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a b s t r a c t

Sound source localization (SSL) in a robotic platform has been essential in the overall scheme of robot
audition. It allows a robot to locate a sound source by sound alone. It has an important impact on
other robot audition modules, such as source separation, and it enriches human–robot interaction by
complementing the robot’s perceptual capabilities. The main objective of this review is to thoroughly
map the current state of the SSL field for the reader and provide a starting point to SSL in robotics. To
this effect, we present: the evolution and historical context of SSL in robotics; an extensive review and
classification of SSL techniques and popular tracking methodologies; different facets of SSL as well as its
state-of-the-art; evaluationmethodologies used for SSL; and a set of challenges and researchmotivations.

© 2017 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The goal of sound source localization (SSL) is to automatically
estimate the position of sound sources. In robotics, this function-
ality is useful in several situations, for instance: to locate a human
speaker in a waiter-type task, in a rescue scenario with no visual
contact, or to map an unknown acoustic environment. Its perfor-
mance is of paramount influence to the rest of a robot audition
system since its estimations are frequently used in subsequent
processing stages such as sound source separation, sound source
classification and automatic speech recognition.

There are two components of a source position that can be
estimated as part of SSL (in polar coordinates):

• Direction-of-arrival estimation (which can be in 1 or 2 di-
mensions)

• Distance estimation.

* Corresponding author.
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ivanvladimir@turing.iimas.unam.mx (I. Meza).

SSL in real-life scenarios needs to take into account that more
than one sound source might be active in the environment. There-
fore it is also necessary to estimate the position of multiple simul-
taneous sound sources. In addition, both the robot and the sound
source are mobile, so it is important to track its position through
time.

SSL has been substantially pushed forward by the robotics com-
munity by refining traditional techniques such as: single direction-
of-arrival (DOA) estimation, learning-based approaches (such as
neural network and manifold learning), beamforming-based ap-
proaches, subspace methods, source clustering through time and
tracking techniques such as Kalman filters and particle filtering.
While implementing these techniques onto robotics platforms,
several facets relevant to SSL in robots have been made evident
including: number and type of microphones used, number and
mobility of sources, robustness against noise and reverberation,
type of array geometry to be employed, type of robotic platforms
to build upon, etc.

As it is shown in this review, the SSL field in robotics is quite
mature, proof of which are the recent surveys in this topic. For
instance, [1,2] present a survey on binaural robot audition, [3]
offers a general survey of SSL in Chinese, [4] presents some SSL
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works based on binaural techniques and multiple-microphone
arrays, and [5] presents an overview of the robot audition field
as a whole. The aim of this work is to review the literature of
SSL implemented over any type of robot, such as service, rescue,
swarm, industrial, etc. We also review efforts that are targeted for
an implementation in a robotic platform, even if they were not
actually implemented in one. In addition, we review resources for
SSL training or evaluation, including some that were not collected
from a robotic perspective but could be applied to a robotic task.
Finally, we incorporate research that uses only onemicrophone for
SSL that, although not applied in a robotic platform, we believe has
an interesting potential for the SSL robotic field.

In this work we present: the evolution of the field (Section 2);
a definition of the SSL problem (Section 3); a classification of tech-
niques used in SSL within the context of robot audition (Section 4);
an overview of popular tracking techniques used for SSL (Sec-
tion 5); several facets that describe the areas that SSL techniques
are tackling (Section 6); a review of different evaluation methods
that are currently being used formeasuring the performance of SSL
techniques (Section 7); and an insight on potentially interesting
challenges for the community (Section 8). Finally, we highlight
several motivations for future research questions in the robot
audition community (Section 9).

2. The evolution of SSL

The surge of SSL in robotics is relatively new. To our knowledge,
it started in 1989with the robot Squirt, whichwas the first robot to
have a SSL module [6,7]. Squirt was a tiny robot with two compet-
ing behaviors: hiding in a dark place and locating a sound source.
The idea of using SSL as a behavior to drive interaction in a robot
was later explored by Brook’s own research teamand it culminated
with a SSL system for the Cog robot [8–11]. In the meantime,
several Japanese researchers started to investigate the potential
of SSL in a robot as well. In 1993, Takanashi et al. explored an
anthropomorphic auditory system for a robot [12,13] (as described
by [10]). This research was followed by notable advances in the
field: Chiye robot [14], RWIB12-based robot [15–18], Jijo-2 [19,20],
Robita [21] andHadalay [22]. This first generation of robots tackled
difficult scenarios such as human–robot interaction, integrating
a complete auditory system (source separation feeding speech
recognition), active localization, dealing with mobile sources and
capture systems, and by exploring different methodologies for
robust SSL.

At the turn of the 20th century, the binaural sub-field of robot
audition started to become an important research effort, including
SSL. Although robots from the first generation were technically
binaural (e.g., Squirt, COG, Chiye, Hadalay), it is with the arrival of
the SIG robot [23] that the field of binaural robot audition started
to generate interest. SIG was built to promote audition as a basic
skill for robots and was presented as an experimental platform for
the RoboCup Humanoid Challenge 2000 [24]. This resulted in SIG
becoming popular for researching robot perception. Binaural robot
audition has been followed by other research teams and progress
in the field has been constant [25–36].

During the 2000s, an important rift occurred in terms of the
research motivations in the robot audition field, specifically in SSL
techniques. Binaural audition cemented itself by the motivation
to imitate nature: using only two ears/microphones. On the other
hand, there was the motivation to increase performance (detailed
in Section 4.3), which pushed for the use of more microphones.
This opened the door for source localization techniques that use
a high amount of sensors (such as MUSIC and beamformers) to
carry out SSL in a robot. Subsequently, the facets of the SSL problem
were broadened,which yielded awide variety of solutions from the
robot audition community.

Fig. 1. The complete data pipeline of an end-to-end SSL methodology.

Throughout its history, a central goal for robots with a SSL
system has been to support interaction with humans. In the first
generations, an important contribution was to face the user, since
it indicates that the robot is paying attention. One of the first
robots to carry out this attention-based interaction was the Chiye
robot [14] which has made its way into recent products such
as the Paro robot [37]. Further on, SSL has been used in more
complex settings in which other skills intertwine together to reach
a specific goal, such as: playing the Marco-Polo game, acting as a
waiter, taking assistance and finding its user when it visually lost
him/her [38]; logging and detecting the origin of certain sounds
while interacting with a caregiver [39]; playing a reduced version
of hide and seek in which hand detection and SSL are used to guide
the game [40]; providing visual clues from the sound sources as a
complement of a telepresence scenario [41]; and directing a trivia-
style game [42]. Given the evolution of SSL in robots, we are certain
that the complexity of the scenarios will keep growing. In fact,
we foresee that the challenges to come will definitely be more
demanding (see Section 8 for further discussion).

3. Definition of the sound source localization problem

Sound source localization (SSL) tackles the issue of estimating
the position of a source via audio data alone. This generally involves
several stages of data processing. Its pipeline is summarized in
Fig. 1.

Since this pipeline receives the data directly from the micro-
phones and provides a SSL estimation, we consider a methodology
that carries this out as end-to-end. Features are first extracted from
the input signals. Then, a feature-to-location mapping is carried
out, which usually relies on a sound propagation model. These
three phases are referenced as such in the explanation of each
methodology and their relevant variations in Section 4.

In this section a brief overview of these three phases is pre-
sented for ease of reference in the later detailed explanations.

3.1. Propagation models

The sound propagation model is proposed depending on: the
positioning of themicrophones, as theremay be an object between
them; the robotic application, as the user may be very close or far
away from the microphone array; and the room characteristics,
as they define how sound is reflected from the environment. In
addition, the propagation model generally dictates the type of
features to be used.

The most popular propagation model used is the free-field/far-
field model, which assumes the following:

• Free field: The sound that is originated from each source
reaches each microphone via a single, direct path. This
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means that there are no objects between the sources and
the microphones and that there are no objects between the
microphones. In addition, it is assumed that there are no
reflections from the environment (i.e., no reverberation).

• Far field: The relation between the inter-microphone dis-
tance and the distance of the sound source to the micro-
phone array is such that the sound wave can be considered
as being planar.

The second assumption greatly simplifies the mapping proce-
dure between feature and location, as discussed in Section 4.1.

There are other type of propagation models that are relevant
in SSL in robotics. The Woodworth–Schlosberg spherical head
model [43, pp. 349–361] has been used extensively in binaural
arrays placed on robotic heads [23,44] and is explained in Sec-
tion 4.2. The near-field model [45] assumes that the user can be
near the microphone array, which requires to consider the sound
wave as being circular. There are a few robotic applications that use
the near-field model, such as [46], however it is not as commonly
used as the far-field model. In fact, there are approaches that
use a modified far-field model successfully in near-field circum-
stances [47] or that modify the methodology design to consider
the near-field case [48]. Nevertheless, as presented in [48], a far-
field model directly used in near-field circumstances can decrease
the SSL performance considerably. In addition, there are cases
in which the propagation model is learned, such as the neural-
network-based approaches in [49,50], manifold learning [33,51],
linear regression [52] and as part of a multi-modal fusion [11,21].

3.2. Features

There are several acoustic features used throughout the re-
viewedmethodologies. In this section, we provide a brief overview
of the most popular:

Time difference of arrival (TDOA). It is the time-difference be-
tween two captured signals. In 2-microphone arrays (binaural
arrays) that use external pinnae, this feature is also sometimes
called the inter-aural time difference (ITD). There are several
ways of calculating it, such asmeasuring the time difference be-
tween themoments of zero-level-crossings of the signals [18] or
between the onset times calculated fromeach signal [6,7,14,17].
Another way to calculate the TDOA is by assuming the sound
source signal is narrowband. Let us denote the phase difference
of two signals at frequency f as1ϕf . If fm is the frequency with
the highest energy, the TDOA for narrowband signals (which
is equivalent to the inter-microphone phase difference, or IPD)
can be obtained by 1ϕfm

2π fm
[23]. However, the most popular way

of calculating the TDOA as of this writing is based on cross-
correlation techniques, which are explained in detail in Sec-
tion 4.1.

Inter-microphone intensity difference (IID). It is the difference
of energy between two signals at a given time. This feature,
when extracted from time-domain signals, can be useful to
determine if the source is in the right, left or front of a
2-microphone array. To provide greater resolution, a many-
microphone array is required [53] or a learning-based mapping
procedure can be used [10]. The frequency-domain version
of IID is the inter-microphone level difference (ILD) that is
provided as the difference spectrum between the two short-
time-frequency-transformed captured signals. This feature is
also often used in conjunction with a learning-based mapping
procedure [35].

A similar feature to the ILD are the set of differences of the
outputs of a set of filters spaced logarithmically in the frequency
domain (known as a filter bank). These set of features have

shown more robustness against noise than the IID [9], while
employing a feature vector with less dimensions than the ILD.

In [54], the ILD is calculated in the overtone domain. A
frequency fo is an overtone of another f when fo = rf (given that
r ∈ [2, 3, 4, . . .]) and their magnitudes are highly correlated
through time. This approach has the potential of being more
robust against interferences, since the correlation between the
frequencies implies they belong to the same source.

Spectral notches. When using external pinnae1 or inner-ear
canals, there is a slight asymmetry between the microphone
signals. Because of this, the result of their subtraction presents
a reduction or amplification in certain frequencies, which de-
pend on the direction of a sound source. These notches can
be mapped against the direction of the sound source by ex-
perimentation [52]. However, because small changes to the
external pinnaemay hinder the results from these observations,
it is advisable to use learning-based mapping when using these
features [49].

Binaural/spectral cues. It is a popular term to refer to the feature
set that is composed by the IPD and the ILD in conjunction. This
feature set is often used with learning-based mapping [50,51].
They are often extracted on an onset to reduce the effect of
reverberation [55]. It has been shown in practice that temporal
smoothing of this feature setmakes the resultingmappingmore
robust against moderate reverberation [56].

Besides these features, there are others that are also highly used,
such as theMUSIC pseudo-spectrum and the beamformer steered-
response. However, their application is bound to specific end-to-
end methodologies. Because of this, their detailed explanation is
given in Section 4.

3.3. Mapping procedures

A mapping procedure for SSL is expected to map a given ex-
tracted feature to a location. A typical manner to carry this out
is by applying directly the propagation model, such as the free-
field/far-fieldmodel or theWoodworth–Schlosberg spherical head
model, both discussed in Section 3.1. However, there are some
type of features (especially those used formultiple-source-location
estimation) which require an exploration or optimization of the
SSL solution space. A common approach is to carry out a grid-
search, in which a mapping function is applied throughout the SSL
space and the function output is recorded for each tested sound
source location. This produces a solution spectrum in which peaks
(or local maximums) are regarded as the SSL solutions. This is the
most used type ofmapping procedure formultiple-source-location
estimation. Two important examples are the subspace orthogonal-
ity feature of MUSIC and the steered-response of a delay-and-sum
beamformer. These are detailed further in Section 4.3.

There are types of mapping procedures other than grid-search.
Their main focus is to train the mapping function based on
recorded data of sources with known locations. As a result, the
mapping function that was learned implicitly encodes the prop-
agation model. In this survey, this type of mapping procedures are
referred to as learning-based mapping. These are based in differ-
ent training methodologies, such as neural networks [11,21,49],
locally-linear regression [57], manifold learning [33,51], etc. Fur-
ther details are given of each mapping procedure in the relevant
branches of the methodology classification presented in Section 4.

1 External ears.
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(a) Full frame of reference. (b) Azimuth (top view).

(c) Elevation (side view).

Fig. 2. Graphical representation of the most used frame of reference. Based on the
CAD views of the Neobotix MP-500 mobile robot [58].

4. Classification of sound source localization end-to-end
methodologies

As mentioned before, the location of a sound source is usually
considered as being composed of two parts: (1) the direction of
arrival (DOA) of the source and (2) the distance of the source to the
microphone array. The frame of reference that is used by most (if
not all) of the reviewedworks is exemplified in Fig. 2, which shows
a robot mounted with a 3-microphone array.

As it can be seen, the center of themicrophone array is generally
considered as the origin. The azimuth plane (presented in Fig. 2b) is
parallel to the horizon of the physical world and the elevation plane
(presented in Fig. 2c) is orthogonal to it. This is the terminology and
frame of reference used throughout the survey.

In this section, a classification of end-to-end methodologies
used for SSL by the robotics community is presented. Because of
the two-part composition of a sound source location, a type of
divide-and-conquer philosophy of SSL has become popular: the
estimation of the DOA and the distance is carried out separately.
And, in most cases, the DOA is usually the only part of the loca-
tion reported. Given this popularity, this section mostly reviews
methodologies that estimate the DOA of the sound source. How-
ever, important advances in distance estimation have been made,
which warrants their own branch.

The presented classification is summarized as follows:

• 1-dimensional single direction-of-arrival estimation. In
this branch, techniques that estimate the DOA in the az-
imuth plane of a single source are described.

• 2-dimensional single direction-of-arrival estimation. In
this branch, techniques that estimate the DOA in both the
azimuth and the elevation plane of a single source are de-
scribed.

• Multiple direction-of-arrival estimation. In this branch,
techniques that estimate the DOA of multiple sources are
described. These are mostly in the azimuth plane, but the

process of how to generalize them into both planes is also
described. This branch is further divided into three sub-
branches:

– Beamforming-based. Those that carry out spatial filter-
ing towards several DOA candidates.

– Subspace methods. Those that take advantage of the
differentiation between signal and noise subspaces.

– Source clustering through time. Those that carry out sin-
gle DOA estimation throughout various timewindows
and provide a multiple-DOA solution by clustering
these results.

• Distance estimation. In this branch, techniques that esti-
mate the distance of the sound source to the microphone
array are described.

The full list of the 188 reviewed works has beenmade available
through an Excel file that is part of the additional external material
that comes with this writing.

4.1. 1-dimensional single direction-of-arrival estimation

There aremanyworkswhose objective is to locate and track one
sound source in the environment. A very commonly used feature
to achieve this objective is the time-difference-of-arrival (TDOA)
between apair of sensors ormicrophones. Themost popularway to
estimate the TDOA as of thiswriting is based on calculating a cross-
correlation vector (CCV ) between two captured signals. One of the
simplest way to calculate CCV is based on the Pearson correlation
factor, as presented in Eq. (1):

CCV [τ ] =

∑
t (x1[t] − x1)(x2[t − τ ] − x2)√∑

t (x1[t] − x1)2
√∑

t (x2[t − τ ] − x2)2
(1)

where x1 and x2 are the two discrete signals being compared; τ is
the point at which x2 is being linearly shifted and the correlation
is being calculated; and x1 and x2 are the mean values of x1 and x2,
respectively. The TDOA of the sound source (τo) is the τ value that
maximizes CCV . Asmentioned before, the free-field/far-field prop-
agation model is the most commonly used (presented in Eq. (2))
and it provides a simple feature-to-location mapping between τo
and the DOA of the source (θo):

θo = arcsin
(
Vsound · τo

fsample · d

)
(2)

where Vsound is the speed of sound (∼343 m/s); fsample is the sam-
pling frequency in Hz; d is the distance between microphones in
meters; and τo is the TDOA of the sound source in number of sam-
ples. To simplify SSL in real-life environments, themicrophones are
positioned such that the imaginary line between them is parallel
to the azimuth plane, resulting in θo being the DOA in that plane.
If elevation is required, the microphone pair can be positioned
such that they cross the elevation plane. However, only the DOA
in the plane of themicrophone array is able to be estimated by this
methodology.

Estimating the TDOA via CCV can be very sensitive to reverber-
ations and other noise sources [59, pp. 213–215]. In these cases,
correlation values are ‘‘spread’’ into other TDOAs [60], resulting in
wide hills of correlation as well as TDOA estimation errors [61]. To
counter this, a similar correlation vector can be calculated by an
alternative approach. A frequency-domain-based cross-correlator
(CCF ) [62] is presented in Eq. (3):

CCF [f ] = X1[f ]X2[f ]∗ (3)

where X1 and X2 are the Fourier transforms of x1 and x2 of Eq. (1)
respectively; the {.}∗ operator stands for the complex conjugate
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operation; and CCF is a frequency-domain-based cross-correlator.
It is important to state that the resultingF−1(CCF ) presents the cor-
relation information in a different manner than CCV . However, the
peaks in F−1(CCF ) are found in the same places of high correlation
as in CCV in the range of −τmax ≤ τ ≤ τmax, where τmax is the
maximum value of τ that can physically occur.2

By performing this operation in the frequency domain, a
weighting function ψ[f ] can be applied as in Eq. (4), which is
known as generalized cross-correlation (GCC) [60]:

GCC F [f ] = ψ[f ]X1[f ]X2[f ]∗. (4)

ψ[f ] varies depending on the objective of the correlation vector.
If ψ[f ] = 1, the resulting F−1(GCC F ) equates to F−1(CCF ) which
suffers from sensitivity to reverberation, similar to CCV calculated
by Eq. (1). Therefore, it is of interest that Dirac delta functions
appear in the correlation vector only in places of high correla-
tion. Since the Fourier transform of a Dirac delta function has all
frequency magnitudes at 1, normalizing the magnitudes in GCC F
forces the presence of approximations of Dirac delta functions in
places of high correlation. To normalize these magnitudes, ψ[f ] is
equated to the inverse of the magnitude of the signal multiplica-
tion, as in Eq. (5):

ψ[f ] =
1

|X1[f ]X2[f ]∗|
. (5)

By applyingψ[f ] in Eq. (4), the phase information is left intact in
GCC F , thusψ[f ] of Eq. (5) is known as the phase transform (PHAT ).
The generalized cross-correlationwith phase transform [60] (GCC-
PHAT) is presented in Eq. (6):

PHAT F [f ] =
X1[f ]X2[f ]∗

|X1[f ]X2[f ]∗|
. (6)

Carrying out this normalization is equivalent to ‘‘whitening’’
the input signals, since all frequencies have a magnitude of 1. This
has been shown to produce a ‘‘spikier’’ crosspower spectrum [63].
Because of this, interfering sources produced by either actual
sound sources or environmental reflections (i.e., reverberation)
tend to also ‘‘appear’’ as other peaks in the correlation vector. This
offsets their effect on the correlation calculations in other TDOAs,
which is not the case with the Pearson-basedmethod described by
Eq. (1). This provides GCC-PHAT robustness against reverberation,
as shown via simulation in [61]. It also provides robustness against
interfering sources in high signal-to-interference ratio (SIR) cir-
cumstances, as shown in a multiple source scenario in [64].

The PHAT weighting function is typically applied uniformly
throughout the frequency bins which introduces sensitivity to
broadband noise sources. To counter this, the PHAT weighting
function can be modified such that additional weights are set
depending on the ‘‘noisiness’’ of the frequency bins. Good examples
of this are presented in [47,65,66], where an additional weight-
ing term is added to the PHAT weighting function based on the
frequency bin SNR, providing robustness against noise. However,
applying non-zeroweights to the frequency binmay produce noise
leaking into other frequencies. To avoid this, an evolution of this
approach is presented in [67], where a hard binary mask is applied
instead. Meaning, only binary weights are added to the PHAT
weighting function: 1 if the SNR is above a certain threshold, 0
otherwise. Unfortunately, using these hard masks results in leaks
in the DOA estimation with unwanted dominant peaks. This issue
is countered in [68], where a transitionmask is used between noise
and speech windows.

2 Which happens when the sound source is placed in the imaginary line that
crosses both microphones. That is to say, when θ = 90◦ . Thus, it is calculated as
τmax =

fsample ·d
Vsound

sin(90◦).

It is important to mention that these masking methods require
on-line noise estimation to calculate the narrowband SNRs for each
frequency. An alternative to this is to create a binarymask that only
nullifies the frequency bins outside the frequency range used by
the type of source the application calls for. In the case of [69], the
authors aimed to track only speech sources, thus all frequency bins
outside the frequency range of voice were nullified.

GCC-PHAT is probably the most commonly used TDOA estima-
tion technique for single direction-of-arrival estimation in robot
audition because of its robustness and its ease of implementation.
For example, in [70,71], GCC-PHAT is used to carry out an acoustic
map of the environment via an exploration carried out by a robot.
Other works that use GCC-PHAT as part of their sound source
localization systems for service robots can be found in [28,72–76].

Interestingly, the appearance of peaks in PHAT bins other
than the one representing the signal of interest may constitute
other sources which are assumed as interfering. Because of this,
some proposals use PHAT as a simple way to estimate multiple
directions-of-arrival [64,77]. However, even with the changes to
ψ[f ] to make it applicable, the appearance of peaks is dependent
on the ratio of power between the multiple sources [64]. As far as
we know, this variation of the GCC-PHAT technique has not been
applied in the context of robot audition.

Asmentioned before, the free-field/far-field propagationmodel
is the most commonly used for single-DOA estimation, however
other sound propagation models can be used for 1-dimensional
single-DOA estimation. In [78], a spherical head is assumed to be
positioned between themicrophones. For this purpose, the authors
use the Woodworth–Schlosberg head model [43, pp. 349-361],
shown in Eq. (7):

τ (θ ) =
d

2Vsound
(θ + sin(θ )) (7)

where d/2 represents the radius of the head. Two propagation
paths are then observed: one that propagates through the front of
the head and another that propagates through the back. Although
using the front propagation path should be enough for TDOA esti-
mation, the back propagation path interferes with this estimation.
To counter this, a multipath interference compensation factor is
used. The resulting propagation model is presented in Eq. (8):

τ (θ ) =
d

2Vsound
(θ + sin(θ )) +

d
2Vsound

(sign(θ )π − 2θ ) |sin(θ )| (8)

where sign(θ ) is described in Eq. (9):

sign(θ ) =

{
−1, θ < 0
1, θ ≥ 0 (9)

In [65], an addition to the propagation model in Eq. (8) is
made to consider an attenuation factor βm (typically set to 0.1, as
suggested by the authors) as presented in Eq. (10):

τ (θ ) =
d

2Vsound
(θ + sin(θ ))

+
d

2Vsound
(sign(θ )π − 2θ ) |βm sin(θ )| . (10)

In [44], the authors reached the same models presented in
Eqs. (2) and (7) from the point of view of auditory epipolar ge-
ometry (AEG) [23]. Epipolar geometry is popularly used in stereo
computer vision to physically localize features extracted from two
images simultaneously captured from two cameras with known
locations [79]. The revision to AEG (RAEG) made in [44] is analo-
gous to the Fourier transform of themodel presented in Eq. (7). The
authors applied the following grid-search mapping to carry out 1-
D SSL: (1) using RAEG, a set of inter-microphone phase differences
(IPDf ) are calculated for each possible f and DOA; (2) an ÎPDf is
estimated from the incoming signals in the selected f ’s; and (3)
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the final θo is the one associated with the IPDf from the set that is
the most similar to the estimated ÎPDf .

Alternatively, machine learning approaches can be used to
tackle SSL. These approaches do not define a sound propagation
model, instead they learn a mapping function Ψ from a space of
features κ of the sound signal to source locations θ .

Ψφ : κ ↦→ θ. (11)

Thismap ismodeled from recorded examples (training dataset)
that are used to identify the parameters φ. Traditionally, additional
examples are recorded to evaluate the trained model (testing
dataset), and is expected to perform well in a real-world setting.
Some types of training techniques that have been used for SSL are:
recurrent neuronal networks [80–83]; bio-inspired spiking neural
networks [84]; and deep learning architectures are recently being
explored [85–87].

However, in order to train a model, training data diversity
is important for generalization [88]. This is because the training
process requires to ‘‘observe’’ a representative set of examples
from which it will attempt to generalize the whole set of possible
scenarios. If the circumstances in which the model is deployed in
a real-world setting are vastly different from the circumstances in
which it was trained, a basic assumption of most machine learning
techniques is overlooked [89]. For instance, if the training data
was recorded in a quiet office and the robot is deployed in a busy
restaurant, the mismatch in noise levels will result in a poor SSL
performance. To avoid this, a highly diverse training dataset is
required, varying in terms such as: room response, number and
location of sources, microphone placement, the use of external
pinnae and/or inner-ear canals, head model, etc. In [90], a system
is presented that both locates and identifies the users, and the
authors proposed as futurework to evaluate their SSL performance
inmismatched training and testing conditions. An example of how
this phenomenon impacts the performance of a SSL system can be
found in [57], detailed in Section 4.2.

4.2. 2-dimensional single direction-of-arrival estimation

In a 3D environment, it is of interest to estimate the DOA of the
source in both the azimuth and elevation plane. If the microphone
array has a 3D geometry, the elevation angle can be calculated us-
ing the sameTDOA-based techniques discussed in Section4.1 along
with theDOA in the azimuth plane, providing a 2-dimensional DOA
estimation. This requires, however, additional microphones to be
used.

Frequently in binaural hearing the microphones are positioned
with a body between them (breaking the free-field assumption)
and/or accompanied with external ears or with inner-ear canals.
This is carried out so that the sound source signal is ‘filtered’ before
it is captured by the microphones in a way that is dependent of its
direction in both planes. Even though the free-field assumption is
broken, this filtering effects can be used alongside non-free-field
propagation models to carry out 2-dimensional DOA estimation.

For example, human beings are able to estimate both the az-
imuth and elevation of a sound source even when employing a
two-microphone array [91]. When a sound source located on the
side of a human head emits a sound wave, the ear farthest away
from the source receives a modified version of the one received
by the closest ear. This modification is carried out by several
measurable physical phenomenawhen passing through and/or are
reflected by3 the human head, torso, external pinnae and inner-
ear canals [92]. This set of phenomena can be measured by placing

3 The physical phenomenon observed when the audio signal is passing through
the body are generally present in low frequencies, while the ones reflected are
present in high frequencies.

a microphone on each side of a specialized dummy head and
capturing their impulse responses in an anechoic room (to avoid
capturing the effects of the environment). These measurements
can be used to calculate how the object between the microphones
changes the properties of the signal received, depending on the lo-
cation of the sound source (specifically, its azimuth and elevation).
This set of properties can be used to create what is known as a
head-related transfer function (HRTF), which is a type of filter that
aims to emulate the physical phenomena that modify the sound
source audio wave, given a pre-specified 2-dimensional DOA [93].
An HRTF can be used, among other applications, for spatial au-
dio reproduction where a sound source is virtually ‘‘positioned’’
around a listener wearing headphones [94]. For the purpose of
single-DOA estimation, a set of candidate 2D DOAs is proposed,
with which a set of HRTFs are measured. Then, a database of filters
that carry out the inverse function of an HRTF (referenced here
as IHRTF) can be calculated from each HRTF-to-DOA association.
These IHRTFs can then be applied to the incoming signals following
a grid-search mapping. From each application, a proposed metric
can be measured, such as the correlation between the output
signals. The DOA associated with the IHRTF that maximizes such
metric is then proposed as the estimated DOA [95]. It is important
to consider that the external pinnae can also play an important role
in the estimation of the HRTF, as shown in [96] where a spiral ear
is used for 2-dimensional DOA estimation.

However, this type of approach requires measuring the ef-
fects of the database-IHRTFs (which are based on HRTFs usually
estimated with measurements in low-noise anechoic rooms) to
captured signals in real-world conditions (which usually include
reverberation and noise). To counter this, room characteristics
could be measured in advance and be considered as part of the
calculations of the database-filters (philosophically different from
the aforementioned IHRTFs), making them consistent with the
real-world conditions. Unfortunately, deploying a robot into a real-
world environment implies that the acoustic characteristics are not
known in advance [97]. In addition, the room response is depen-
dent of the position of the microphone array inside the room. This
means that when a robot moves (either linearly or by rotation), a
new room response must be measured and a new filter database
must be calculated to account for this change [98]. A simulation
of such a real-world environment can be carried out [99,100],
from which room characteristics can be obtained to automatize
the filter-database modification. However, carrying out such a
simulation can be unfeasible since the dimensions andmaterials of
the environmentmay not be known in advance. In the cases where
they are known, such a simulation is time-consuming [44].

The revised auditory epipolar geometry (RAEG) [44], described
in Section 4.1, can be used to surmount the issue of differences
between real-world and training conditions. RAEG-based SSL does
not require a set of IHRTFs to be estimated in an anechoic room,
since the shape of the robotic head is already accounted for. How-
ever, it only provides a DOA in the azimuth plane. A generalization
to 2D localization is possible via scattering theory.

Scattering theory is a field of physics whichmodels how awave
or particle is perturbed from its path by some object [101,102].
In the case of acoustic or electromagnetic waves, this modeling
process can be used for source localization [103]. As shown in [97],
scattering theory, with a given IPD and IID, can be used to calculate
both azimuth and elevation DOAs by assuming that the shape of
the object between the microphones is spherical. A grid-search
mapping (similar to the IHRTF-based and RAEG-based approaches
already described) is used in [97] with a close-to-spherical robotic
head between the microphones. The approach is summarized as
follows: (1) a set of [IPDf , IIDf ] tuples is calculated for each possible
combination of azimuth DOA, elevation DOA and f ’s using the
scattering theory equations; (2) an ÎPDf and ÎIDf tuple is estimated
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from the incoming signals in the selected f ’s; and (3) the final 2-
dimensional DOA is the one associated with the tuple from the set
that is the most similar to the estimated tuple.

Another way to estimate a single DOA in 2 dimensions is pre-
sented in [104], called the space-domain distance (SDD) method.
It relies on a distance metric that is applied between the captured
time–frequency (TF) bin and a calculated TF bin that estimates
what would have been captured if the signal would have been
located in a given direction. This metric is based on the spherical
Fourier transform (SFT) [105], which aims to investigate objects
with rotational symmetry in terms of spherical coordinates, such
as the perturbations of audio signals from a spherical robotic head.
The SFT coefficients are estimated via measurements or simula-
tions and can be used to pick the TF bins that contain information
of the direct-path signal given a pre-defined DOA. The proposed
SDDmetric in [104]measures thedistance between thedirect-path
TF bins that were calculated from the input signals and the same
TF bin using the SFT coefficients given a pre-defined DOA. Given
this metric, a grid-search is carried out to find the direction that
minimizes it. This technique is robust against reverberation and
invariant against the frequency range of the source. It is also used
in [106] when testing the impact of a rotating head for single DOA
estimation. Theminimization of the SDD assumes only one source,
however the authors believe that an extension to this approach for
multiple-DOA estimation may be possible.

The elevation estimation approaches previously described use
grid-searchmapping. However, other type of modeling-based pro-
cedures can be used to map the feature space to an elevation
estimation. For example, the approach proposed in [57] implicitly
encodes the HRTF by applying a type of inverse regression called
probabilistic piecewise-affine mapping (PPAM). The objective of
PPAM in this case is to map a series of features to a location. A
part of this set of features are the ILDs and IPDs of the whole
frequency spectrum. Noise estimation is carried out via temporal
averaging with which an activity measurement is calculated. This
activity measurement is also used as a training feature to provide
robustness to the mapping process against self noise, background
noise and low reverberation. The azimuth accuracy of this tech-
nique is not affected when the microphones are moved, but the
performance of its elevation estimation does decrease significantly
when this happens. The authors state that to make their ap-
proach robust against thesemovements ‘‘would require combining
training data from different real and/or simulated rooms’’. It is
worthwhile mentioning that the approach described in [57] is able
to locate two sources, making it a multiple-2D-DOA estimator.
However, training data for such circumstances is required. This
means that for it to be able to generically locate multiple sources
it requires to be trained with vast amount of data. However, this is
an important effort into making learning-based 2-dimensional SSL
robust against changes in real-world and training conditions.

Further examples of learning-based 2D SSL are: in [49] a pinnae
inspired by the human ear is used to extract spectral notcheswhich
are fed into a neural network;manifold learning is used to estimate
both azimuth and elevation in a binaural system [33] and has
been extended to include visual information [107]; and a linear
regression approach is used as the mapping procedure in [52] to
learn the propagationmodel using spectral notches extracted from
the iCub robotic head with spiral ears.

4.3. Multiple direction-of-arrival estimation

For scenarios in which multiple sources are considered to be
in the auditory scene, several techniques of multiple directions-
of-arrival estimation can be used, which can be divided into three
categories:

• Beamforming-based

Fig. 3. Graphical representation of delay-and-sum beamforming.

• Subspace methods
• Source clustering through time.

For simplicity of their description, the 1-dimensional versions
of these methodologies are presented. Thus, the estimated DOAs
are proposed to be in the azimuth plane. However, it is important
to consider that it is possible to extend them into 2 dimensions
(azimuth and elevation) when using a 3D array geometry.

4.3.1. Based on beamforming
Beamforming is a filtering technique that is based on spatial

weighting of the signals captured in an array of sensors such
that its output is the signal approaching the sensor array from a
pre-specified direction-of-arrival (DOA). It might be considered as
counter-intuitive to use this technique for DOA estimation since it
assumes that the DOA of the source is known. However, the overall
steps of this approach are:

1. Propose an L-size set of candidate DOAs where sources are
searched for.

2. Create a beamformer and steer it towards each candidate
DOA.

3. Measure the response of each beamformer, usually mea-
sured as the energy of its output.

4. Create a steered-response spectrum.
5. Find peaks in the spectrum and propose their location as the

DOA of a source.

A steered-response spectrum is a 1 × L vector created from all
the beamformer’s responses ordered by their DOA. If the beam-
former’s response is measured as its output, the steered-response
spectrumcanbe considered as an energy spectrum that showshow
much energy is being received at the microphone array from each
DOA. As it is apparent, the grid-search mapping is the most used
for beamforming-based multiple-DOA estimation.

The simplest form of beamforming is know as the delay-and-
sum beamforming (DAS), summarized in Fig. 3.

Assuming a free-field/far-field sound propagation model, a
source’s DOA has a direct relation to the TDOA of the captured
signal between sensors, as shown in Eq. (2). Thus, a DAS beam-
former aims to artificially shift the signals to counter such time
difference and then add the shifted signals to obtain its output.
The idea behind this is that the component of the captured signals
that is received from the pre-defined DOA (or steered direction) is
aligned in each shifted signal. This results in such a component
being accentuated in the beamformer’s output relative to other
sources positioned in other directions (as shown in the upper part
of Fig. 3). As it can be concluded, such accentuation is proportional
to the number of sensors employed.
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Assuming that the sensors are omnidirectional microphones,
the DAS beamformer output can be represented by Eq. (12):

ŝθ [t] =

N∑
n=1

xn[t − τn(θ )] (12)

where ŝθ is the beamformer’s output, which is the estimation of the
ground truth sθ that reaches the array from the steered direction
θ ; t is the time bin; xn is the signal received at microphone n; N is
the number of microphones; and τn(θ ) is the TDOA of the source
in microphone n related to the steered direction θ . It is important
to mention that the TDOAs τn are generally calculated based on
a reference microphone. If these are consistent to the array’s ge-
ometry and propagation model, this approach can accommodate
any array dimensionality. It can also accommodate several non-
free-field/non-far-field propagation models, such as the near-field
model [45] and the spherical head model [43, pp. 349-361].

The energy of the beamformer’s output steered towards θ (Eθ )
can be calculated by Eq. (13):

Eθ =

T∑
t=1

ŝθ [t]2. (13)

In Eq. (12), the time shift is carried out in the time domain.
A time shift can also be performed by manipulating the captured
signal in the frequency domain, as presented in Eq. (14):

Xnτn(θ ) [f ] = Xn[f ]e−2π f τn(θ ) (14)

where Xn is the Fourier transform of xn; f is the frequency bin; and
Xnτn(θ ) is the Fourier transform of xn(t − τn(θ )). The arrangement
of shifts related to a steered direction θ that are applied to the
captured signals can be expressed as the complex-value N × F
matrix Wθ , as shown in Eq. (15):

Wθ =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
e−2π f1τ2(θ ) e−2π f2τ2(θ ) · · · e−2π fF τ2(θ )

e−2π f1τ3(θ ) e−2π f2τ3(θ ) · · · e−2π fF τ3(θ )

...
...

. . .
...

e−2π f1τN (θ ) e−2π f2τN (θ )
· · · e−2π fF τN (θ )

⎤⎥⎥⎥⎥⎥⎥⎦ (15)

where the f ’s are the frequency bins; N is the number of micro-
phones; F is the frequency window size; and Wθ is the broadband
steeringmatrix, where each of its columns represents a narrowband
steering vector.

The Fourier transform of the output of the beamformer (S) can
be constructed via Eq. (16):

Ŝθ [f ] = Wθ [f ]HX[f ] (16)

where the {.}H operator stands for the Hermitian transpose4 ; X
is a N × F complex-value matrix that holds all of the Xn’s in
its rows; Wθ [f ] is the N × 1 complex-value column of Wθ that
holds all the beamforming weights for the frequency f ; X[f ] is
the N × 1 column that holds the frequency information in f of all
the captured signals; and Ŝθ [f ] is the beamformer’s complex-value
output steered towards θ in frequency f . Ŝθ is the Fourier transform
of ŝθ , such that ŝθ = F−1(Ŝθ ).

Working in the frequency domain opens the door to additional
refinements toWθ to improve the beamformer’s performance. For
example, a set of weights (AθMVDR ) that minimizes the energy of the
beamformer while maintaining the same direction asWθ is shown
in Eq. (17):

AθMVDR [f ] =
R[f ]−1Wθ [f ]

Wθ [f ]HR[f ]−1Wθ [f ]
(17)

4 The Hermitian transpose is applied to negate the TDOAs in Wθ and, thus
resulting in an aligned signal if it is steered in the DOA of a source signal.

where R[f ] is the N × N covariance matrix of X[f ]. This is the well
known Capon beamformer, also known as the minimum variance
distortionless response (MVDR) [108]. An important consideration
when implementing MVDR is the calculation of R[f ]. A popular
estimation method of R[f ] is the sample covariance matrix R̂[f ],
calculated from the average X[f , t − T : t]X[f , t − T : t]H over
T time windows, where t is the current time window. This is an
essential limitation of MVDR, since it does not provide reliable
results until R̂[f ] ≈ R[f ], which could take several time windows
to do so.

The energy Eθ from Eq. (13) is based on the estimated ŝθ , which
means that the performance of the SSL relies onhowwell the sound
source in the steered direction is accentuated. Thus, the signal-to-
interference ratio (SIR) of the beamformer’s output when steered
towards the sound source has an effect on the relative height of its
corresponding peak in the steered-response spectrum. And if the
SIR is too low (i.e., the source is not accentuated enough), the peak
can be difficult to find in the spectrum. Since this accentuation is
related to the number of microphones used, a microphone array
with a high number ofmicrophones (8 or higher) is often employed
(see Section 6.3.1 for more details).

An issue that arises when using DAS beamforming for multiple-
DOA estimation is that the peaks that appear in the resulting
steered-response spectrum are usually quite wide, making the
resolution of the grid-search very poor. A way around this issue,
as proposed in the ManyEars project [109], is to first rewrite the
output of the beamformer in terms of cross-correlation vectors
(CCV ) as explained in Eq. (18):

Eθ =

T∑
t=1

ŝθ [t]2 =

T∑
t=1

(
N∑

n=1

xn[t − τn(θ )]

)2

=

N∑
n=1

T∑
t=1

xn[t − τn(θ )]2

+ 2
N∑

n1=1

n1−1∑
n2=1

T∑
t=1

xn1 [t − τn1 (θ )]xn2 [t − τn2 (θ )]

=

N∑
n=1

T∑
t=1

xn[t − τn(θ )]2

+ 2
N∑

n1=1

n1−1∑
n2=1

CCVxn1 ,xn2
[τn1 (θ ) − τn2 (θ )].

(18)

The last step is carried out by using the cross-correlation calcu-
lation in Eq. (1). As shown in [60], the GCC vector (as presented in
Eq. (4)) can be used as a replacement for the CCV vector in Eq. (18).
Thus the authors of [63] instead use the PHAT vector from Eq. (6)
to sharpen the peaks in the resulting steered-response spectrum.

However, because of the magnitude normalization carried out
by PHAT , each frequency bin contributes the same in the corre-
lation calculation. This makes the process sensitive to noise. To
counter this, as also presented in [109], spectral weighting can
be applied to diminish the contribution of frequencies with low
narrowband SNR. To do this, at every timewindow themeanpower
spectral density of all microphones is calculated, referred as the
1 × F complex-value vector Xmean. Then, the frequency-domain
noise signal (referred as the 1 × F complex-value vector Y ) is
estimated by time-averaging Xmean. Then the weighting function
ψ[f ] presented in Eq. (19) is applied to Eq. (4) for correlation
calculation:

ψ[f ] =

⎧⎨⎩
ψPHAT [f ], Xmean[f ] ≤ Y [f ]

ψPHAT [f ]
(
Xmean[f ]
Y [f ]

)γ
, Xmean[f ] > Y [f ]

(19)
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Fig. 4. Overview of the generalized sidelobe canceller (GSC).

where ψPHAT [f ] =
1

|X1[f ]X2[f ]∗|
is the phase transform; and 0 < γ <

2 is a scalar which can be calibrated to define howmuch weight to
give frequencies that have a high narrowband SNR. This results in
an increase in robustness against noise.

One strong advantage of using beamforming for multiple-DOA
estimation is that, since the beamformer is carrying out a type of
source separation, features extracted from the separated sources
can be used as metrics of the grid-search mapping. For example,
in [110] the sound sources of interests are humans. Because of
this, a voice similarity metric is employed to smooth the steered-
response spectrum in such a way that the highest peaks can be
assumed as being human sources, not noise. Human vowel sounds
have an specific combination of spectral peaks or peak signature (J ,
a 1×F complex-value vector). This signature is distinct from other
type of sounds and can be used for voice activity detection [111].
By capturing a corpus of vowel recordings from several speakers,
a set of peak signatures templates can be obtained [110]. These
templates only bear values of 1’s in the frequency bins of the
spectral peaks and 0’s in all other bins. The similarity between the
output of the beamform steered towards a proposed DOA (Ŝθ [f ])
and a peak signature (J) is obtained by calculating the peak valley
difference (PVD), described in Eq. (20):

PVD =

∑F
f=1 Ŝθ J[f ]∑F
f=1 J[f ]

−

∑F
f=1 Ŝθ (1 − J[f ])∑F

f=1 J[f ]
. (20)

The PVDmeasures the distance of two spectra as the difference
of the average energy around peaks that appear in both spectra and
the average energy of other frequency bands.

Additionally in [110], another type of beamformer known as
generalized sidelobe canceller (GSC) is applied in the directions of
the n-best DOA candidates obtained from the smoothed steered-
response spectrum. This is performed as a way to boost the signals
in the ‘‘best’’ directions. GSC is used in [110] since it is designed
to adapt to changes in noise/interference [112]. Fig. 4 presents an
overview of GSC.

As it can be seen, GSC employs a delay-and-sum beamformer
(DAS) in its top path. In the bottom path, it carries out noise
estimation which it then subtracts from the DAS output. The noise
estimation is carried out by applying a blocking matrix whose
objective is to estimate the noise that is present in directions other
than the proposed DOA by subtracting the delayed signals (basi-
cally, an anti-beamformer). The resulting signals are then filtered
such thatwhen summed together provide a noise estimation that is
able to be subtracted directly from the DAS output. These filters are
constantly optimized through time via least mean squares using
the current estimated output and past noise estimations, resulting
in adaptation to changes in the environment. The work presented

in [110] is the only robot audition work we found that uses GSC as
part of its multiple-DOA estimation method.

Another example is that of [113], where a frequency-based
selection method is applied to the beamformer’s output to remove
the attenuated noise. The DAS-based steered-response spectrum
is calculated, from which the highest-energy and the second-
highest-energy sound source DOAs are obtained. The frequencies
that are lower in the highest-energy beamformer’s output than
in the second-highest are filtered out. This filtered output is sub-
tracted from the beamformers’ output and the process is carried
out again until only background noise is present. This results in
high sensitivity to low energy sound sources which are not easily
detectable with high energy interferences. However, the energy
level of these low-energy sound sources is implicitly assumed to
be higher than the background noise level.

An important drawback to using beamforming for multiple-
DOA estimation is that it requires one beamformer per proposed
DOA. Depending on the applied beamforming technique, a high
amount of computational resources may be required to execute
it [69].

4.3.2. Subspace methods
One of the most popular methods of this branch is multiple sig-

nal classification (MUSIC) [114]. It can be argued that it is the basis
of all the other methodologies of this branch, thus its description
is the main focus of this section.

The main concept behind MUSIC centers around the search of
the DOAs that intersect the subspace that represents the signals
of interest. Consider the captured signal model as presented in
Eq. (21):

X = WsS + V (21)

where X is a N × F complex-value matrix that holds all of the
Xn’s in its rows; the Xn are the frequency-domain-transformed
input discrete signals (xn), each representing the captured signal
at sensor n; S is a D × F complex-value matrix (where D is the
number of source signals) that holds in its rows all of the source
signals sm’s in the frequency domain; and V is a N × F complex-
value matrix that holds in its rows a set of noise signals present at
each sensor in the frequency domain. Ws[f ] is a N × D complex-
value matrix which models the TDOAs (τn:d) of each source signal
(d) at each microphone (n) at a given frequency f , related to its
DOA, as presented in (22):

Ws[f ] =

⎡⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
e−2π f τ2:1 e−2π f τ2:2 · · · e−2π f τ2:D

e−2π f τ3:1 e−2π f τ3:2 · · · e−2π f τ3:D

...
...

. . .
...

e−2π f τN:1 e−2π f τN:2 · · · e−2π f τN:D

⎤⎥⎥⎥⎥⎥⎥⎦ . (22)

It is important tomention thatWs[f ] is similar to theWθ matrix
of Eq. (15), but in this case it models the TDOAs of the received
signals for each sound source. As it can be observed, this approach
assumes the signal is narrowband, centered at f , which is not the
case for speech. We will assume that the signal is narrowband for
now, but examples are provided of broadband variations of MUSIC
further on.

The objective of MUSIC is to estimate the subspace spanned
by the columns of Ws. It carries this out by, first, performing the
eigendecomposition of the N × N sample covariance matrix R̂[f ]
for the frequency f of the captured signals (calculated in the same
manner as in the MVDR beamformer detailed in Section 4.3.1), as
in Eq. (23):

R̂[f ] = Q [f ]Λ[f ]Q [f ]−1 (23)
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whereΛ[f ] is theN×N complex-value diagonalmatrix holding the
covariance’s eigenvalues for the frequency f , sorted in descending
order, as presented in Eq. (24):

Λ[f ] =

⎡⎢⎢⎣
λ1[f ] 0 · · · 0
0 λ2[f ] · · · 0
...

...
. . .

...

0 0 · · · λN [f ]

⎤⎥⎥⎦ (24)

Q [f ] is aN×N complex-valuematrixwhich holds in its columns
the set of the covariance’s eigenvectors for frequency f sorted in
the order established byΛ. It is presented in Eq. (25):

Q [f ] =

⎡⎢⎢⎣
q1:1[f ] q2:1[f ] · · · qN:1[f ]
q1:2[f ] q2:2[f ] · · · qN:1[f ]
...

...
. . .

...

q1:N [f ] q2:N [f ] · · · qN:N [f ]

⎤⎥⎥⎦ (25)

Q [f ] can be divided into two subspaces, at the index λl, as
shown in Eq. (26):

Qs[f ] = Q [f ][1 : λl]

Qv[f ] = Q [f ][λl + 1 : N]
(26)

where Qs[f ] is the N × λl matrix that holds in its columns the
eigenvectors representing the signal subspace and Qv[f ] is the
N × (N − λl) matrix that holds in its columns the eigenvectors
representing thenoise subspace, both for frequency f .λl is typically
set as the rank of Ws[f ]. If this is difficult to estimate (as in noisy
environments) λl can be set as the index of the eigenvalue that
is the smallest of the set of high eigenvalues, meaning, those
that are not close to zero. This follows the assumption that the
eigenvalues of the noise subspace are considerably smaller than
those in the signal subspace. Another approach is to whiten the
noise before carrying out the eigendecomposition of the covariance
matrix so that the eigenvalues of the noise subspace are values
close to 1 and the eigenvalues of the signal subspace are greater
than 1 [115,116]. This whitening is carried out by first estimating
the N × N covariance matrix K [f ] of the noise V [f ] of Eq. (21) by
capturing it when the sources are silent. Then, K [f ] is calculated
by K [f ] = V [f ]V [f ]H and the eigendecomposition presented in
Eq. (27) is carried out:

K [f ]−1R̂[f ] = Q [f ]Λ[f ]Q [f ]−1. (27)

SinceK [f ]−1 canbe any type ofmatrix that forces theK [f ]−1R̂[f ]
matrix to be square, this presentswhat is known as the generalized
eigendecomposition (GEVD). When this decomposition is used as
part of MUSIC (GEVD-MUSIC), it has been shown to be robust
against non-correlated noise in the environment [115].

Having carried out the subspace division, a DOA search can be
set in motion where several DOA candidates are proposed. To this
effect, a N × 1 vector b[θ, f ] is calculated for each candidate θ , as
in Eq. (28):

b[θ, f ] =

⎡⎢⎢⎢⎢⎢⎣
1

e−2π f τ1(θ )

e−2π f τ2(θ )

...

e−2π f τN (θ )

⎤⎥⎥⎥⎥⎥⎦ (28)

where N is the number of sensors; and, τn(θ ) is the TDOA of
microphone n related to the candidate θ . The τn(θ )’s are calcu-
lated based on a given propagation model. As mentioned before,
the free-field/far-field is the most commonly used, as is the case
in this version of the methodology. But, in the same manner as
the beamforming-based methodologies described in Section 4.3.1,
other propagation models may be applied, such as the near-field
model [45] and the spherical head model [43, pp. 349–361].

Because of the orthogonal nature between eigenvectors, when
b[θ, f ] is orthogonal to the eigenvectors in Qv[f ], it represents one
of the source signals in the signal subspace (Qs[f ]) and, thus points
in the direction of a source signal. To test for this orthogonality,
Eq. (29) is applied:

PMUSIC [θ, f ] =
1

b[θ, f ]HQv[f ]Qv[f ]Hb[θ, f ]
(29)

where the vector PMUSIC [f ] is the MUSIC pseudo-spectrum at
frequency f . The locations of its peaks represent the DOA of
sound sources, similar to the steered-response spectrum of
beamforming-based methods. PMUSIC [θ, f ] will not be defined
when the denominator in Eq. (29) is 0, that is to say, when b[θ, f ] is
orthogonal to Qv[f ]. However, it is highly unusual for the noise to
be completely non-correlated to the source signal, thus only values
close to 0 are typically encountered. This does mean that the peaks
in PMUSIC [f ] are prone to have very large values.

It is important to mention that MUSIC requires at least one
eigenvector spanning the noise subspace, if not Qv[f ] is empty.
Thus one essential requirement for MUSIC is that there must be
at most N − 1 sources present. To work around this constraint, a
microphone arraywith a high amount ofmicrophones (8 or higher)
is often employed (see Section 6.3.1 for more details).

Since MUSIC assumes that the source signal is narrowband, it
is not directly applicable to speech signals which are broadband.
One way to solve this issue is to calculate a narrowband MUSIC
spectrum for each frequency f andpropose theirDOA-wise average
as the broadband MUSIC spectrum [117,118]. Unfortunately, this
results in requiring considerable computing resources to carry out
MUSIC in real-time when using the noise-robust variation GEVD-
MUSIC. To counter this, employing the generalized singular value
decomposition (GSVD) instead of the generalized eigendecompo-
sition (GEVD) provides the same orthogonality that is essential for
MUSIC to be carried out, as shown in Eq. (30):

K [f ]−1R̂[f ] = Ql[f ]Λ[f ]Qr [f ]H (30)

where Ql[f ] and Qr [f ] are left- and right-singular vectors for fre-
quency f that are orthogonal to each other, as well as unitary.
GSVD-MUSIC uses Ql[f ] instead of Q [f ] from Eq. (27) onward.
When it comes to computation cost, it is shown in [116] that using
GSVD-MUSIC takes considerably less processing time than GEVD-
MUSIC per time window. Additionally, in this same work, instead
of carrying out a grid-search mapping throughout the whole set of
possible DOAs, a coarse-search is carried out first and then a fine-
search is carried out in the peaks of the coarse-search. The authors
refer to this approach as Hierarchical SSL (H-SSL) and it can provide
a resolution below 1◦ in real-time.

In [119], MUSIC’s robustness against noisy environments is in-
creased by (1) decontaminating the covariancematrix by rectifying
noisy phases by linear regression between frequency bins and by
(2) neglecting noisy frequency bins by carrying out subspace-based
SNR estimation. It is important to remember that the phase data
is present in the sample covariance matrix R̂[f ]. The proposed
method uses a two-microphone array, which results in X[f ] only
having two rows, thus, only one source can be located. However,
as it is shown further on, this method can be generalized to a
multiple-DOA estimator.

The row X1[f ] is considered as the signal received at the ref-
erence microphone, thus, X2[f ] = X1[f ]e−i2π f τ . In this scenario,
the phase data can be extracted from the covariance matrix as it
is shown in Eq. (31):

R̂[f ] = X[f ]X[f ]H

=

[
X1[f ]X1[f ]H X1[f ]X2[f ]H

X2[f ]X1[f ]H X2[f ]X2[f ]H

]

=

[
X1[f ]2 X1[f ]2ei2π f τ

X1[f ]2e−i2π f τ X1[f ]2

] (31)
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where ζ (f , τ ) = e−i2π f τ represents the phase data, which is a
type of mapping between f and τ . Traditionally, in a noise-less
environment the relationship between these two is close to being
linear. However, the authors found that this linearity is lost in noisy
environments, which produces errors in the DOA estimations. To
this effect, the authors propose to use the following procedure to
rectify the phase data:

1. Calculate the sample covariance matrix R̂[f ].
2. Extract the phase data ζ (f , τ ) from R̂[f ] at each frequency f .
3. Regression stage (repeat until error reaches a pre-defined

minimum):

(a) Carry out a first-order regression of the phase data
such that it approaches what the authors refer to as
phase line. These are obtained by calculating the phase
data of observed signals from different directions and
should be straight in noiseless environments.

(b) Update the phase data that is lower than its corre-
sponding value in the estimated phase line.

(c) Calculate the error between updated phase data and
the estimated phase line.

4. Reconstruct the sample covariancematrix with the updated
ζ (f , τ ).

Additionally, frequency bin selection is carried out based on the
metric shown in Eq. (32):

ϵ[f ] = log

(
λ1R̂[f ]

λ2R̂[f ]

)
(32)

where λ1[f ] is the eigenvalue of the first eigenvector of R̂[f ] and
λ2[f ] is the eigenvalue of the second. Since in this case scenario
only one source is able to be estimated, λ1[f ] represents the eigen-
value of the signal subspace and λ2[f ] represents that of the noise
subspace. Thus, ϵ[f ] represents the narrowband subspace signal-
to-noise ratio (subspace SNR) of the frequency f from where R̂[f ]
is calculated. A pre-specified threshold can be applied to ignore the
frequency bins with a low subspace SNR [119].

Although the authors do not specify it, it may be possible to
generalize this method to use an array with more than two mi-
crophones (and carry out multiple-DOA estimation). The subspace
SNR can be calculated by finding the ratio between the sum of the
eigenvalues in the signal subspace and the sum of the eigenvalues
of the noise subspace, as presented in Eq. (33):

ϵ[f ] = log

( ∑λl
n=1 λn[f ]∑N

n=λl+1 λn[f ]

)
. (33)

Further examples of the application of MUSIC as part of SSL for
a service robot are found in [120–123].

4.3.3. DOA clustering through time
Because of the nature of this type of multiple direction-of-

arrival estimators, it is important to first define what is meant by
‘‘time window’’, since it is an essential part of SSL methods based
on DOA clustering through time (DOA-cluster). The techniques de-
scribed in the previous sections assume that all of the information
provided to the estimator is from a certain portion of time, defined
by a past number of samples (aka time window). Given this, the
estimators previously explained provide a multi-DOA result using
only that data.

The techniques described here estimate a single5 DOA through-
out several time windows and group up the different DOAs into

5 A multi-DOA estimator can also be applied at each time window if need be.

clusters, each representing a sound source. A good example of this
is [15], where a DOA is assigned to a cluster of DOAs (called a ‘‘peak
track’’) if it is close to its last DOA.

The authors of [69] carry out redundant single DOA estimation
by calculating the TDOAs from the three pairs of a triangular ar-
ray [124] using a variation of the GCC-PHAT method. By taking ad-
vantage of its redundancymeasures aswell as the non-overlapping
nature of simultaneous speech, the single DOA estimator is able to
estimate a single DOA from one source even in multiple-speaker
situations. A DOA calculated from time window t may be of a
different source from the one estimated from time window t +

1. To this effect, a clustering method6 based on radar tracking
techniques [69] is applied to create tracks out of the consecutive
estimated single DOAs, each track representing a sound source. At
each timewindow, all the DOAs of each track are fed into a Kalman
filter. The proposed systemprovides amultiple-DOA estimation by
carrying out the DOA prediction of all tracks. A similar Kalman-
based approach is used in [122], although just one source was
located.

Another method, proposed by [126], carries out multiple-DOA
estimation through a tracker based on a Gaussian mixture model.
It uses a probability hypothesis density filter (GM-PHD) to con-
stantly estimate the probability density function of all the possible
positions of all the current speakers (referred to as the ‘‘intensity
function’’). At each time window, when being fed of new DOA
estimations, the intensity function is ‘‘refreshed’’ by considering
both the new estimations as well as the past ones. In addition,
the authors also used a process to automatically introduce new
speakers into the intensity function, referred to as a ‘‘birth pro-
cess’’. Interestingly, this tracking system can also provide a rough
approximation of the distance of each speaker by accompanying
each DOA estimation with a distance component and evaluating
its divergence through time.

In [127] a method is presented that uses an adaptive variation
of the K-Means++ clustering method. The K-Means algorithm is a
clustering method that starts from a given set of centers. The K-
Means++ algorithm pre-chooses those centers given a certain set of
probabilities calculated from the data [128]. Thework in [127] pro-
poses an adaptive version of theK-Means++ algorithm that does not
assume to know the number of clusters beforehand. It iteratively
tests with different number of clusters, until the resulting cluster
centers are close to the pre-chosen ones.

Learning-based mapping procedures can also be employed
in this category of multiple-DOA estimators. For example, an
expectation–maximization framework (described in Section 5.3)
can be incorporated into the learning process, as seen in [129,130].
This has also been carried out for regression [51], manifold learn-
ing [33] andprobabilisticmodels [131–133]. All these examples are
mentioned elsewhere in this survey, but their multiple-DOA esti-
mation capabilities are worth noticing, specially when considering
that they employ binaural arrays.

Although DOA-cluster methods are not as frequently used
as beamforming-based or subspace-based methods, they provide
some advantages. As discussed in Sections 4.3.1 and 4.3.2, both
types of methods require a high number of microphones for good
SSL performance. However, if a clustering-based method relies
solely on single-DOA estimations through time, only one sound
source is estimated at each time window. This means that these
techniques only require the amount ofmicrophones employed by a
single-DOA estimator, which is generally lower than the employed
by the techniques in other multiple-DOA estimation categories.
For example, the microphone-array used in the clustering-based
multiple-DOA estimator in [69] employed only 3 microphones,
while the subspace-based methods used in [19,134,135] and the

6 Its first iteration is based on a simple DOA distance from a cluster center [125].
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beamforming-based methods used in [136–138] used arrays with
8 microphones or more. Another advantage is due to the use
of filtering techniques in clustering-based methods (such as the
Kalman filter in [69] or the PHD filter in [126]), which reduce the
influence of ‘‘noisy’’ DOAs in the end result.

However, an important disadvantage of DOA-cluster methods
is that they rely heavily in several DOA calculations through time
(i.e., several time windows). As mentioned before, subspace-based
and beamforming-based methods only require one time window
to provide a complete multiple-DOA estimation. This means that
DOA-cluster methods may suffer from low responsiveness com-
pared to their counterparts. However, it is important to point out
that the techniques that require the calculation of a covariancema-
trix (such asMUSIC andMVDR-based beamforming) only provide a
reliable multi-DOA result after several time windows in which the
covariance matrix is iteratively calculated.

It is important tomention that some of the grouping techniques
employed by DOA-cluster methods are in fact tracking techniques.
Examples of which are the Kalman filter and particle filtering,
which are described in Section 5 in more detail.

4.4. Distance estimation

After the direction-of-arrival, distance is the remaining compo-
nent of a sound source location. To this effect, a sound source is
located inside the hyperbola determined by the TDOA between the
captured signals from a pair of microphones. If several pairs of mi-
crophones are employed, the source can be located by calculating
the intersection of the hyperbolic curves of each microphone pair
in the array. This method is a variation of the triangulationmethod
usually used for source localization in antenna-based systems but,
instead of having the source inside the sensor array, the source
is located outside. However, it has been shown that the dynamic
range of the TDOA caused by distance variation is very small in far
distances and that it is non-linear in close distances [18].What this
implies is that if a source is far away, any changes to its distance to
themicrophone array is not reported by a change in the TDOA, and
thus neither by the intersections of the hyperbolic curves. This can
produce a high amount of distance estimation errors. In addition,
factors like timbre, loudness and reflections can affect the distance
estimation much more severely than the DOA estimation [18].

An alternative approach can be used that is similar to the
learning-based 2-dimensional DOA estimators described in Sec-
tion 4.2. Features, such as the ones described in Section 3.2, can be
extracted from captured signals of sound sources at different dis-
tances and be used as training data for distance estimation [139].
However, in the case of the IID feature, the variability of intensity
between different sound sources is much greater than of the same
sound source recorded at different distances. This means that the
IID is not as sensitive to distance changes in the ranges relevant to
robotic applications. To work around this issue, a correction factor
based on the azimuth of the sound source can be used to account
for such variability [139]. However, the same issues of elevation
estimation via training (as described in Section 4.2) are still present
in this type of learning-based mapping.

Another way to estimate the distance of the sound source is to
take advantage of the robot’s mobility and carry out the typical
method of triangulation. The DOA of the sound source is estimated
at different known positions in the environment and, with simple
trigonometry, its distance can be estimated [32,53,140]. In [32],
however, the distance estimations varied considerably (1 m in
standard deviation).

If the array is large enough it can be divided in several spatially
separated sub-arrays, each estimating a DOA, and the distance can
be estimated by employing triangulation [141]. But, sound separa-
tion is required to achieve good performance. A more general way

is to build an evidence grid of the environment based on the DOA
of a sound source when the robot is in different positions [70,71].
A similar grid-based method is employed in [71,121], where a grid
is built for the objective of getting close to the source.

Distance can also be estimated by employing optimization
methods over a Cartesian plane [74]. The GCC-PHAT-based TDOAs
can be used to propose a position model where a least-squares
solution is found using Lagrange multipliers. By considering that
the distance is a redundant variable, a linear correction can be
carried out exploiting the least-squares solution in a second phase.
Or like in [142], where a particle-filter-based tracker provides
estimations mapped directly onto the Cartesian-plane.

The relative inter-microphone intensity difference (RIID) can
be used as the input of a parameter-less self-organizing map (PL-
SOM) such that one of its outputs is mapped to the value of the
distance [143,144]. However, the performance is reduced dramat-
ically when the source is in front of the array, since the RIID is
reduced to a basic IID. As mentioned before, the IID is not sensitive
to distance variation.

A useful phenomenon that can be used for distance estimation
is how the source signal is reflected while propagating through
the environment. When the distance of the sound source changes,
the energy from the reflections (i.e., the reverberant diffuse sound
field) is assumed to remain constant while the energy from the
direct-path varies [145]. The ratio between these two energies is
known as the direct-to-reverberant ratio (DRR), and is related to
the distance of the sound source. Unfortunately, most methods
that estimate the DRR require a-priori measurements of the room
response. In [146], a DRR-estimation technique is proposed that
relied on an equalization–cancellation method that, in turn, relied
onDOA localization to appropriately select the signal sampleswith
which to estimate the direct-path energy. The reverberant energy
is calculated as the subtraction between the signal energy and
the estimated direct-path energy. Unfortunately, in practice, the
reverberant energy does not remain constant when the distance
varies. To overcome this, a Gaussian mixture model (GMM) can
be used to map the relationship between the DRR and the sound
source distance [146], however this technique has not been carried
out in a robotic platform.

It is important to mention that a similar concept to DRR is used
to increase the robustness against reverberation of a DOA estima-
tor in a robotic platform [16,18]. It relies on a generalized pattern
of an impulse response in a reverberant environment for onset
detection. However, this approach does not provide a distance
estimation. This brings up an interesting tendency in the surveyed
works. It is not unusual that features related to reverberation (DRR,
reverberation time, room response, etc.) are extracted for the ben-
efit of SSL. However, as presented in Section 6.2.2, these features
are extracted mainly to increase robustness against reverberation
for DOA estimation, not to carry out distance estimation. At the
moment of this writing, it seems from the surveyed works that
there has not been a robotic application where reverberation char-
acteristics have been used as features for distance estimation. This
tendency notwithstanding, we believe the previously described
work in [146] could be a good step forward in that direction.

Learning based approaches can also be used for distance es-
timation. However, these systems do not estimate the distance
directly but it is a byproduct of estimating the position in the Carte-
sian plane. The neural network architecture in [147] estimates
the Cartesian coordinates using only one microphone. The hybrid
deterministic/probabilisticmethodproposed in [131,132] is able to
not only integrate visual information but to estimate a 3D position
of the sound sources. In these approaches, themapping procedures
are based on a learned model similar to the 2-dimensional DOA
estimation approach in [57] explained in Section 4.2.
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5. Tracking

Most of the single-DOA and multi-DOA estimators described in
Section 4 require the audio information contained in only one time
window7 to provide aDOAestimation result (exceptions to this are
described in Section 4.3.3). The DOA estimation results of several
time windows can be used as data with which a sound source can
be tracked.

The tracking of a sound source uses this data to propose can-
didate scenarios in which it may be present. The tracking result is
a location calculated using several single-window location estima-
tions and amovementmodel. Additionally, it can provide a predic-
tion of the source’s movement in future time windows, depending
on the movement model the tracking technique employs.

The tracking result can also be considered as a ‘‘refinement’’ or
‘‘filtered version’’ of the single-window location estimation, which
is important in noisy environments and in presence of interfer-
ences. If the proposed movement model is robust enough, such
interferences and/or noise sources can be considered as part of the
environment. This not only improves SSL performance, but can also
lead to the tracking of multiple sound sources.

Although there is a large amount of tracking techniques in
literature, the ones usually employed for SSL in robot audition are
based on:

• Kalman filtering
• Particle filtering.

However, there are other tracking techniques that are sparsely
used which are worth mentioning and are briefly described in
Section 5.3.

5.1. Kalman filters

A Kalman filter is a type of Bayes filter whose aim is to estimate
the state of a system through noisy measurements over time, as-
suming that the noise satisfies a normal distribution [148]. Because
of its consideration of noise in its calculations, it is frequently used
for smoothing the trajectory of a mobile target [149].

A Kalman filter relies on a state-space paradigm which implies
that: (1) time is assumed to be discrete and (2) a new state of
the system is estimated at every time step. Although this would
also imply an input–output system in which the inputs are being
controlled by a known agent, this may not always be the case.

Generally, the Kalman filter carries out two stages to estimate
the system state:

• Predictor stage: the system state is estimated based on
previous states, as well as the current inputs being fed into
the system (if there are any).

• Corrector stage: the estimated state is updated given the
current observed measurements.

The output of the corrector stage is what is typically provided
as the output of the Kalman filter. It is important to acknowledge
the optional nature of the inputs during the predictor stage. As any
typical state-space system, the input to the system (c) can be part
of its model, as presented in Eq. (34):

pt = Apt−1 + Bct−1 + vt−1 (34)

and the measurement is modeled as in Eq. (35):

zt = Hpt + ut (35)

7 As explained in Section 4.3.3, a timewindow is a certain portion of time defined
by a past number of samples.

where t is the time index;pt is the state of the systemat time t; ct is
the input vector received at time t; zt is themeasurement observed
at time t; A is the transition matrix; H is the measurement matrix;
and vt and ut are the process and measurement noise respectively
at time t .

However, in the case of sound source tracking, the input vector c
is rarely available since it would involve knowledge of the motiva-
tion behind themovement of the sound source. This leaves only the
current system state to be used, eliminating the Bct−1 component
in Eq. (34), resulting in Eq. (36):

pt = Apt−1 + vt−1 (36)

This, however, may produce stagnation issues in the system
prediction, since there is no new information to be used except for
the process noise. A possible way around this issue is to use past
observations to calculate the difference of position that has been
observed between time steps [150].

It is also worth mentioning that it is common to define the
system state as a state vector pt = [θt , rt , θ̇t , ṙt ]T containing the
Cartesian coordinates and velocity of the source. If only directional
data is available (meaning, distance estimation was not carried
out), to obtain these Cartesian coordinates it can be assumed that
the sound source is on the unit circumference (with a radius of 1
m) [69].

Some important assumptions are that both noises (process and
measurement) are zero-mean, independent of each other and are
distributed normally with covariances Rv and Ru, as shown in
Eq. (37):

v ∼ N (0, Rv), u ∼ N (0, Ru) (37)

This greatly simplifies the equations used in both stages. Instead
of using thewhole probability density function (PDF) as in a typical
Bayes filter, only means and covariances are used.

There are two different types of states that are used in the
calculations in both predictor and corrector stages:

• The a-priori estimate of the system: p̂t
−, calculated using

all the information prior to time t .
• The a-posteriori estimate of the system: p̂t , calculated at

time t using the current measurement zt .

The overall processing arch of the Kalman filter is as follow:

1. In the predictor stage, p̂t−1 is used to calculate p̂t
−.

2. In the subsequent corrector stage, p̂t
− is used to calculate

p̂t , which is provided as the result of the Kalman filter for
the current time step t .

The manner in which p̂t
− is calculated is presented in Eq. (38):

p̂−

t = Ap̂t−1. (38)

While in the predictor stage, the covariance of the a-priori
estimate error at time t (R−

et ) is predicted using Eq. (39):

R−

et = ARet−1A
T

+ Rv (39)

where Ret−1 is the covariance of the a-posteriori estimate error at
time t − 1.

Then, in the corrector stage, the a-posteriori estimate (the out-
put of the Kalman filter) is calculated using Eq. (40):

p̂t = p̂−

t + K (zt − Hp̂−

t ). (40)

The term (zt − Hp̂−

t ) is referred to as the residual between
the estimated measurement Hp̂−

t and the actual measurement zt .
The weighting of this residual is the main basis of which of these
two measurements is ‘‘trusted’’ more. The weight of the residual
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is K , which is usually referred to as the filter gain, and its value
can fluctuate in the range of [0,H−1

]. K can be calculated using
Eq. (41):

K =
R−
etH

T

HR−
etHT + Ru

(41)

where R−
et is the covariance of the a-priori estimate error e−

t at time
t , both calculated using Eq. (42):

R−

et = e−

t e
−T
t , e−

t = pt − p̂−

t . (42)

As it can be seen, K is based on both the covariance of the a-
priori estimate error R−

et and the covariance of the noise of the
measurements Ru. Because of this, when the estimate error R−

et is
low, the estimated measurement Hp̂−

t is ‘‘trusted’’ more; when
the measurement noise Ru is low, the actual measurement zt is
‘‘trusted’’ more [149]. This balancing process makes the Kalman
filter a very attractive technique for noisy environments.

Finally,while in the corrector stage, Ret is calculated via Eq. (43):

Ret = (I − KH)R−

et (43)

which is used to calculate the covariance of the a-priori estimate
error in the following time step t + 1.

Given Eqs. (34) and (36), it can be deduced that Kalman filters
are only applicable to linear systems. Unfortunately, many SSL
systems are not linear. To this effect, the extended Kalman filter
(EKF) canbeused. Its assumption is that the system is differentiable
and uses its Jacobian derivatives instead of transitionmatrices. This
results in a linearization of the model around the current working
point. Unfortunately, because of this linearization, the EKF does not
assure an optimal solution in the sameway the linear Kalman filter
does. Regardless, EKF has been applied successfully for SSL in robot
audition [74,151].

Another important notion is that there is anunderlying assump-
tion that all the data that is fed to a Kalman filter is of only one
target. Thus, it cannot be used alone for multiple sound source
tracking. However, Kalman-basedmultiple-DOA estimation can be
carried out by clustering initial location estimations based on their
similarity to past estimations and employing one Kalman filter per
cluster, as in [69,122].

As mentioned before, a Kalman filter is a type of Bayes filter,
but modified to be used with multivariate normal distributions.
For this reason, SSL approaches that rely on a Bayes filter, such
as [109,152], can be considered as part of this branch of tracking
techniques.

5.2. Particle filters

A particle filter has a similar objective as a Kalman filter and can
even be presented using the same state-space model. A particle
filter does not assume that both the system and measurement
models are linear nor that they have a Gaussian distribution [153].
It instead employs a sampling method to obtain an estimate of the
probability distribution functions (PDF) of the system state. One
sampling method that is widely used is the sequential importance
sampling (SIS) algorithm. It is a type of Monte Carlo method that
randomly generates a set of weighted samples (or particles) from a
given probability density, which are then used to estimate the PDF
of the system state. Because of this random sampling, the solution
provided by a particle filter is not optimal. However, it is flexible
in the types of systems it can be applied to.

The expected value of the posterior PDF of the system state is
usually provided as the end result of the particle filter,8 and its
variance can be used as a type of confidence measurement.

8 If the PDF is very sparse, the value of the bin with the highest probability can
also be used.

The posterior PDF of the system state can be approximated by
applying Eq. (44):

P(pt | z1:t ) ≈

Np∑
n=1

wn
t δ(pt − pn

t ) (44)

where P(pt | z1:t ) is the posterior PDF of the system state pt at
time t; {pn

0:t , w
n
t }

Np
n=1 is a set of randomly-chosenweighted samples

known as particles that are used to characterize P(pt | z1:t ); the
weights wn

t are normalized such that
∑Np

n=1w
n
t = 1; Np is the

number of particles; and δ(i) is the Dirac function centered in i. The
Dirac function formalizeswn

t as the value of the bin [pt −pn
t ] of the

PDF.
To calculate theweightswn

t the SIS algorithm is used. An impor-
tance density is required to generate particles. The choice of this im-
portance density is one of the most important design steps of a par-
ticle filter. Specifically, it can be used to minimize an issue where,
after some iterations, only one particle has a non-negligibleweight.
This issue is known as the degeneracy phenomenon and, since the
variance of the weights increases over time, such phenomenon is
bound to happen. A frequently used importance density [154] is
the prior PDF of the system state P(pt | pn

t−1); weights can be
calculated by applying it to the Bayes rule, as shown in Eq. (45):

wn
t = wn

t−1P(zt | pn
t ) (45)

In addition, to reduce the degeneracy phenomenon, a supple-
mentary step known as resampling is carried out to ‘‘refresh’’ the
weight values whenever a threshold9 is passed. This step in-
volves generating a new set of particles from the newly calculated
weighted ones {pn

0:t , w
n
t }

Np
n=1 by discarding those that have small

weights. To complete the set of Np particles, new particles are
generated from the ones that are left.

There are different ways to carry out the resampling step, but
one of the most popular [155] is known as systematic resampling,
where the new particles are copies of the old particles. As part
of this process, the number of times that each old nth particle is
copied (Nn) needs to be calculated at each iteration. To do this, an
ordered set of Np numbers is proposed as U , where its ith element
is Ui = U1 +

i−1
Np

and U1 is a uniform-randomly chosen number in
the range of [0,Np). Systematic resampling proposes the value of
Nn as the number of elements in U whose value is inside the range
[
∑n−1

k=1w
k
t ,
∑n

k=1w
k
t ).

The complete set of steps to carry out this version of a particle
filter at any time t > 1 is as follows:

1. Build the current importance density given the set of particles
of time step t − 1.

2. Randomly choose Np particles from the current importance
density.

3. Calculate the weights of the particles wn
t using Eq. (45).

4. Normalize wn
t such that

∑Np
n=1w

n
t = 1.

5. Calculate the degeneracy of the weights.
6. If the degeneracy is below a threshold, resample using sys-

tematic resampling.
7. Estimate the posterior PDF of the system state P(pt | z1:t )

using Eq. (44).
8. Calculate the expected value and variance of P(pt | z1:t ) and

present them as the tracking result with a confidence value.

As it can be gathered, particle filters are quite flexible in the
types of models that can be employed, since P(pt | z1:t ) can be the
PDF of any model. This is relevant for SSL, as several models have
been proven useful:

9 Usually measured as 1/
∑Np

n=1(w
n
t )

2 .
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• Multiple simultaneous sound sources [120].
• Sound sources that cross each other by including an inertia

effect [138,156].
• Human tracking by fusing different perceptual modalities,

such as sound source localization (audio) and person visual
detection (vision) [66,73,157].

Although the whole set of particles is acting as one Bayes filter
(since its result is the estimation of a PDF), the calculation steps
employed in a Bayes filter are actually carried out for each particle
when updating its weights. Thus, it can be argued that in terms of
computational complexity, a particle filter is actually implement-
ing several Bayes filters concurrently (one per particle). Addition-
ally, since the particles are being combined or copied during the
resampling step, parallelization opportunities are limited [154].
This means that the high performance and model flexibility of
particle filtering comes at the expense of it being computationally
expensive [69]. This will have an impact in the resources that are
left for other modules in the robot, such as navigation, vision,
manipulation, planning, etc.

5.3. Other approaches

There are other approaches that are encountered in the litera-
ture that are worth mentioning that can be employed for tracking
purposes.
Log-likelihood. In [70,71], the objective is to create a grid that
represents the space surrounding the robot in order to provide in
each cell the log-likelihood of a source being located there. This
requires the robot to be listening and moving at the same time, as
this auditory evidence grid is created using both audio and self-
localization data. It has shown poor performance when having
more than 2 sources present in its first iteration [70], but with
an additional refinement during exploration, its performance can
improve substantially [71].
Expectation–maximization. It is based on two iterative steps. The
maximization step computes several parameters that maximizes
the likelihood of the data given a pre-calculated expected value.
The expectation step then calculates an expected value given the
parameters of the last maximization step. This method can be used
for tracking humans using both SSL and face localization [30].
Recurrent neural networks (RNN). They are a type of artificial neural
networks that have dynamic internal states which serve as histor-
ical information that can be relevant for the recognition process.
This makes them able to handle temporal signals proficiently. In
the works of Murray et. al. [82,83], estimated DOAs (calculated via
a cross-correlation technique) are fed into an RNN to estimate the
next location of the source. The RNN represents the current and
past locations of the source as internal states.
Random sample consensus (RANSAC) It is a type ofmodel estimation
algorithm that iteratively learns the parameters of a model by ran-
domly sampling observed data, with the assumption that such data
has ‘‘inliers’’ and ‘‘outliers’’. Via a voting scheme of several possible
models, it assumes that the ‘‘outliers’’ do not vote in a consistent
manner, while the ‘‘inliers’’ do. In [113], having acquired several
DOAs (via beamforming) while the robot is moving, RANSAC is
used to track three sources in the environment.

6. SSL facets

In the previous section, a reviewand classification of techniques
used for SSL in robotics is presented. As a part of this work, the
188 surveyed techniques were compiled in an external Excel file
where each column represents a different facet inherent to SSL.
These facets are the dimensions of the SSL problem that the re-
viewed techniques are aiming to solve. In this section, each facet is
described and discussed in detail.

Fig. 5. Evolution of number of located sources in SSL.

6.1. Source characteristics

There are several characteristics that locatable sound sources
possess, such as: number of sources, mobility of sources and dis-
tance of sources.

It is important to mention that most of the works discussed
do not impose any constraints on the types of sound sources that
are to be located. Given their application in a robot that interacts
with humans, it is tempting to presume that such methodologies
implicitly assume that the sound sources are human speech. There
are some works that do constrain the type of sound sources to
be of human origin, such as those that corroborate acoustic ac-
tivity with mouth movements [158], carry out face recognition in
parallel [135], or take advantage of speech characteristics for the
benefit of SSL [68,69,159]. Moreover, there are works that aim to
locate non-speech sources, such as cricket sounds [160] or generic
broadband signals [161]. However, the reader is invited to assume
that the reviewed works aim to locate any type of sound source.

6.1.1. Number of sources
There is a wide variety of number of sources located

by the reviewed works. However, the vast majority aim
to locate one source, such as [40,52,80,81,137,139,162]. Lo-
cating two sources is also common, as in the works pre-
sented in [44,71,98,134,140,163,164]. There are works that
aim to locate 3 sources [115,120,141,152,165–167] and 4
sources [42,69,118,125,138], but it seems that this is the ‘soft’
limit for the robot audition community, since very few works
carry out SSL for more than that amount. Exceptions to this limit
are [113,117,127,168] which locate 5 and 6 sources, the work
in [109,169] which locate up to 7 sources, and the work of [90,170]
which locate 10 and 11 sources, the maximum we found in the
literature.

As it is seen in Fig. 5, there is a high amount of works that locate
a low amount of sources. The reverse is also apparent: there is a
low amount of works that locate a high amount of sources. This is
expected since increasing the number of sources also increases the
complexity of the SSL technique. However, as it is also seen in Fig. 5,
the amount of sources to be located has increased throughout the
evolution of SSL in robotics.

It is important to mention that most of the reviewed works
locating more than one source assume that the sources to be
located are active simultaneously. This can be considered unnec-
essary since it is infrequent that two users interrupt each other in



C. Rascon, I. Meza / Robotics and Autonomous Systems 96 (2017) 184–210 199

Fig. 6. Evolution of distance of sources in SSL.

a conversation [171]. However, it is frequent to have interfering
sources from other conversations in settings such as restaurants
or parties. In addition, users talking over each other is encouraged
in circumstances such as having the robot act as a quizmaster
in a trivia-type contest [42], take a food order from multiple
clients [170] or just as an experimental setting [90].

6.1.2. Mobility of sources
In the reviewed works, the mobility of the sources is

heavily considered, which has encouraged the use of well-
known tracking techniques. Some of these techniques are de-
scribed in Section 5. Examples of these efforts are presented
in [73,109,113,115,120,138,172].

It is important to note that the mobility assumption is impor-
tant since the robot audition module usually resides in a robot
that is expected to move around in the environment. This implies
that, even if the source is static, its relative position to the robot is
dynamic while the robot is navigating or moving its robotic head.

6.1.3. Distance of sources
In Fig. 6, it can be seen that the majority of the works locate

sound sources no farther away than 5 m from the microphone
array. This approximately corresponds to the size of a room inside
a house or an office.

As discussed in Section 4.4, there are several issues that arise
when estimating the distance of the sound source by the analysis
of sound signals alone. However, such information is useful in sev-
eral acoustic scenarios where a robot is expected to perform. For
example, sources that are too far away from the microphone array
can be considered irrelevant to the interaction and thus ignored
in the rest of the audio signal processing stages. Furthermore,
using the source’s distance and some clever manipulation of the
room response, important characteristics of the environment can
be extracted, such as the number of walls, the room size and shape,
and the ceiling height [173]. To this effect, some works that aim to
estimate the distance of the source are [18,74,139,140,143,144].

6.2. Environment

The characteristics of the environment play an important part of
the complexity that SSLmethodologies face. The ones that aremore
prevalent in the reviewed literature are: noise and reverberation.

6.2.1. Noise
We consider ‘‘noise’’ as audio data that is present in all mi-

crophones in a random manner. For the sake of this section, we
differ ‘‘noise’’ from ‘‘interference’’, since the latter can be localized.
In fact, an interference can be considered as a sound source in
the environment, while there are other means that create noise
in the input data that cannot be localized (such as electrical line
current, residual environmental noise, etc.). Since noise is expected
to happen in robot audition systems, it is important that SSL tech-
niques are robust against it. Methods such as MUSIC (explained in
Section 4.3.2) or the Kalman filter (detailed in Section 5.1) consider
noise as part their signalmodels. Currently, examples ofworks that
aim to tackle noise robustness are [69,71,117,140,141,166,174].

It is important to mention that the amount of noise varied
greatly from one work to another: from an office-type noise (com-
puter fans, inter-cubicle shatter, etc.) [69] to a very noisy exhibition
hall [141].

6.2.2. Reverberation
Reverberation is the accumulation of reflections of the sound

source signal from the physical elements in the environment, such
as walls, ceilings, floor, even objects. A reflected signal has similar
characteristics as the original sound source, having only suffered a
decrease of energy (depending on the material from which it was
reflected and the distance from the microphone). Because of this,
such a reflection can be considered as an additional sound source
in the environment. In practice, these reflections occur from all
directions, which results in substantial decreases in performance
for those techniques that are not robust against it, such as the
original version of MUSIC. This can happen even with moderately
reverberant environments.

As mentioned in Section 4.1, generalized cross-correlation with
the phase transform (GCC-PHAT) provides a moderate amount
of robustness against reverberation and is used in robotic-based
works, such as [69,71,117,125,166,175].

Another reverberation-robust approach is presented in [16,18],
where a SSL technique based on onset-detection is proposed. The
pattern of an impulse response in a reverberant environment can
be generalized into two parts: (1) the initial peak produced by the
direct capture of the sound source (onset) and (2) a decreasing
exponential decay (echoes). Since a signal has a higher energy
when captured directly at its onset than its echoes, onset detection
can be carried out by applying a threshold to the sound-to-echo
ratio (similar to the direct-to-reverberant ratio of [146] discussed
in Section 4.4). A feedback algorithm can be used to obtain these
high sound-to-echo-ratio sections of the signal. Thismethod shows
a small amount of error (4◦) while being able to locate two sources
in practice. However, the generalized pattern requires to be cali-
brated to the room.

Another approach that aims to tackle reverberation-robustness
is presented in [176], which is an extended version of the
clustering-based method presented in [127] (detailed in Sec-
tion 4.3.3). This extension is based on estimating the TDOA with
a method that combines GCC-PHAT and MUSIC. The correlation
vector is calculated only using the first principal component vec-
tor of the signal subspace, reducing the noise sensitivity of the
reverberation-robust GCC-PHAT. Up to 6 sources are able to be
located, but its performance decreases as the amount of sources
increases: from an error of 2◦ with one source, to 18◦ with 6
sources.

A reverberation-robust approach is presented in [104] and dis-
cussed in Section 4.1. It carries out the SDDmethod and defines the
signal subspace solely as the eigenvector with the largest eigen-
value. This proposal is based on the assumption that the direct-
path component has the highest energy. Thus, it is understandable
that this method locates one sound source at a time, however it
shows a very small amount of error (1◦).
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A binaural particle-filter-based approach that is robust against
reverberation is presented in [36]. The method is based on mea-
suring the interaural coherence (IC), or linear dependency, be-
tween the two captured signals. The IC is used to ensure that a
signal feature (such as TDOA or IID) is calculated only using the
time–frequency bins of the captured signal that originated directly
from the sound source and not from a reflection. When locating
one source, its 3-dimensional localization has an average error of
0.157 m. However, permutation issues when calculating the joint
multi-target probability density are present when locating two
sources at the same time. The authors propose as future work to
use more elaborate measures with simultaneous sources.

As it can be seen, thesemethods provide a high SSL performance
in low to moderate reverberant rooms. This is important since
their testing conditions were similar to the conditions where a
robot is expected to perform in: houses, offices, etc. In addition,
the amount of sources being located are similar to those discussed
in Section 6.1.1, which is promising. Furthermore, SSL is carried out
with no prior knowledge of the environment and small amounts of
calibration. However, no distance estimation is carried out, which
is possible by using reverberation information, as shown in [146]
(discussed in Section 4.4).

6.3. Hardware

There are several aspects that the hardware side of the SSL
problem include: capture equipment, number of microphones,
array geometry and the robotic platforms used.

6.3.1. Capture equipment
There are two essential parts of the audio capture hardware

system usually employed for SSL and audio signal processing in
general.

Microphones. These convert the changes in air pressure caused by a
sound source to an electric signal. There is an important tendency
in the reviewed SSL works to use omnidirectional microphones.
These aim to have a close-to-circular polar pattern in the azimuth
plane. This tendency is understandable since a sound source can
be located anywhere in the angular range of the microphone ar-
ray and an omnidirectional microphone can capture it uniformly
regardless of its direction.

Because of the nature of omnidirectional microphones, these
tend to also capture signals with a substantial presence of noise
and interferences. Thus, there are some efforts to use cardioid
microphones which have a semi-circular polar pattern and can
significantly reduce the presence of interferences located in the
back of the microphone. However, this can cause issues if the
source of interest is located there. Some works that use cardioid
microphones are [28,50,84,177]. An important mention is the ef-
fort presented in [177] where a hybrid solution (using both omni-
directional and cardioid microphones) is used for SSL in a robot.

Audio interfaces. These convert the electrical signal captured by
the microphones and modify it such that it can be analyzed and
processed by a computer. This process includes digitization and
amplification. In the earliest reviewed efforts, generic digital signal
processors were adapted to be used with audio signals such as
the cases of [9,178]; in other circumstances, they were built in-
house [15,19]. In more recent efforts, off-the-shelf audio interfaces
are more commonly used and a case can be made that this is
the norm [47,70,179,180]. However, important endeavors to build
many-microphone portable interfaces are worth mentioning, such
as the 8SoundsUSB project [156], the EAR sensor [181] and the 32-
microphone board presented in [182].

There is a wide variety of number of microphones used in
the reviewed techniques, ranging from only just one micro-
phone [49,183], up to 32 [113,140,184] and 64microphones [185].

Fig. 7. Evolution of number of microphones in SSL (log scale in vertical axis).

However, as it can be seen in Fig. 7, the vast majority of the
surveyed works aim to tackle SSL with a binaural approach
(two microphones), such as [95,186–191]. In addition, there
are also a considerable amount of works using eight micro-
phones [42,109,115,118,120,127,134,152,165,192].

It is important tomention that there are approaches that use an
intermediate amount of microphones, like three [69,75,124,125],
four [40,70,71,122,193,194], five [74], six [73,104,141] and
seven [106]. It is also important to mention that there are works
that use a much larger amount of microphones, such as 14 [117],
15 [195] and 16 [87,158,166,196].

The motivation behind choosing how many microphones to
employ in a SSL solution is highly dependent on the interests of
the research group that is developing it. There is a wide range of
research interests that motivate the community, thus it is impor-
tant to discuss this topic in their context:

Human imitation. This is one of the main motivations (if not, the
main motivation) behind the development of binaural method-
ologies, since humans use two ear canals for SSL. Many of these
methodologies are accompanied by the use of external pinnae.
These not only bring them closer to the human baseline, but are
also useful in tackling the mirroring issue prevalent in binaural
techniques [96,197] as well as estimating elevation [55,198–200].
In this same vein, there are other human-like approaches used
for SSL, such as: multi-modal techniques that complement SSL via
vision (which is close to what humans do) [54,201–204]; the use
of epipolar geometry [205]; and moving the head to address the
mirroring issue [206]. However, a case can bemade that, because of
their mechanical nature, the hair cells that are part of the inner ear
sensory system can each be considered as amicrophone [207,208].
In addition, a link has been found between the tactile sensory
system and the auditory system in Macaque monkeys [209,210]
which canmean that the human skinmay also play a part in human
audition abilities. This makes sense since sound is a change in air
pressure and skin may be able to perceive it in a minor way. Thus,
the human auditory system is more complex than two receptors
and to imitate it requires a biological-based robotic development
effort.

Austerity Some research groups aim to use the least amount of
microphones possible. The amount of data analyzed is reduced in
such cases, and thus the computational requirements can also be
reduced. This is important since the robot audition modules are
usually run in the same computer in parallel with other software
modules, such as vision, navigation, etc. An extreme solution to the
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austerity motivation is to use just one microphone. Current exam-
ples of 1-microphone SSL generally use learning-based mapping
procedures, accompanied with the use of external pinnae and/or
inner-ear canals. The 1-microphone approach presented in [183]
can only locate the types of sources for which it is trained for,
therefore its performance might be affected by unknown sources.
A way around this issue is presented in [147], where a neural
network is trainedwith recorded sound sources in known locations
from different array positions. However, its distance estimation
suffers from poor performance. A binaural array is a popular
compromise for austerity, and some techniques are even able
to carry out multiple-DOA estimation with it. Arrays of 3 and 4
microphones are able to carry out multiple-DOA estimation via
clustering-through-time (described in Section 4.3.3), but suffer
from poor response time. To this effect, a balance requires to be
struck between hardware austerity (number of microphones) and
software austerity (dataset size, response time, etc.). Such balance
seems to be in the range between 2 and 8 microphones and it
would seem that austere SSL approaches tend to employ a number
of microphones in the lower side of that range.

Performance As discussed in Section 4, when carrying outmultiple-
DOA estimation it is important to consider the amount of mi-
crophones being employed, as it can be argued that it is di-
rectly correlated to SSL performance. As discussed in Section 4.3.3,
beamforming-based and subspace-based methods tend to have
better performance when using a large amount of microphones.
Traditionally, the limiting factor for the amount of microphones
to employ has been the space occupied by the body of the robot.
Thus, what ‘‘large amount’’ means is up to the miniaturization
techniques that are available at the time. In the case of con-
denser microphones,10 the size of the microphone diaphragm
is somewhat correlated to the microphone’s sensitivity. Larger
diaphragms tend to be more sensitive and do not require much
amplification (i.e., have a high signal-to-noise ratio, SNR), re-
sulting in the reduction of amplification noise that usually ac-
company small-diaphragm condenser microphones [211]. Thus,
when using condenser microphones, a trade-off usually emerges.
Using large-diaphragm condenser microphone array comes with
a relatively high space requirement and high SNR. While us-
ing a small-diaphragm condenser microphone array (such as the
8SoundsUSB project [156]) comes with a low space requirement
and relatively low SNR. More recently, microelectromechanical
system (MEMS) microphones [212] have been gaining interest,
primarily because of their small size. The first iterations of this
technology provided moderately low SNR in comparison to con-
denser microphones [213]. However, current iterations (such as
the STMicroelectronicsMP33AB01H [214] and the InvenSense ICS-
40618 [215]) have achieved SNR levels comparable to those of
large-diaphragm condenser microphones. Thus, we suspect that
this type of microphones will be used more andmore in future SSL
approaches, minimizing the impact of the issue of physical space
in relation to performance, as done in [216–219]. Nonetheless, as
it can be appreciated in Fig. 7, there is a high concentration of
approaches that use 8 microphones, hinting that this may be the
minimum that the community has established for a good perfor-
mance.

6.3.2. Array geometry
There is a wide variety of array geometries used for SSL, for

which we propose the following categorization:

• Symmetric. In this category, three sub-categories emerge,
based on their dimensionality:

10 Only a small amount of approaches report the type of microphones employed
but, from the ones that do, it seems that condenser microphones are a popular
choice.

– 1-dimensional. They are also known as linear arrays,
from which the most popular are the binaural ar-
rays [220,221]. Linear arrays with more than two mi-
crophones can also be used in a robot for SSL [48,222].

– 2-dimensional. These include triangular [223,224],
square [40,225] and circular [142,158] geometries.

– 3-dimensional.These include cubic [109,226], column-
based [169,176], pyramidal [141], hemispherical [219]
and spherical [104,185] geometries.

• Irregular. In this category, the microphones are scattered
throughout the robot’s body [136,227,228] and, in some
cases, the array does not even have a static structure, such
as:

– A reconfigurable microphone array geometry that op-
timizes its performance dynamically [229].

– A robot that moves its microphones to test its SSL
performance [230].

– A robot that accounts for its movements (and
changes in array geometry) to enhance its SSL perfor-
mance [231].

– The impact to SSL performance of head rotation and
limb movements of a humanoid robot with an array
distributed over its body [106].

– A hose-shaped robot that estimates its pose (and its
array geometry) by reversing the SSL problem [232].

The most used array geometry is the binaural array. Between
the symmetrical and irregular arrays, the symmetrical are much
more popular since they are simpler to configure.11 However, it
is important to mention that irregular arrays present a more inte-
grated solution to the robot, since the robot’s physicality defines
its array complexity not the other way around.

6.3.3. Robotic platforms
There is a wide variety of robotic platforms with a SSL system

installed. We propose the following categorization of such robots,
based on their physical appearance as well as their overall func-
tionality:

• Robotic heads. These systems present only the head [51,56]
or the upper torso of a humanoid, like Cog [8–10] or
SIG [30,137,206]. They usually involve the use of a binaural
array, each microphone in place of an ear on each side of
the head. An important exception to this is the SIG2 robotic
head which employs an additional binaural array inside the
head for ego-noise cancellation [98,172]. In these cases, it is
common that HRTFs [95,233] or epipolar geometry [44] are
used to overcome the breaking of the free-field assumption.

• Mobile bases. These systems are usually used for out-
door/urban navigation and/or mapping [234]. They con-
sist of a mobile robotic base with a microphone array in-
stalled [136,227,235]. In this category, unmanned aerial ve-
hicles [216,218,219] (UAV, which are equivalent to flying
mobile bases) are included. They employmicrophone arrays
for the purpose of carrying out SSL in outdoor environ-
ments [53,236,237].

• Service robots. These systems employ several function-
alities in conjunction (vision, manipulation, navigation,
speech recognition, etc.) for the benefit of servicing a
human. There are complete service robotic systems that
carry out SSL as part of these functionalities, such as:
ASIMO [238], Jijo-2 [19], Golem [239,240], Hadaly and

11 Basically, configure one half and multiply by -1 the other half.
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Hadaly-2 [22,241], Spartacus [138,228], HRP-2 [135], Rob-
otAssist [159], HEARBO [158,242] and the works presented
in [39,40,243]. It is also important to mention that the
RoboCup@Home service robotics competition has been
evaluating the SSL functionality in the participating robots
since 2015 [244,245], thus such service robots are included
in this category.

• Complete commercial systems. These systems are com-
mercially available off-the-shelf and include SSL as one of
their features. Examples of this category are:
NAO [106,230,231,246], AIBO [143,144] and Paro [37].

6.4. Software frameworks

Complete SSL software frameworks are those that are provided
to the community so that it can be downloaded, configured and
employed directly into a robotic system with a given microphone
array. As of this writing, there are two major SSL frameworks
reportedly available for robotic systems: HARK [165,170] and
ManyEars [156]. Both provide other robot audition functionalities
as well.

It is important to emphasize that these frameworks are the
ones that have been reported in the literature, but should not be
considered as the only ones available. For instance, a SSL frame-
work could have been applied but not reported; or only part of
the framework is presented. Other efforts choose to report the
low-level audio capture architectures such as: the JACK Connec-
tion Toolkit [247] in [69,240]; and RtAudio [248] in [66] and the
ManyEars framework [156]. However, this is an important issue
in the SSL literature: SSL software is seldom reported and rarely
openly provided to the community.

7. Evaluation methodologies

SSL researchers use the experimentation–evaluation paradigm
to report the progress in the field. Generally, when evaluating per-
formances, the SSL system is considered as one whole unit, which
includes the end-to-endmethodology andhardware configuration.
Moreover, most evaluations focus on three levels.

In the first level, the evaluation aims to characterize the per-
formance of the SSL system for a certain facet. That is to say, it
aims to measure the precision of the estimated positions. In this
level, the evaluation is one-to-many, in the sense that one approach
is tested under many acoustic environments. One can vary the
position of the source [65], its distance [139], the SNR [226] or the
environmental conditions [117].

In the second level, the evaluation aims to establish a common
ground for the comparison of different methodologies. Meaning, it
aims to compare system A versus system B. In this level, the evalua-
tion ismany-to-many, in the sense thatmany approaches are tested
under many acoustic settings. The challenge in these evaluations
is that all of the approaches have to ‘‘experience’’ the same input.
One option is to use sound speakers as sources and play recordings
through them using the same configuration [65]. A second option
is to use databases of recordings [69]. And a third option is to use a
simulation of sources and acoustic environments [231].

In the third and final level, the evaluation aims to measure the
impact of a SSL systemonan specific task. For example, it can aim to
answer: ‘‘What is the benefit of locating a sound source in a waiter
robot?’’ In this level, measuring the impact of the SSL system in a
task is not straightforward. The best option is an on/off evaluation,
in the sense that a task performed by the robot is tested with
and without using the SSL functionality. However, since the tasks
heavily depend on SSL, it is almost impossible to compare both
runs. In addition, this type of evaluation only measures the impact

of the functionality in a task;more subtle aspects of the interaction
are not explored. Because of this, other strategies are used for
evaluation at this level, such as measuring specific facets of the
SSL system during the task [40], reporting if the robot completed
the task or not [165], or carrying out user questionnaires as the
evaluation metric [240].

The evaluation methodologies rely on metrics to measure the
performance of the SSL system. The following are some of the
common metrics we have found that are used in the field:

Average error. It measures the error of the estimation. This met-
ric is commonly used for azimuth [187], elevation [47] and
distance [140]. A set of estimations are compared against the
true position of the source. The average difference between
both is reported. There is the discrete version of this metric, in
which a final stable estimation is compared with the source
position [187]. The other is the continuous version, in which
a stream of estimations through time are compared against a
stream of true positions [239]. In particular, this second version
is used when the robot or the source are mobile. Other similar
metrics are absolute error [178], maximum error [18], mean
square error [74] and root mean square error [66]. Other works
also include the standard deviation of the error [238].

Average accuracy. This is the complement of the error in the
sense that it measures the correctness of the estimations [81].

Correct detection. This metric is commonly used for DOA esti-
mations, although it can be adapted to be used with distance
estimations. It measures how many times the detection is cor-
rect, deemed so if it is within a given range of error from the
true position of the source. Discrete [95] and continuous [230]
versions of this metric are found in the literature.

Precision, recall and F1-score. Thesemetrics are based upon the
correct detections metric. Although less commonly used, these
metrics are able to measure the recovery capabilities of the SSL
system. If a position is correct it is considered a true positive;
if it is incorrect, a false positive; and, if no source is detected
but it should have, it is considered a false negative. These three
cases can be used to calculate the precision and recall met-
rics [181,237]. The precisionmetric measures howwell the sys-
tem is at predicting true positives. The recall metric compares
between thepredicted true positives and those that should have
been predicted. These metrics, in turn, are used to calculate the
F1-score [249], which provides a balance between the two.

Number of sources. The previous metrics can be modified to
consider the estimation of the number of sources instead of
the estimation of their location. In this manner, these metrics
measure the capability of counting the sources in an acoustic
environment, rather than the quality of the estimated posi-
tions [176,239].

Word error rate (WER). It is a metric for speech recognition and
it is used to indirectly measure the quality of SSL. Some sound
source separation techniques depend on an accurate sound
source localization. Therefore, a good SSL performance has a
positive impact in separation quality, resulting in an intelligible
signal that can be evaluated using speech recognition [54].

In addition to the previous metrics, it is common to find graphs
to illustrate the performance of the system.We have identified two
types of graphs.

Characterization graphs plot the full range of values for a
variable. The simplest characterization graph plots the estimated
variable versus the real value variable. In the case of DOA esti-
mation, this can be the estimated angle versus the ground-truth
angle (for both azimuth or elevation [27]). The characterization
graph of an ideal SSL system plots a diagonal. Additionally, it is
possible to characterize the performance of the system by plotting
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Fig. 8. Example of a graph path, taken from [69].

different variables against each other, such as: estimated angle
vs error [30]; estimated angle vs. distance [139]; correct local-
ization vs. SNR [118]; WER vs. SNR [165]; RMSE vs. number of
sources [176]; average error vs. number of speakers [168]; and
F1-score vs. SNR [230]. Although usually these graphs are given
in Cartesian coordinates, there are versions that use polar coor-
dinates [168]. All these graphs have the goal to show the perfor-
mance of the system under different circumstances and they are
used to show its robustness or disadvantages.

The second type of graph are track graphs that show the lo-
calization of the sources through time. In these graphs, the actual
source location and the estimated source location are drawn over
each other. This is effective at providing a good visualization of
the system’s performance when the robot or sources are mobile.
An example of a graph path is shown in Fig. 8 where two mobile
sources aremoving around a robot [69]. The source true position is
shown as dashed lines and the estimated source position is shown
as scattered points. Additionally, it is possible to plot the track in a
2-dimensional map with an initial and a final point [142].

7.1. SSL datasets

For the purpose of many-to-many evaluations, different acous-
tic datasets can be used. In particular, we have identified eight
datasets that are freely available and that are appropriate for SSL
evaluation:

• RWCP database12 [250] This is one of the first datasets
collected for scene understanding. It contains positions of
several types of audio sources which were moved using
a mechanical device. Recordings were made using a lineal
array (14microphones) and semi-spherical array (54micro-
phones).

• V16.3 audio visual corpus13 [251] This is a dataset of video
and audio recordings acquired inmeeting roomswith one or
more speakers, using two 16-microphone arrays. Themobil-
ity of each speaker varies from one recording to another. In
this dataset, the audio capture system is static.

12 Information about RWCP is available from: http://research.nii.ac.jp/src/en/
RWCP-SSD.html.
13 V16.3 is available from: http://www.glat.info/ma/av16.3/.

• CAVA dataset14 [252] This dataset consists of recordings
using a helmet mounted in a human head. Audio was ac-
quiredusing twomicrophones and videowas acquiredusing
a camera mounted directly on the helmet. The recorded
scenes are of meetings with multiple mobile speakers and
noise sources.

• CAMIL dataset15 [33] This dataset consists of recordings of
one source with a realistic dummy head equipped with a
binaural array and mounted on a pan/tilt robotic neck. The
source is static, but the recordingswere acquired during and
after head movements. The acoustic environment is that of
an office.

• 2nd CHiME dataset16 [253] This dataset collected with the
purpose of sound separation and speech recognition. It can
be re-purposed for SSL since information of the speaker
positions are available.

• RAVEL corpus17 [254] In this dataset, the primary data
consists of video and audio recordings using a binaural head.
It includes sceneswith static andmobile speakers. The audio
recording system is static.

• AVASM dataset18 [255] This dataset provides information
of a position of a moving source in the visual perception
field. The audio of these video recordings are from a dummy
head equipped with a binaural array. The dummy head is
static but the sound position of the source varies in the video
recordings.

• AIRA corpus19 [125] This dataset consists of audio record-
ings from a 3-microphone array. There are three settings:
anechoic, office and hall. The scenes include mobile speak-
ers and a mobile audio acquisition system installed over a
robotic platform.

Unfortunately this list is quite short and we attribute that
to the fact that the creation of a dataset is challenging, mainly
because of the heterogeneous diversity of acquisition hardware.
The configuration used in a robot can be different from the one
used to gather the dataset in terms of: the array geometry, the
number and/or type of microphones, the microphone spacing,
the audio interface, etc. In addition, to collect a dataset is time
consuming, however [256] presents a proposal to expedite its
collection using several robots. Each robot carries a microphone
array and an electronic speaker while moving around, in this way
it can collect several recordingswith varying positions in a realistic
environment.

8. Challenges

In this section a discussion is put forward on the SSL challenges
that are of interest to be solved by the robot audition community.

8.1. Increase resolution in real-time

The concept of performance is an over-arching issue that is in
continuous improvement, but the manner in which it is improved
heavily depends on the scenario, constraints and testing condi-
tions. We believe that a way to improve performance in a generic

14 Extra information for CAVA: https://team.inria.fr/perception/cava/.
15 CAMIL is available from: http://perception.inrialpes.fr/~Deleforge/CAMIL_
Dataset/.
16 2nd CHiME Challengue dataset is available from: http://spandh.dcs.shef.ac.uk/
chime_challenge/chime2013.
17 RAVEL is available from: http://perception.inrialpes.fr/datasets/Ravel/.
18 AVASM is available from: https://team.inria.fr/perception/the-avasm-dataset/.
19 AIRA is available from: http://golem.iimas.unam.mx/proj_viewer.php?lang=
en{&}sec=projects{&}proj=aira.
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manner is to increase the localization resolution. The surveyed
approaches can currently provide a high-resolution result, but the
size of the 3D search space (azimuth, elevation and distance) is too
large to provide results in real-time. That is to say, the challenge
is to carry out 3D localization with high resolution (<1◦ in angles,
<1 cm in distance) in real-time. There are already someworks that
have tackled this issue in the azimuth plane. The authors of [118]
proposed a fine high-resolution search seeded by the results of
a broad search. In [116], a super-resolution technique helped in-
crease the robustness of simultaneous speech recognition.

8.2. Dynamic acoustic environment

A typical acoustic environment in which a robot is expected
to work is flooded by a level of dynamism that is seldom tackled
in conjunction. Examples of issues that come with this dynamism
are: ever-changing acoustic environments (noise and reverber-
ation), multiple mobile sources, non-stationary mobile interfer-
ences, complications that arise from the robot’s mobility, etc. Al-
though there are many techniques that aim to solve these issues
(as discussed in Section 6), these are usually tackled in isolation
and/or in a controlled environment. The challenge is to carry out
SSL in real-life scenarios. The following are examples of research
currently tackling this challenge: the HARK framework [170,186]
can be used in very noisy environments with multiple users [141];
the ManyEars framework [156] uses noise masks to improve its
robustness in dynamic environments [68]; and, the lightweight SSL
solution used in the Golem robot [69] is able to carry out SSL as part
of a waiter-type task in a noisy RoboCup@Home arena [240].

8.3. Off-the-Shelf ssl

Since SSL is of interest in the robotics community, it is also of
interest to have SSL solutions that are easily integrated to already
established platforms. Unfortunately, the requirements for an off-
the-shelf SSL solution are challenging.

To begin with, the microphone array geometry presents im-
portant obstacles. Since different robots have different bodies, the
microphone array that would accompany them differs in the same
manner. In addition, it is also of interest to quickly change the
number of microphones, either to remove faulty ones or add more
for performance improvements. This means that an off-the-shelf
SSL solution should be able to be configured according to the
robot’s microphone array in a trivial manner.

Moreover, the spacing betweenmicrophones can changeduring
the task execution, as in the case of the hose-shaped robot used
in [232] and the UAV swarm solution used in [53]. Thus, it should
also be able to handle online changes in the array geometry.

Examples of systems which aim to tackle this challenge are
HARK [165] and ManyEars [156], which provide an end-to-end
framework that is available in their respective websites. It is also
important to mention that one-microphone approaches are also
being used, such as [49,147,183,199], which should simplify the
initial configuration of an off-the-shelf SSL solution.

8.4. Datasets for machine learning methodologies

As presented in Section 7.1, there are few datasets devoted to
sound localization. The rise of machine learning methodologies, in
particular of Deep Learning [257], has been in part possible because
of the accessibility of large scale datasets. For instance, in the field
of image recognition there exists ImageNet [258], a dataset with
one million annotated images; in the field of speech recognition,
datasets can contain hundreds or thousands of speech hours with
their transcriptions [259]. A way to promote the progress of the
field would be to have a vast collection of recordings of sound

sources in various positions and in multiple settings. In fact, this
effort could be expanded to other robot audition tasks, such as
sound source separation and classification. Towards this goal, [256]
proposes a methodology to collect this large scale dataset using
robots.

8.5. Integration of SSL in robotic tasks

The SSL functionality can be very useful in the overall task of a
robot. For example, the work in [42] uses SSL as part of a task in
which the robot acts as a quizmaster, where users try to answer
as fast as possible a trivia question given by the robot. The robot
is the judge of not only who said what answer (which is solved by
SSL), but also who answered first. Another example is presented
in [40], where the robot plays ‘hide and seek’ using SSL to find
the user. Robots, such as the one presented in [41], can use SSL as
part of a teleoperation task by complementing the representation
of the scene to the operating user. Service robots for elderly care,
as in [39], use SSL to complement the interaction with the user.
Other examples of the applications of SSL in robotic tasks can be:
the robot playing ‘Marco Polo’ with the user, taking attendance in
a class and following a person that it has lost visually [38].

In all the aforementioned examples, SSL contributed to the
overall behavior. This contribution can be expanded to other types
of robots such as social, rescue, cognitive, industrial, as well as to
many other types of service robotics tasks.

9. Discussion

In the last the three decades, there has been a lot of progress
in the SSL field and it has become clear that there are several
parts of the SSL problem that have been addressed profoundly from
different vantage points. A clear example is the fact that robustness
against noise and reverberation, a problem that was deemed near
impossible half a century ago, is now being tackled in a regular
basis by the community (see Sections 6.2.1 and 6.2.2). Moreover,
multiple-DOA estimation and tracking techniques are now able to
performwell in circumstances that are in par with typical acoustic
environments. This, in turn, has provided SSL results that are more
than suitable to be used in the next processing stages of a robot
audition system (see Sections 4.3 and 5). Furthermore, even though
there is still work to be done to achieve a good distance estimation
relying solely in audio data, the current tendencies indicate that
this research question is close to being solved (see Section 4.4).
Moreover, even though an actual standard to compare SSL systems
at a framework level is still missing, the field has at its disposal
many methodologies and metrics to evaluate the performance of
SSL systems (see Section 7).

To push this progress further, new research questions need to
be formed and addressed. We have identified three motivations
that can guide the robot audition community in putting together
these questions:

• The quest for the ideal ear. There is a wide variety of hard-
ware configurations currently being used, but we suspect
that there are plenty more hardware settings and acoustic
scenarios to explore. For example, the omnidirectional mi-
crophone is still widely used even when there are several
techniques in which its polar pattern is altered by using ex-
ternal pinnae. This suggests that other acquisition hardware
models are worthy of being considered to be built for robot
audition, such as MEMS microphone-arrays. Biology-based
systems, in which audio data is acquired using more than
one type of sensor, might be another source of inspiration
for these new models.
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• More extreme acoustic situations. Currently, SSL scenarios
have been mostly focused on laboratory settings. However,
as with any research field, new areas of application should
also be investigated. For instance, in scenarios such as in-
side a cave or a badly acoustically-designed classroom, the
reverberation is much more extreme than in a household.
In autonomous warehouses and self-driving cars, the level
of noise is expected to be much higher than in an office.
In addition, the dynamism of the acoustic environment,
which includes the number, mobility and intensity of sound
sources, can be much more complex in a setting such as
a cocktail party, restaurant, public transport hub and busy
streets. Finally, there are types of sources other than human
speech that can be localized, such as dog barks, security
alarms, whistles, body movements, stride pacing, etc. These
are all dimensions of a fertile landscape in which the SSL
field can grow.

• New horizon. Although the goal of SSL is well bounded,
the standard with which SSL techniques are measured by
has been evolving. It can be argued that, as of this writing,
we are reaching human equivalent capabilities in terms of
SSL, and that some techniques have the potential to go even
beyond these limits. The question now is what is the new
horizon of what we want to achieve in terms of, for exam-
ple: an increasing number of located sources, 3-dimensional
localization of the source, faster mobile sources, real-time
processing, higher localization resolution, etc.

These motivations can fuel current and future research ques-
tions of SSL in the robotics field. We believe that answering these
questionswill not only benefit the field on its own, butwill have an
impact on the later processing stages of robot audition. In addition,
itwillwiden the range of robotic systemswhere SSL can be applied,
as well as open the door to richer types of robotic tasks.

Since 1989, when the Squirt robot was given a way to locate
the sound sources surrounding it, the community has made steady
progress to provide answers to SSL challenges. There are still
frontiers to conquer in the field but, as it can be seen from this
survey, these arewellwithin the community’s grasp andwill surely
motivate more progress that will transcend the field, improving
robot audition in general.
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