promise
to bring us closer to a unifying theory of GSO with important implications for numerous research fields.
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