Use el DOI o este identificador para enlazar este recurso:
http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART12
Autor: | Alvarado-González, Montserrat |
Otros autores : | Garduño, Edgar Bribiesca, Ernesto Yáñez-Suárez, Oscar Medina-Bañuelos, Verónica |
Título : | P300 Detection Based on EEG Shape Features |
En: | Computational and Mathematical Methods in Medicine (1748-670X) ,Vol. 2016, Article ID 2029791, 14 pages, (2016). |
Número completo : | https://www.hindawi.com/journals/cmmm/contents/year/2016/ |
Editorial : | Hindawi |
Abstract : | We present a novel approach to describe a P300 by a shape-feature vector, which offers several advantages over the feature vector used by the BCI2000 system. Additionally, we present a calibration algorithm that reduces the dimensionality of the shape-feature vector, the number of trials, and the electrodes needed by a Brain Computer Interface to accurately detect P300s; we also define a method to find a template that best represents, for a given electrode, the subject’s P300 based on his/her own acquired signals. Our experiments with 21 subjects showed that the SWLDA’s performance using our shape-feature vector was , that is, higher than the one obtained with BCI2000-feature’s vector. The shape-feature vector is 34-dimensional for every electrode; however, it is possible to significantly reduce its dimensionality while keeping a high sensitivity. The validation of the calibration algorithm showed an averaged area under the ROC (AUROC) curve of . Also, most of the subjects needed less than trials to have an AUROC superior to . Finally, we found that the electrode C4 also leads to better classification.. |
Area del conocimiento : | Ingeniería y Tecnología |
Palabras clave en inglés : | Signal Processing Image Processing Physiological Data |
Fecha de publicación : | 10-ene-2016 |
DOI : | http://dx.doi.org/10.1155/2016/2029791 |
URI : | http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART12 |
Idioma: | Inglés |
Lugar: | Estados Unidos |
Citación : | Alvarado-González M.,Garduño E.,Bribiesca, E.,Yáñez-Suárez, O.,Medina-Bañuelos, V.(2016) P300 Detection Based on EEG Shape Features. Computational and Mathematical Methods in Medicine. doi:10.1155/2016/2029791 2016 2029791 |
Aparece en las colecciones: | Artículos |
Texto completo:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ART12.pdf | 1.96 MB | Adobe PDF | Visualizar/Abrir |
Este recurso está sujeto a una Licencia Creative Commons