Use el DOI o este identificador para enlazar este recurso:
http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART30
Autor: | Santamaria-Bonfil, Guillermo |
Otros autores : | Gershenson, Carlos Fernández, Nelson |
Título : | Measuring the Complexity of Continuous Distributions |
En: | Entropy (1099-4300), Vol. 18(3), (2016) |
Número completo : | https://www.mdpi.com/1099-4300/18/3 |
Editorial : | MDPI |
Abstract : | We extend previously proposed measures of complexity, emergence, and self-organization to continuous distributions using differential entropy. Given that the measures were based on Shannon’s information, the novel continuous complexity measures describe how a system’s predictability changes in terms of the probability distribution parameters. This allows us to calculate the complexity of phenomena for which distributions are known. We find that a broad range of common parameters found in Gaussian and scale-free distributions present high complexity values. We also explore the relationship between our measure of complexity and information adaptation. |
Area del conocimiento : | Ciencias Físico Matemáticas y Ciencias de la Tierra |
Palabras clave en inglés : | complexity emergence self-organization information differential entropy probability distributions |
Fecha de publicación : | 26-feb-2016 |
DOI : | http://dx.doi.org/10.3390/e18030072 |
URI : | http://www.ru.iimas.unam.mx/handle/IIMAS_UNAM/ART30 |
Idioma: | Inglés |
Lugar: | Estados Unidos |
Citación : | Santamaria-Bonfil, G., Fernandez, N., & Gershenson, C. (2016). Measuring the Complexity of Continuous Distributions. Entropy, 18(3). doi:10.3390/e18030072 |
Aparece en las colecciones: | Artículos |
Texto completo:
Archivo | Descripción | Tamaño | Formato | |
---|---|---|---|---|
ART30.pdf | 700.97 kB | Adobe PDF | Visualizar/Abrir |
Este recurso está sujeto a una Licencia Creative Commons